
Menpo Documentation
Release 0.5.0+0.ge1ed845.dirty

Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou

June 30, 2015

Contents

1 User Guide 3
1.1 Quick Start . 3
1.2 Introduction . 4
1.3 Menpo’s Data Types . 4
1.4 Working with Images and PointClouds . 6
1.5 Vectorizing Objects . 7
1.6 Visualizing Objects . 9
1.7 Changelog . 10

2 The Menpo API 19
2.1 menpo.base . 19
2.2 menpo.io . 21
2.3 menpo.image . 27
2.4 menpo.feature . 72
2.5 menpo.landmark . 78
2.6 menpo.math . 94
2.7 menpo.model . 98
2.8 menpo.shape . 117
2.9 menpo.transform . 206
2.10 menpo.visualize . 269

i

ii

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Welcome to the Menpo documentation!

Menpo is a Python package designed to make manipulating annotated data more simple. In particular, sparse locations
on either images or meshes, referred to as landmarks within Menpo, are tightly coupled with their reference objects.
For areas such as Computer Vision that involve learning models based on prior knowledge of object location (such as
object detection and landmark localisation), Menpo is a very powerful toolkit.

A short example is often more illustrative than a verbose explanation. Let’s assume that you want to load a set of
images that have been annotated with bounding boxes, and that these bounding box locations live in text files next to
the images. Here’s how we would load the images and extract the areas within the bounding boxes using Menpo:

import menpo.io as mio

images = []
for image in mio.import_images('./images_folder'):

image.crop_to_landmarks_inplace()
images.append(image)

Where import_images yields a generator to keep memory usage low.

Although the above is a very simple example, we believe that being able to easily manipulate and couple landmarks
with images and meshes, is an important problem for building powerful models in areas such as facial point localisa-
tion.

To get started, check out the User Guide for instructions on installation and some of the core concepts within Menpo.

Contents 1

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

2 Contents

CHAPTER 1

User Guide

The User Guide is designed to give you an overview of the key concepts within Menpo. In particular, we want to try
and explain some of the design decisions that we made and demonstrate why we think they are powerful concepts for
exploring visual data.

1.1 Quick Start

Here we give a very quick rundown of the basic links and information sources for the project.

1.1.1 Basic Installation

Menpo should be installable via pip on all major platforms:

$ pip install menpo

However, in the menpo team, we strongly advocate the usage of conda for scientific Python, as it makes installation
of compiled binaries much more simple. In particular, if you wish to use any of the related Menpo projects such as
menpofit, menpo3d or menpodetect, you will not be able to easily do so without using conda.

$ conda install -c menpo menpo

To install using conda, please see the thorough instructions for each platform on the Menpo website.

1.1.2 API Documentation

Visit API Documentation

Menpo is extensively documented on a per-method/class level and much of this documentation is reflected in the API
Documentation. If any functions or classes are missing, please bring it to the attention of the developers on Github.

1.1.3 Notebooks

Explore the Menpo Notebooks

For a more thorough set of examples, we provide a set of IPython notebooks that demonstrate common use cases of
Menpo. This concentrates on an overview of the functionality of the major classes and ideas behind Menpo.

3

http://www.menpo.org/installation/
https://github.com/menpo/menpo
http://www.menpo.org/notebooks.html

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

1.1.4 User Group and Issues

If you wish to get in contact with the Menpo developers, you can do so via various channels. If you have found a bug,
or if any part of Menpo behaves in a way you do not expect, please raise an issue on Github.

If you want to ask a theoretical question, or are having problems installing or setting up Menpo, please visit the user
group.

1.2 Introduction

This user guide is a general introduction to Menpo, aiming to provide a bird’s eye of Menpo’s design. After reading
this guide you should be able to go explore Menpo’s extensive Notebooks and not be too suprised by what you see.

1.2.1 Core Interfaces

Menpo is an object oriented framework built around a set of core abstract interfaces, each one governing a single facet
of Menpo’s design. Menpo’s key interfaces are:

• Shape - spatial data containers

• Vectorizable - efficient bi-directional conversion of types to a vector representation

• Targetable - objects that generate some spatial data

• Transform - flexible spatial transformations

• Landmarkable - objects that can be annotated with spatial labelled landmarks

1.2.2 Data containers

Most numerical data in Menpo is passed around in one of our core data containers. The features of each of the data
containers is explained in great detail in the notebooks - here we just list them to give you a feel for what to expect:

• Image - n-dimensional image with k-channels of data

• MaskedImage - As Image, but with a boolean mask

• BooleanImage - As boolean image that is used for masking images.

• PointCloud - n-dimensional ordered point collection

• PointUndirectedGraph - n-dimensional ordered point collection with undirected connectivity

• PointDirectedGraph - n-dimensional ordered point collection with directed connectivity

• TriMesh - As PointCloud, but with a triangulation

1.3 Menpo’s Data Types

Menpo is a high level software package. It is not a replacement for scikit-image, scikit-learn, or opencv - it ties all
these types of packages together in to a unified framework for building and fitting deformable models. As a result,
most of our algorithms take as input a higher level representation of data than simple numpy arrays.

4 Chapter 1. User Guide

https://github.com/menpo/menpo
https://groups.google.com/forum/#!forum/menpo-users
https://groups.google.com/forum/#!forum/menpo-users

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

1.3.1 Why have data types - what’s wrong with numpy arrays?

Menpo’s data types are thin wrappers around numpy arrays. They give semantic meaning to the underlying array
through providing clearly named and consistent properties. As an example let’s take a look at PointCloud, Menpo’s
workhorse for spatial data. Construction requires a numpy array:

x = np.random.rand(3, 2)
pc = PointCloud(x)

It’s natural to ask the question:

Is this a collection of three 2D points, or two 3D points?

In Menpo, you never do this - just look at the properties on the pointcloud:

pc.n_points # 3
pc.n_dims # 2

If we take a look at the properties we can see they are trivial:

@property
def n_points(self):

return self.points.shape[0]

@property
def n_dims(self):

return self.points.shape[1]

Using these properties makes code much more readable in algorithms accepting Menpo’s types. Let’s imagine a
routine that does some operation on an image and a related point cloud. If it accepted numpy arrays, we might see
something like this on the top line:

def foo_arrays(x, img):
preallocate the result
y = np.zeros(x.shape[1],

x.shape[2],
img.shape[-1])

...

On first glance it is not at all apparent what y‘s shape is semantically. Now let’s take a look at the equivalent code
using Menpo’s types:

def foo_menpo(pc, img):
preallocate the result
y = np.zeros(pc.n_dims,

pc.n_points,
img.n_channels)

...

This time it’s immediately apparent what y‘s shape is. Although this is a somewhat contrived example, you will find
this pattern applied consistently across Menpo, and it aids greatly in keeping the code readable.

1.3.2 Key points

1. Containers store the underlying numpy array in an easy to access attribute. For the PointCloud family see
the .points attribute. On Image and subclasses, the actual data array is stored at .pixels.

2. Importing assets though menpo.io will result in our data containers, not numpy arrays. This means in a lot of
situations you never need to remember the Menpo conventions for ordering of array data - just ask for an image and
you will get an Image object.

1.3. Menpo’s Data Types 5

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

3. All containers copy data by default. Look for the copy=False keyword argument if you want to avoid copying
a large numpy array for performance.

4. Containers perform sanity checks. This helps catch obvious bugs like misshaping an array. You can sometimes
suppress them for extra performance with the skip_checks=True keyword argument.

1.4 Working with Images and PointClouds

Menpo takes an opinionated stance on certain issues - one of which is establishing sensible rules for how to work with
spatial data and image data in the same framework.

Let’s start with a quiz - which of the following is correct?

Most would answer b - images are indexed from the top left, with x going across and y going down.

Now another question - how do I access that pixel in the pixels array?

a: lenna[30, 50]
b: lenna[50, 30]

The correct answer is b - pixels get stored in a y, x order so we have to flip the points to access the array.

As Menpo blends together use of PointClouds and Images frequently this can cause a lot of confusion. You might
create a Translation of 5 in the y direction as the following:

t = menpo.transform.Translation([0, 5])

And then expect to use it to warp an image:

6 Chapter 1. User Guide

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

img.warp_to(reference_shape, t)

and then some spatial data related to the image:

t.apply(some_data)

Unfortunately the meaning of y in these two domains is different - some code would have to flip the order of applying
the translation of the transform to an image, a potential cause of confusion.

The worst part about this is that once we go to voxel data (which Image largely supports, and will fully support in
the future), a z-axis is added.

There is one important caveat, unfortunately. The first axis of an image represents the channels. Unlike in
other software, such as Matlab, which follows the fortran convention of being column major, Python and other C-like
languages generally conform to a row major order. Practically this means that if you want to iterate over each channel
of an image, you need the memory layout to reflect this. This means you want the pixel data of each channel to be
contiguous in memory. For row major memory, this implies that the first axis should represent an iteration over
the channel data.

Now, as was mentioned, we want to drop all the swapping business. Therefore, forgiving that the first axis indexes
the channel data, the following axes always match the spatial data. For example, The zeroth axis of the spatial data
once more corresponds with the first axis (the first axis is after the zeroth axis representing the channel data) of the
image data. Trying to keep track of these rules muddies an otherwise very simple concept.

1.4.1 Menpo’s approach

Menpo’s solution to this problem is simple - drop the insistence of calling axes x, y, and z. Skipping the channel
data, which represents the zeroth axis, the first axis of the pixel data is simply that - the first axis. It corresponds
exactly with the zeroth axis on the point cloud. If you have an image with annotations provided the zeroth axis of
the PointCloud representing the annotations will correspond with the first axis of the image. This rule makes working
with images and spatial data simple - short you should never have to think about flipping axes in Menpo.

It’s natural to be concerned at this point that establishing such rules must make it really difficult ingest data which
follows different conventions. This is incorrect - one of the biggest strengths of the menpo.io module is that each asset
importer normalizes the format of the data to format Menpo’s rules.

1.4.2 Key Points

• Menpo is n-dimensional. We try and avoid speaking of x and y, because there are many different conventions
in use.

• The IO module ensures that different data formats are normalized upon loading into Menpo. For example,
Image types are imported as 64-bit floating point numbers normalised between [0, 1], by default.

• axis 0 of landmarks corresponds to axis 0 of the container it is an annotation of.

• The first axis of image types is always the channel data. The remaining axes map exactly to the other
spatial axes. Therefore, the first image axis maps exactly to the zeroth axis of a PointCloud.

1.5 Vectorizing Objects

Computer Vision algorithms are frequently formulated as linear algebra problems in a high dimensional space, where
each asset is stripped into a vector. In this high dimensional space we may perform any number of operations, but
normally we can’t stay in this space for the whole algorithm - we normally have to recast the vector back into it’s
original domain in order to perform other operations.

1.5. Vectorizing Objects 7

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Fig. 1.1: Figure 1: Vectorizing allows Menpo to have rich data types whilst simultaneously providing efficient linear
algebra routines. Here an image is vectorized, and an arbitrary process f() is performed on it’s vector representation.
Afterwards the vector is converted the back into an image. The vector operation is completely general, and could have
equally been performed on some spatial data.

8 Chapter 1. User Guide

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

An example of this might be seen with images, where the gradient of the intensity values of an image needs to be
taken. This is a complex problem to solve in a vector space representation of the image, but trivial to solve in the
image domain.

Menpo bridges the gap by naively supporting bi-directional vectorisation of it’s types through the Vectorizable
interface. Through this, any type can be safely and efficiently converted to a vector form and back again. You’ll find
the key methods of Vectorizable are extensively used in Menpo. They are

• as_vector - generate a vector from one of our types.

• from_vector - rebuild one of our types from a vector

• from_vector_inplace - alter an object inplace to take on the new state

1.5.1 Key points

1. Each type defines it’s own form of vectorization. Calling as_vector on a Image returns all of the pixels
in a single strip, whilst on a MaskedImage only the true pixels are returned. This distinction means that much of
Menpo’s image algorithms work equally well with masked or unmasked data - it’s the Vectorizable interface that
abstracts away the difference between the two.

2. Lots of things are vectorizable, not just images. Pointclouds and lots of transforms are too.

3. The length of the resulting vector of a type can be found by querying the ‘‘n_parameters‘‘ property.

4. The vectorized form of an object does not have to be ‘complete’. from_vector and
from_vector_inplace can use the object they are called on to rebuild a complete state. Think of vectoriza-
tion more as a parametrization of the object, not a complete serialization.

1.6 Visualizing Objects

In Menpo, we take an opinionated stance that data exploration is a key part of working with visual data. Therefore, we
tried to make the mental overhead of visualizing objects as low as possible. Therefore, we made visualization a key
concept directly on our data containers, rather than requiring extra imports in order to view your data.

We also took a strong step towards simple visualization of data collections by integrating some of our core types such
as Image with visualization widgets for the IPython notebook.

1.6.1 Visualizing 2D Images

Without further ado, a quick example of viewing a 2D image:

%matplotlib inline # This is only needed if viewing in an IPython notebook
import menpo.io as mio

bb = mio.import_builtin_asset.breakingbad_jpg()
bb.view()

Viewing the image landmarks:

%matplotlib inline # This is only needed if viewing in an IPython notebook
import menpo.io as mio

bb = mio.import_builtin_asset.breakingbad_jpg()
bb.view_landmarks()

1.6. Visualizing Objects 9

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Viewing the image with a native IPython widget:

%matplotlib inline # This is only needed if viewing in an IPython notebook
import menpo.io as mio

bb = mio.import_builtin_asset.breakingbad_jpg()
bb.view_widget()

1.6.2 Visualizing A List Of 2D Images

Visualizing lists of images is also incredibly simple if you are using the IPython notebook:

%matplotlib inline
import menpo.io as mio
from menpo.visualize import visualize_images

import_images is a generator, so we must exhaust the generator before
we can visualize the list. This is because the widget allows you to
jump arbitrarily around the list, which cannot be done with generators.
images = list(mio.import_images('./path/to/images/*.jpg'))
visualize_images(images)

1.6.3 Visualizing A 2D PointCloud

Visualizing PointCloud objects and subclasses is a very familiar experience:

%matplotlib inline
from menpo.shape import PointCloud
import numpy as np

pcloud = PointCloud(np.array([[0, 0], [1, 0], [1, 1], [0, 1]]))
pcloud.view()

1.6.4 Visualizing In 3D

Menpo natively supports 3D objects, such as triangulated meshes, as our base classes are n-dimensional. However, as
viewing in 3D is a much more complicated experience, we have segregated the 3D viewing package into one of our
sub-packages: Menpo3D.

If you try to view a 3D PointCloud without having Menpo3D installed, you will receive an exception asking you
to install it.

Menpo3D also comes with many other complicated pieces of functionality for 3D meshes such as a rasterizer. We
recommend you look at Menpo3D if you want to use Menpo for 3D mesh manipulation.

1.7 Changelog

1.7.1 0.5.0 (2015/06/25)

This release of Menpo makes a number of very important BREAKING changes to the format of Menpo’s core data
types. Most importantly is #524 which swaps the position of the channels on an image from the last axis to the first.
This is to maintain row-major ordering and make iterating over the pixels of a channel efficient. This made a huge

10 Chapter 1. User Guide

https://github.com/menpo/menpo/pull/524

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

improvement in speed in other packages such as MenpoFit. It also makes common operations such as iterating over
the pixels in an image much simpler:

for channels in image.pixels:
print(channels.shape) # This will be a (height x width) ndarray

Other important changes include:

• Updating all widgets to work with IPython 3

• Incremental PCA was added.

• non-inplace cropping methods

• Dense SIFT features provided by vlfeat

• The implementation of graphs was changed to use sparse matrices by default. This may cause breaking
changes.

• Many other improvements detailed in the pull requests below!

If you have serialized data using Menpo, you will likely find you have trouble reimporting it. If this is the case, please
visit the user group for advice.

Github Pull Requests

• #598 Visualize sum of channels in widgets (@nontas, @patricksnape)

• #597 test new dev tag behavior on condaci (@jabooth)

• #591 Scale around centre (@patricksnape)

• #596 Update to versioneer v0.15 (@jabooth, @patricksnape)

• #495 SIFT features (@nontas, @patricksnape, @jabooth, @jalabort)

• #595 Update mean_pointcloud (@patricksnape, @jalabort)

• #541 Add triangulation labels for ibug_face_(66/51/49) (@jalabort)

• #590 Fix centre and diagonal being properties on Images (@patricksnape)

• #592 Refactor out bounding_box method (@patricksnape)

• #566 TriMesh utilities (@jabooth)

• #593 Minor bugfix on AnimationOptionsWidget (@nontas)

• #587 promote non-inplace crop methods, crop performance improvements (@jabooth, @patricksnape)

• #586 fix as_matrix where the iterator finished early (@jabooth)

• #574 Widgets for IPython3 (@nontas, @patricksnape, @jabooth)

• #588 test condaci 0.2.1, less noisy slack notifications (@jabooth)

• #568 rescale_pixels() for rescaling the range of pixels (@jabooth)

• #585 Hotfix: suffix change led to double path resolution. (@patricksnape)

• #581 Fix the landmark importer in case the landmark file has a ‘.’ in its filename. (@grigorisg9gr)

• #584 new print_progress visualization function (@jabooth)

• #580 export_pickle now ensures pathlib.Path save as PurePath (@jabooth)

• #582 New readers for Middlebury FLO and FRGC ABS files (@patricksnape)

1.7. Changelog 11

https://github.com/menpo/menpo/pull/598
https://github.com/menpo/menpo/pull/597
https://github.com/menpo/menpo/pull/591
https://github.com/menpo/menpo/pull/596
https://github.com/menpo/menpo/pull/495
https://github.com/menpo/menpo/pull/595
https://github.com/menpo/menpo/pull/541
https://github.com/menpo/menpo/pull/590
https://github.com/menpo/menpo/pull/592
https://github.com/menpo/menpo/pull/566
https://github.com/menpo/menpo/pull/593
https://github.com/menpo/menpo/pull/587
https://github.com/menpo/menpo/pull/586
https://github.com/menpo/menpo/pull/574
https://github.com/menpo/menpo/pull/588
https://github.com/menpo/menpo/pull/568
https://github.com/menpo/menpo/pull/585
https://github.com/menpo/menpo/pull/581
https://github.com/menpo/menpo/pull/584
https://github.com/menpo/menpo/pull/580
https://github.com/menpo/menpo/pull/582

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

• #579 Fix the image importer in case of upper case letters in the suffix (@grigorisg9gr)

• #575 Allowing expanding user paths in exporting pickle (@patricksnape)

• #577 Change to using run_test.py (@patricksnape)

• #570 Zoom (@jabooth, @patricksnape)

• #569 Add new point_in_pointcloud kwarg to constrain (@patricksnape)

• #563 TPS Updates (@patricksnape)

• #567 Optional cmaps (@jalabort)

• #559 Graphs with isolated vertices (@nontas)

• #564 Bugfix: PCAModel print (@nontas)

• #565 fixed minor typo in introduction.rst (@evanjbowling)

• #562 IPython3 widgets (@patricksnape, @jalabort)

• #558 Channel roll (@patricksnape)

• #524 BREAKING CHANGE: Channels flip (@patricksnape, @jabooth, @jalabort)

• #512 WIP: remove_all_landmarks convienience method, quick lm filter (@jabooth)

• #554 Bugfix:visualize_images (@nontas)

• #553 Transform docs fixes (@nontas)

• #533 LandmarkGroup.init_with_all_label, init_* convenience constructors (@jabooth, @patricksnape)

• #552 Many fixes for Python 3 support (@patricksnape)

• #532 Incremental PCA (@patricksnape, @jabooth, @jalabort)

• #528 New as_matrix and from_matrix methods (@patricksnape)

1.7.2 0.4.4 (2015/03/05)

A hotfix release for properly handling nan values in the landmark formats. Also, a few other bug fixes crept in:

• Fix 3D Ljson importing

• Fix trim_components on PCA

• Fix setting None key on the landmark manager

• Making mean_pointcloud faster

Also makes an important change to the build configuration that syncs this version of Menpo to IPython 2.x.

Github Pull Requests

• #560 Assorted fixes (@patricksnape)

• #557 Ljson nan fix (@patricksnape)

1.7.3 0.4.3 (2015/02/19)

Adds the concept of nan values to the landmarker format for labelling missing landmarks.

12 Chapter 1. User Guide

https://github.com/menpo/menpo/pull/579
https://github.com/menpo/menpo/pull/575
https://github.com/menpo/menpo/pull/577
https://github.com/menpo/menpo/pull/570
https://github.com/menpo/menpo/pull/569
https://github.com/menpo/menpo/pull/563
https://github.com/menpo/menpo/pull/567
https://github.com/menpo/menpo/pull/559
https://github.com/menpo/menpo/pull/564
https://github.com/menpo/menpo/pull/565
https://github.com/menpo/menpo/pull/562
https://github.com/menpo/menpo/pull/558
https://github.com/menpo/menpo/pull/524
https://github.com/menpo/menpo/pull/512
https://github.com/menpo/menpo/pull/554
https://github.com/menpo/menpo/pull/553
https://github.com/menpo/menpo/pull/533
https://github.com/menpo/menpo/pull/552
https://github.com/menpo/menpo/pull/532
https://github.com/menpo/menpo/pull/528
https://github.com/menpo/menpo/pull/560
https://github.com/menpo/menpo/pull/557

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Github Pull Requests

• #556 [0.4.x] Ljson nan/null fixes (@patricksnape)

1.7.4 0.4.2 (2015/02/19)

A hotfix release for landmark groups that have no connectivity.

Github Pull Requests

• #555 don’t try and build a Graph with no connectivity (@jabooth)

1.7.5 0.4.1 (2015/02/07)

A hotfix release to enable compatibility with landmarker.io.

Github Pull Requests

• #551 HOTFIX: remove incorrect tojson() methods (@jabooth)

1.7.6 0.4.0 (2015/02/04)

The 0.4.0 release (pending any currently unknown bugs), represents a very significant overhaul of Menpo from v0.3.0.
In particular, Menpo has been broken into four distinct packages: Menpo, MenpoFit, Menpo3D and MenpoDetect.

Visualization has had major improvements for 2D viewing, in particular through the use of IPython widgets and
explicit options on the viewing methods for common tasks (like changing the landmark marker color). This final
release is a much smaller set of changes over the alpha releases, so please check the full changelog for the alphas to
see all changes from v0.3.0 to v0.4.0.

Summary of changes since v0.4.0a2:

• Lots of documentation rendering fixes and style fixes including this changelog.

• Move the LJSON format to V2. V1 is now being deprecated over the next version.

• More visualization customization fixes including multiple marker colors for landmark groups.

Github Pull Requests

• #546 IO doc fixes (@jabooth)

• #545 Different marker colour per label (@nontas)

• #543 Bug fix for importing an image, case of a dot in image name. (@grigorisg9gr)

• #544 Move docs to Sphinx 1.3b2 (@patricksnape)

• #536 Docs fixes (@patricksnape)

• #530 Visualization and Widgets upgrade (@patricksnape, @nontas)

• #540 LJSON v2 (@jabooth)

• #537 fix BU3DFE connectivity, pretty JSON files (@jabooth)

1.7. Changelog 13

https://github.com/menpo/menpo/pull/556
https://github.com/menpo/menpo/pull/555
https://github.com/menpo/menpo/pull/551
https://github.com/menpo/menpo/pull/546
https://github.com/menpo/menpo/pull/545
https://github.com/menpo/menpo/pull/543
https://github.com/menpo/menpo/pull/544
https://github.com/menpo/menpo/pull/536
https://github.com/menpo/menpo/pull/530
https://github.com/menpo/menpo/pull/540
https://github.com/menpo/menpo/pull/537

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

• #529 BU3D-FE labeller added (@jabooth)

• #527 fixes paths for pickle importing (@jabooth)

• #525 Fix .rst doc files, auto-generation script (@jabooth)

1.7.7 v0.4.0a2 (2014/12/03)

Alpha 2 moves towards extending the graphing API so that visualization is more dependable.

Summary:

• Add graph classes, PointUndirectedGraph, PointDirectedGraph, PointTree. This makes visu-
alization of landmarks much nicer looking.

• Better support of pickling menpo objects

• Add a bounding box method to PointCloud for calculating the correctly oriented bounding box of point
clouds.

• Allow PCA to operate in place for large data matrices.

Github Pull Requests

• #522 Add bounding box method to pointclouds (@patricksnape)

• #523 HOTFIX: fix export_pickle bug, add path support (@jabooth)

• #521 menpo.io add pickle support, move to pathlib (@jabooth)

• #520 Documentation fixes (@patricksnape, @jabooth)

• #518 PCA memory improvements, inplace dot product (@jabooth)

• #519 replace wrapt with functools.wraps - we can pickle (@jabooth)

• #517 (@jabooth)

• #514 Remove the use of triplot (@patricksnape)

• #516 Fix how images are converted to PIL (@patricksnape)

• #515 Show the path in the image widgets (@patricksnape)

• #511 2D Rotation convenience constructor, Image.rotate_ccw_about_centre (@jabooth)

• #510 all menpo io glob operations are now always sorted (@jabooth)

• #508 visualize image on MaskedImage reports Mask proportion (@jabooth)

• #509 path is now preserved on image warping (@jabooth)

• #507 fix rounding issue in n_components (@jabooth)

• #506 is_tree update in Graph (@nontas)

• #505 (@nontas)

• #504 explicitly have kwarg in IO for landmark extensions (@jabooth)

• #503 Update the README (@patricksnape)

14 Chapter 1. User Guide

https://github.com/menpo/menpo/pull/529
https://github.com/menpo/menpo/pull/527
https://github.com/menpo/menpo/pull/525
https://github.com/menpo/menpo/pull/522
https://github.com/menpo/menpo/pull/523
https://github.com/menpo/menpo/pull/521
https://github.com/menpo/menpo/pull/520
https://github.com/menpo/menpo/pull/518
https://github.com/menpo/menpo/pull/519
https://github.com/menpo/menpo/pull/517
https://github.com/menpo/menpo/pull/514
https://github.com/menpo/menpo/pull/516
https://github.com/menpo/menpo/pull/515
https://github.com/menpo/menpo/pull/511
https://github.com/menpo/menpo/pull/510
https://github.com/menpo/menpo/pull/508
https://github.com/menpo/menpo/pull/509
https://github.com/menpo/menpo/pull/507
https://github.com/menpo/menpo/pull/506
https://github.com/menpo/menpo/pull/505
https://github.com/menpo/menpo/pull/504
https://github.com/menpo/menpo/pull/503

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

1.7.8 v0.4.0a1 (2014/10/31)

This first alpha release makes a number of large, breaking changes to Menpo from v0.3.0. The biggest change is that
Menpo3D and MenpoFit were created and thus all AAM and 3D visualization/rasterization code has been moved out
of the main Menpo repository. This is working towards Menpo being pip installable.

Summary:

• Fixes memory leak whereby weak references were being kept between landmarks and their host objects. The
Landmark manager now no longer keeps references to its host object. This also helps with serialization.

• Use pathlib instead of strings for paths in the io module.

• Importing of builtin assets from a simple function

• Improve support for image importing (including ability to import without normalising)

• Add fast methods for image warping, warp_to_mask and warp_to_shape instead of warp_to

• Allow masking of triangle meshes

• Add IPython visualization widgets for our core types

• All expensive properties (properties that would be worth caching in a variable and are not merely a lookup) are
changed to methods.

Github Pull Requests

• #502 Fixes pseudoinverse for Alignment Transforms (@jalabort, @patricksnape)

• #501 Remove menpofit widgets (@nontas)

• #500 Shapes widget (@nontas)

• #499 spin out AAM, CLM, SDM, ATM and related code to menpofit (@jabooth)

• #498 Minimum spanning tree bug fix (@nontas)

• #492 Some fixes for PIL image importing (@patricksnape)

• #494 Widgets bug fix and Active Template Model widget (@nontas)

• #491 Widgets fixes (@nontas)

• #489 remove _view, fix up color_list -> colour_list (@jabooth)

• #486 Image visualisation improvements (@patricksnape)

• #488 Move expensive image properties to methods (@jabooth)

• #487 Change expensive PCA properties to methods (@jabooth)

• #485 MeanInstanceLinearModel.mean is now a method (@jabooth)

• #452 Advanced widgets (@patricksnape, @nontas)

• #481 Remove 3D (@patricksnape)

• #480 Graphs functionality (@nontas)

• #479 Extract patches on image (@patricksnape)

• #469 Active Template Models (@nontas)

• #478 Fix residuals for AAMs (@patricksnape, @jabooth)

• #474 remove HDF5able making room for h5it (@jabooth)

1.7. Changelog 15

https://github.com/menpo/menpo/pull/502
https://github.com/menpo/menpo/pull/501
https://github.com/menpo/menpo/pull/500
https://github.com/menpo/menpo/pull/499
https://github.com/menpo/menpo/pull/498
https://github.com/menpo/menpo/pull/492
https://github.com/menpo/menpo/pull/494
https://github.com/menpo/menpo/pull/491
https://github.com/menpo/menpo/pull/489
https://github.com/menpo/menpo/pull/486
https://github.com/menpo/menpo/pull/488
https://github.com/menpo/menpo/pull/487
https://github.com/menpo/menpo/pull/485
https://github.com/menpo/menpo/pull/452
https://github.com/menpo/menpo/pull/481
https://github.com/menpo/menpo/pull/480
https://github.com/menpo/menpo/pull/479
https://github.com/menpo/menpo/pull/469
https://github.com/menpo/menpo/pull/478
https://github.com/menpo/menpo/pull/474

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

• #475 Normalize norm and std of Image object (@nontas)

• #472 Daisy features (@nontas)

• #473 Fix from_mask for Trimesh subclasses (@patricksnape)

• #470 expensive properties should really be methods (@jabooth)

• #467 get a progress bar on top level feature computation (@jabooth)

• #466 Spin out rasterization and related methods to menpo3d (@jabooth)

• #465 ‘me_norm’ error type in tests (@nontas)

• #463 goodbye ioinfo, hello path (@jabooth)

• #464 make mayavi an optional dependency (@jabooth)

• #447 Displacements in fitting result (@nontas)

• #451 AppVeyor Windows continuous builds from condaci (@jabooth)

• #445 Serialize fit results (@patricksnape)

• #444 remove pyramid_on_features from Menpo (@jabooth)

• #443 create_pyramid now applies features even if pyramid_on_features=False, SDM uses it too (@jabooth)

• #369 warp_to_mask, warp_to_shape, fast resizing of images (@nontas, @patricksnape, @jabooth)

• #442 add rescale_to_diagonal, diagonal property to Image (@jabooth)

• #441 adds constrain_to_landmarks on BooleanImage (@jabooth)

• #440 pathlib.Path can no be used in menpo.io (@jabooth)

• #439 Labelling fixes (@jabooth, @patricksnape)

• #438 extract_channels (@jabooth)

• #437 GLRasterizer becomes HDF5able (@jabooth)

• #435 import_builtin_asset.ASSET_NAME (@jabooth)

• #434 check_regression_features unified with check_features, classmethods removed from SDM (@jabooth)

• #433 tidy classifiers (@jabooth)

• #432 aam.fitter, clm.fitter, sdm.trainer packages (@jabooth)

• #431 More fitmultilevel tidying (@jabooth)

• #430 Remove classmethods from DeformableModelBuilder (@jabooth)

• #412 First visualization widgets (@jalabort, @nontas)

• #429 Masked image fixes (@patricksnape)

• #426 rename ‘feature_type’ to ‘features throughout Menpo (@jabooth)

• #427 Adds HDF5able serialization support to Menpo (@jabooth)

• #425 Faster cached piecewise affine, Cython varient demoted (@jabooth)

• #424 (@nontas)

• #378 Fitting result fixes (@jabooth, @nontas, @jalabort)

• #423 name now displays on constrained features (@jabooth)

• #421 Travis CI now makes builds, Linux/OS X Python 2.7/3.4 (@jabooth, @patricksnape)

16 Chapter 1. User Guide

https://github.com/menpo/menpo/pull/475
https://github.com/menpo/menpo/pull/472
https://github.com/menpo/menpo/pull/473
https://github.com/menpo/menpo/pull/470
https://github.com/menpo/menpo/pull/467
https://github.com/menpo/menpo/pull/466
https://github.com/menpo/menpo/pull/465
https://github.com/menpo/menpo/pull/463
https://github.com/menpo/menpo/pull/464
https://github.com/menpo/menpo/pull/447
https://github.com/menpo/menpo/pull/451
https://github.com/menpo/menpo/pull/445
https://github.com/menpo/menpo/pull/444
https://github.com/menpo/menpo/pull/443
https://github.com/menpo/menpo/pull/369
https://github.com/menpo/menpo/pull/442
https://github.com/menpo/menpo/pull/441
https://github.com/menpo/menpo/pull/440
https://github.com/menpo/menpo/pull/439
https://github.com/menpo/menpo/pull/438
https://github.com/menpo/menpo/pull/437
https://github.com/menpo/menpo/pull/435
https://github.com/menpo/menpo/pull/434
https://github.com/menpo/menpo/pull/433
https://github.com/menpo/menpo/pull/432
https://github.com/menpo/menpo/pull/431
https://github.com/menpo/menpo/pull/430
https://github.com/menpo/menpo/pull/412
https://github.com/menpo/menpo/pull/429
https://github.com/menpo/menpo/pull/426
https://github.com/menpo/menpo/pull/427
https://github.com/menpo/menpo/pull/425
https://github.com/menpo/menpo/pull/424
https://github.com/menpo/menpo/pull/378
https://github.com/menpo/menpo/pull/423
https://github.com/menpo/menpo/pull/421

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

• #400 Features as functions (@nontas, @patricksnape, @jabooth)

• #420 move IOInfo to use pathlib (@jabooth)

• #405 import menpo is now twice as fast (@jabooth)

• #416 waffle.io Badge (@waffle-iron)

• #415 export_mesh with .OBJ exporter (@jabooth, @patricksnape)

• #410 Fix the render_labels logic (@patricksnape)

• #407 Exporters (@patricksnape)

• #406 Fix greyscale PIL images (@patricksnape)

• #404 LandmarkGroup tojson method and PointGraph (@patricksnape)

• #403 Fixes a couple of viewing problems in fitting results (@patricksnape)

• #402 Landmarks fixes (@jabooth, @patricksnape)

• #401 Dogfood landmark_resolver in menpo.io (@jabooth)

• #399 bunch of Python 3 compatibility fixes (@jabooth)

• #398 throughout Menpo. (@jabooth)

• #397 Performance improvements for Similarity family (@jabooth)

• #396 More efficient initialisations of Menpo types (@jabooth)

• #395 remove cyclic target reference from landmarks (@jabooth)

• #393 Groundwork for dense correspondence pipeline (@jabooth)

• #394 weakref to break cyclic references (@jabooth)

• #389 assorted fixes (@jabooth)

• #390 (@jabooth)

• #387 Adds landmark label for tongues (@nontas)

• #386 Adds labels for the ibug eye annotation scheme (@jalabort)

• #382 BUG fixed: block element not reset if norm=0 (@dubzzz)

• #381 Recursive globbing (@jabooth)

• #384 Adds support for odd patch shapes in function extract_local_patches_fast (@jalabort)

• #379 imported textures have ioinfo, docs improvements (@jabooth)

1.7.9 v0.3.0 (2014/05/27)

First public release of Menpo, this release coincided with submission to the ACM Multimedia Open Source Software
Competition 2014. This provides the basic scaffolding for Menpo, but it is not advised to use this version over the
improvements in 0.4.0.

Github Pull Requests

• #377 Simple fixes (@patricksnape)

• #375 improvements to importing multiple assets (@jabooth)

1.7. Changelog 17

https://github.com/menpo/menpo/pull/400
https://github.com/menpo/menpo/pull/420
https://github.com/menpo/menpo/pull/405
https://github.com/menpo/menpo/pull/416
https://github.com/menpo/menpo/pull/415
https://github.com/menpo/menpo/pull/410
https://github.com/menpo/menpo/pull/407
https://github.com/menpo/menpo/pull/406
https://github.com/menpo/menpo/pull/404
https://github.com/menpo/menpo/pull/403
https://github.com/menpo/menpo/pull/402
https://github.com/menpo/menpo/pull/401
https://github.com/menpo/menpo/pull/399
https://github.com/menpo/menpo/pull/398
https://github.com/menpo/menpo/pull/397
https://github.com/menpo/menpo/pull/396
https://github.com/menpo/menpo/pull/395
https://github.com/menpo/menpo/pull/393
https://github.com/menpo/menpo/pull/394
https://github.com/menpo/menpo/pull/389
https://github.com/menpo/menpo/pull/390
https://github.com/menpo/menpo/pull/387
https://github.com/menpo/menpo/pull/386
https://github.com/menpo/menpo/pull/382
https://github.com/menpo/menpo/pull/381
https://github.com/menpo/menpo/pull/384
https://github.com/menpo/menpo/pull/379
https://github.com/menpo/menpo/pull/377
https://github.com/menpo/menpo/pull/375

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

• #374 Menpo’s User guide (@jabooth)

18 Chapter 1. User Guide

https://github.com/menpo/menpo/pull/374

CHAPTER 2

The Menpo API

This section attempts to provide a simple browsing experience for the Menpo documentation. In Menpo, we use
legible docstrings, and therefore, all documentation should be easily accessible in any sensible IDE (or IPython) via
tab completion. However, this section should make most of the core classes available for viewing online.

2.1 menpo.base

2.1.1 Core

Core interfaces of Menpo.

Copyable

class menpo.base.Copyable
Bases: object

Efficient copying of classes containing numpy arrays.

Interface that provides a single method for copying classes very efficiently.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

Vectorizable

class menpo.base.Vectorizable
Bases: Copyable

Flattening of rich objects to vectors and rebuilding them back.

Interface that provides methods for ‘flattening’ an object into a vector, and restoring from the same vectorized
form. Useful for statistical analysis of objects, which commonly requires the data to be provided as a single
vector.

19

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the object.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Update the state of this object from a vector form.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of this object

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

n_parameters
The length of the vector that this object produces.

Typeint

Targetable

class menpo.base.Targetable
Bases: Copyable

Interface for objects that can produce a target PointCloud.

This could for instance be the result of an alignment or a generation of a PointCloud instance from a shape
model.

Implementations must define sensible behavior for:

•what a target is: see target

•how to set a target: see set_target()

•how to update the object after a target is set: see _sync_state_from_target()

•how to produce a new target after the changes: see _new_target_from_state()

20 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Note that _sync_target_from_state() needs to be triggered as appropriate by subclasses e.g. when
from_vector_inplace is called. This will in turn trigger _new_target_from_state(), which each
subclass must implement.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

n_dims
The number of dimensions of the target.

Typeint

n_points
The number of points on the target.

Typeint

target
The current PointCloud that this object produces.

TypePointCloud

2.1.2 Convenience

menpo_src_dir_path

menpo.base.menpo_src_dir_path()
The path to the top of the menpo Python package.

Useful for locating where the data folder is stored.

Returnspath (pathlib.Path) – The full path to the top of the Menpo package

2.2 menpo.io

2.2.1 Input

import_image

menpo.io.import_image(filepath, landmark_resolver=<function same_name>, normalise=True)
Single image (and associated landmarks) importer.

If an image file is found at filepath, returns an Image or subclass representing it. By default, landmark files
sharing the same filename stem will be imported and attached with a group name based on the extension of the

2.2. menpo.io 21

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

landmark file, although this behavior can be customised (see landmark_resolver). If the image defines a mask,
this mask will be imported.

Parameters

•filepath (pathlib.Path or str) – A relative or absolute filepath to an image file.

•landmark_resolver (function, optional) – This function will be used to find landmarks
for the image. The function should take one argument (the image itself) and return a dictio-
nary of the form {’group_name’: ’landmark_filepath’} Default finds land-
marks with the same name as the image file.

•normalise (bool, optional) – If True, normalise the image pixels between 0 and 1 and
convert to floating point. If false, the native datatype of the image will be maintained (com-
monly uint8). Note that in general Menpo assumes Image instances contain floating point
data - if you disable this flag you will have to manually convert the images you import to
floating point before doing most Menpo operations. This however can be useful to save on
memory usage if you only wish to view or crop images.

Returnsimages (Image or list of) – An instantiated Image or subclass thereof or a list of images.

import_images

menpo.io.import_images(pattern, max_images=None, landmark_resolver=<function same_name>,
normalise=True, verbose=False)

Multiple image (and associated landmarks) importer.

For each image found yields an Image or subclass representing it. By default, landmark files sharing the same
filename stem will be imported and attached with a group name based on the extension of the landmark file,
although this behavior can be customised (see landmark_resolver). If the image defines a mask, this mask will
be imported.

Note that this is a generator function. This allows for pre-processing of data to take place as data is imported
(e.g. cropping images to landmarks as they are imported for memory efficiency).

Parameters

•pattern (str) – A glob path pattern to search for images. Every image found to match the
glob will be imported one by one. See image_paths for more details of what images will
be found.

•max_images (positive int, optional) – If not None, only import the first max_images
found. Else, import all.

•landmark_resolver (function, optional) – This function will be used to find landmarks
for the image. The function should take one argument (the image itself) and return a dictio-
nary of the form {’group_name’: ’landmark_filepath’} Default finds land-
marks with the same name as the image file.

•normalise (bool, optional) – If True, normalise the image pixels between 0 and 1 and
convert to floating point. If false, the native datatype of the image will be maintained (com-
monly uint8). Note that in general Menpo assumes Image instances contain floating point
data - if you disable this flag you will have to manually convert the images you import to
floating point before doing most Menpo operations. This however can be useful to save on
memory usage if you only wish to view or crop images.

•verbose (bool, optional) – If True progress of the importing will be dynamically reported
with a progress bar.

22 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsgenerator (generator yielding Image or list of) – Generator yielding Image instances
found to match the glob pattern provided.

RaisesValueError – If no images are found at the provided glob.

Examples
Import images at 20% scale from a huge collection:

>>> images = []
>>> for img in menpo.io.import_images('./massive_image_db/*'):
>>> # rescale to a sensible size as we go
>>> images.append(img.rescale(0.2))

import_landmark_file

menpo.io.import_landmark_file(filepath, asset=None)
Single landmark group importer.

If a landmark file is found at filepath, returns a LandmarkGroup representing it.

Parametersfilepath (pathlib.Path or str) – A relative or absolute filepath to an landmark file.

Returnslandmark_group (LandmarkGroup) – The LandmarkGroup that the file format rep-
resents.

import_landmark_files

menpo.io.import_landmark_files(pattern, max_landmarks=None, verbose=False)
Multiple landmark file import generator.

Note that this is a generator function.

Parameters

•pattern (str) – A glob path pattern to search for landmark files. Every landmark file
found to match the glob will be imported one by one. See landmark_file_paths for
more details of what landmark files will be found.

•max_landmark_files (positive int, optional) – If not None, only import the first
max_landmark_files found. Else, import all.

•verbose (bool, optional) – If True progress of the importing will be dynamically re-
ported.

Returnsgenerator (generator yielding LandmarkGroup) – Generator yielding
LandmarkGroup instances found to match the glob pattern provided.

RaisesValueError – If no landmarks are found at the provided glob.

import_pickle

menpo.io.import_pickle(filepath)
Import a pickle file of arbitrary Python objects.

Menpo unambiguously uses .pkl as it’s choice of extension for Pickle files. Menpo also supports automatic
importing and exporting of gzip compressed pickle files - just choose a filepath ending pkl.gz and gzip

2.2. menpo.io 23

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

compression will automatically be applied. Compression can massively reduce the filesize of a pickle file at the
cost of longer import and export times.

Parametersfilepath (pathlib.Path or str) – A relative or absolute filepath to a .pkl or .pkl.gz
file.

Returnsobject (object) – Whatever Python objects are present in the Pickle file

import_pickles

menpo.io.import_pickles(pattern, max_pickles=None, verbose=False)
Multiple pickle file import generator.

Note that this is a generator function.

Menpo unambiguously uses .pkl as it’s choice of extension for pickle files. Menpo also supports automatic
importing of gzip compressed pickle files - matching files with extension pkl.gz will be automatically un-
gzipped and imported.

Parameters

•pattern (str) – The glob path pattern to search for pickles. Every pickle file found to
match the glob will be imported one by one.

•max_pickles (positive int, optional) – If not None, only import the first max_pickles
found. Else, import all.

•verbose (bool, optional) – If True progress of the importing will be dynamically re-
ported.

Returnsgenerator (generator yielding object) – Generator yielding whatever Python object is
present in the pickle files that match the glob pattern provided.

RaisesValueError – If no pickles are found at the provided glob.

import_builtin_asset

menpo.io.import_builtin_asset()
This is a dynamically generated method. This method is designed to automatically generate import methods for
each data file in the data folder. This method it designed to be tab completed, so you do not need to call this
method explicitly. It should be treated more like a property that will dynamically generate functions that will
import the shipped data. For example:

>>> import menpo
>>> bb_image = menpo.io.import_builtin_asset.breakingbad_jpg()

2.2.2 Output

export_image

menpo.io.export_image(image, fp, extension=None, overwrite=False)
Exports a given image. The fp argument can be either a str or any Python type that acts like a file. If a file
is provided, the extension kwarg must be provided. If no extension is provided and a str filepath is
provided, then the export type is calculated based on the filepath extension.

Due to the mix of string and file types, an explicit overwrite argument is used which is False by default.

Parameters

24 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•image (Image) – The image to export.

•fp (str or file-like object) – The string path or file-like object to save the object at/into.

•extension (str or None, optional) – The extension to use, this must match the file path if
the file path is a string. Determines the type of exporter that is used.

•overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

Raises

•ValueError – File already exists and overwrite != True

•ValueError – fp is a str and the extension is not None and the two extensions do
not match

•ValueError – fp is a file-like object and extension is None

•ValueError – The provided extension does not match to an existing exporter type (the
output type is not supported).

export_landmark_file

menpo.io.export_landmark_file(landmark_group, fp, extension=None, overwrite=False)
Exports a given landmark group. The fp argument can be either or a str or any Python type that acts like a file.
If a file is provided, the extension kwarg must be provided. If no extension is provided and a str filepath
is provided, then the export type is calculated based on the filepath extension.

Due to the mix in string and file types, an explicit overwrite argument is used which is False by default.

Parameters

•landmark_group (LandmarkGroup) – The landmark group to export.

•fp (str or file-like object) – The string path or file-like object to save the object at/into.

•extension (str or None, optional) – The extension to use, this must match the file path if
the file path is a string. Determines the type of exporter that is used.

•overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

Raises

•ValueError – File already exists and overwrite != True

•ValueError – fp is a str and the extension is not None and the two extensions do
not match

•ValueError – fp is a file-like object and extension is None

•ValueError – The provided extension does not match to an existing exporter type (the
output type is not supported).

export_pickle

menpo.io.export_pickle(obj, fp, overwrite=False)
Exports a given collection of Python objects with Pickle.

The fp argument can be either a str or any Python type that acts like a file. If fp is a path, it must have the
suffix .pkl or .pkl.gz. If .pkl, the object will be pickled using Pickle protocol 2 without compression. If .pkl.gz
the object will be pickled using Pickle protocol 2 with gzip compression (at a fixed compression level of 3).

2.2. menpo.io 25

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Note that a special exception is made for pathlib.Path objects - they are pickled down as a pathlib.PurePath so
that pickles can be easily moved between different platforms.

Parameters

•obj (object) – The object to export.

•fp (str or file-like object) – The string path or file-like object to save the object at/into.

•overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

Raises

•ValueError – File already exists and overwrite != True

•ValueError – fp is a file-like object and extension is None

•ValueError – The provided extension does not match to an existing exporter type (the
output type is not supported).

2.2.3 Path Operations

image_paths

menpo.io.image_paths(pattern)
Return image filepaths that Menpo can import that match the glob pattern.

landmark_file_paths

menpo.io.landmark_file_paths(pattern)
Return landmark file filepaths that Menpo can import that match the glob pattern.

data_path_to

menpo.io.data_path_to(asset_filename)
The path to a builtin asset in the ./data folder on this machine.

Parametersasset_filename (str) – The filename (with extension) of a file builtin to Menpo.
The full set of allowed names is given by ls_builtin_assets()

Returnsdata_path (pathlib.Path) – The path to a given asset in the ./data folder

RaisesValueError – If the asset_filename doesn’t exist in the data folder.

data_dir_path

menpo.io.data_dir_path()
A path to the Menpo built in ./data folder on this machine.

Returnspathlib.Path – The path to the local Menpo ./data folder

ls_builtin_assets

menpo.io.ls_builtin_assets()
List all the builtin asset examples provided in Menpo.

Returnslist of strings – Filenames of all assets in the data directory shipped with Menpo

26 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

2.3 menpo.image

2.3.1 Image Types

Image

class menpo.image.Image(image_data, copy=True)
Bases: Vectorizable, Landmarkable, Viewable, LandmarkableViewable

An n-dimensional image.

Images are n-dimensional homogeneous regular arrays of data. Each spatially distinct location in the array is
referred to as a pixel. At a pixel, k distinct pieces of information can be stored. Each datum at a pixel is refereed
to as being in a channel. All pixels in the image have the same number of channels, and all channels have the
same data-type (float64).

Parameters

•image_data ((C, M, N ..., Q) ndarray) – Array representing the image pixels,
with the first axis being channels.

•copy (bool, optional) – If False, the image_data will not be copied on assignment.
Note that this will miss out on additional checks. Further note that we still demand that the
array is C-contiguous - if it isn’t, a copy will be generated anyway. In general, this should
only be used if you know what you are doing.

Raises

•Warning – If copy=False cannot be honoured

•ValueError – If the pixel array is malformed

_view_2d(figure_id=None, new_figure=False, channels=None, interpolation=’bilinear’,
cmap_name=None, alpha=1.0, render_axes=False, axes_font_name=’sans-
serif’, axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

View the image using the default image viewer. This method will appear on the Image as view if the
Image is 2D.

Returns

•figure_id (object, optional) – The id of the figure to be used.

•new_figure (bool, optional) – If True, a new figure is created.

•channels (int or list of int or all or None) – If int or list of int, the specified channel(s)
will be rendered. If all, all the channels will be rendered in subplots. If None and the
image is RGB, it will be rendered in RGB mode. If None and the image is not RGB, it is
equivalent to all.

•interpolation (See Below, optional) – The interpolation used to render the image. For
example, if bilinear, the image will be smooth and if nearest, the image will be
pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36,
hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
bessel, mitchell, sinc, lanczos}

•cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

2.3. menpo.image 27

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

•render_axes (bool, optional) – If True, the axes will be rendered.

•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.

•axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.

•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.

•figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

Returnsviewer (ImageViewer) – The image viewing object.

_view_landmarks_2d(channels=None, group=None, with_labels=None, without_labels=None,
figure_id=None, new_figure=False, interpolation=’bilinear’,
cmap_name=None, alpha=1.0, render_lines=True, line_colour=None,
line_style=’-‘, line_width=1, render_markers=True, marker_style=’o’,
marker_size=20, marker_face_colour=None, marker_edge_colour=None,
marker_edge_width=1.0, render_numbering=False, num-
bers_horizontal_align=’center’, numbers_vertical_align=’bottom’,
numbers_font_name=’sans-serif’, numbers_font_size=10, num-
bers_font_style=’normal’, numbers_font_weight=’normal’, num-
bers_font_colour=’k’, render_legend=False, legend_title=’‘,
legend_font_name=’sans-serif’, legend_font_style=’normal’, leg-
end_font_size=10, legend_font_weight=’normal’, legend_marker_scale=None,
legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, render_axes=False,
axes_font_name=’sans-serif’, axes_font_size=10, axes_font_style=’normal’,
axes_font_weight=’normal’, axes_x_limits=None, axes_y_limits=None, fig-
ure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is 2D.
Parameters

•channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots. If None and the image is RGB, it
will be rendered in RGB mode. If None and the image is not RGB, it is equivalent to all.

•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If None and there are
more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show the given label(s).
Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all except the given
label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.

28 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•interpolation (See Below, optional) – The interpolation used to render the image. For ex-
ample, if bilinear, the image will be smooth and if nearest, the image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

•cmap_name (str, optional,) – If None, single channel and three channel images default to
greyscale and rgb colormaps respectively.

•alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).
•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the markers. Exam-
ple options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers. Example op-
tions

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be numbered.
•numbers_horizontal_align ({center, right, left}, optional) – The horizontal
alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom, baseline}, optional) – The
vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) – The font style of the
numbers.

•numbers_font_weight (See Below, optional) – The font weight of the numbers. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

2.3. menpo.image 29

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•numbers_font_colour (See Below, optional) – The font colour of the numbers. Example
options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) – The font style of the
legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the legend. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend markers with respect
to the original

•legend_location (int, optional) – The location of the legend. The predefined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be
anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes and legend border.
•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between the columns.
•legend_vertical_spacing (float, optional) – The vertical space between the legend entries.
•legend_border (bool, optional) – If True, a frame will be drawn around the legend.
•legend_border_padding (float, optional) – The fractional whitespace inside the legend bor-
der.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.
•legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded
(fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of the
axes.

30 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•axes_font_weight (See Below, optional) – The font weight of the axes. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group label.

as_PILImage()
Return a PIL copy of the image. Depending on the image data type, different operations are performed:

dtype Processing
uint8 No processing, directly converted to PIL
bool Scale by 255, convert to uint8
float32 Scale by 255, convert to uint8
float64 Scale by 255, convert to uint8
OTHER Raise ValueError

Image must only have 1 or 3 channels and be 2 dimensional. Non uint8 images must be in the rage [0,
1] to be converted.

Returnspil_image (PILImage) – PIL copy of image
Raises

•ValueError – If image is not 2D and 1 channel or 3 channels.
•ValueError – If pixels data type is not float32, float64, bool or uint8
•ValueError – If pixels data type is float32 or float64 and the pixel range is
outside of [0, 1]

as_greyscale(mode=’luminosity’, channel=None)
Returns a greyscale version of the image. If the image does not represent a 2D RGB image, then the
luminosity mode will fail.

Parameters
•mode ({average, luminosity, channel}, optional) –

mode Greyscale Algorithm
average Equal average of all channels
luminosity Calculates the luminance using the

CCIR 601 formula:

𝑌 ′ = 0.2989𝑅′ + 0.5870𝐺′ + 0.1140𝐵′

channel A specific channel is chosen as the in-
tensity value.

•channel (int, optional) – The channel to be taken. Only used if mode is
channel.

Returnsgreyscale_image (MaskedImage) – A copy of this image in greyscale.

as_histogram(keep_channels=True, bins=’unique’)
Histogram binning of the values of this image.

Parameters
•keep_channels (bool, optional) – If set to False, it returns a single his-
togram for all the channels of the image. If set to True, it returns a list of
histograms, one for each channel.

2.3. menpo.image 31

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•bins ({unique}, positive int or sequence of scalars, optional) – If set equal to
’unique’, the bins of the histograms are centred on the unique values of each
channel. If set equal to a positive int, then this is the number of bins. If set equal
to a sequence of scalars, these will be used as bins centres.

Returns
•hist (ndarray or list with n_channels ndarrays inside) – The his-
togram(s). If keep_channels=False, then hist is an ndarray. If
keep_channels=True, then hist is a list with len(hist)=n_channels.

•bin_edges (ndarray or list with n_channels ndarrays inside) – An array or a list
of arrays corresponding to the above histograms that store the bins’ edges.

RaisesValueError – Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples
Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

as_masked(mask=None, copy=True)
Return a copy of this image with an attached mask behavior.

A custom mask may be provided, or None. See the MaskedImage constructor for details of how the
kwargs will be handled.

Parameters
•mask ((self.shape) ndarray or BooleanImage) – A mask to attach to
the newly generated masked image.

•copy (bool, optional) – If False, the produced MaskedImage will share
pixels with self. Only suggested to be used for performance.

Returnsmasked_image (MaskedImage) – An image with the same pixels and landmarks
as this one, but with a mask.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

centre()
The geometric centre of the Image - the subpixel that is in the middle.

Useful for aligning shapes and images.
Type(n_dims,) ndarray

constrain_landmarks_to_bounds()
Move landmarks that are located outside the image bounds on the bounds.

constrain_points_to_bounds(points)
Constrains the points provided to be within the bounds of this image.

Parameterspoints ((d,) ndarray) – Points to be snapped to the image boundaries.
Returnsbounded_points ((d,) ndarray) – Points snapped to not stray outside the image

edges.

copy()
Generate an efficient copy of this object.

32 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

crop(min_indices, max_indices, constrain_to_boundary=False)
Return a cropped copy of this image using the given minimum and maximum indices. Landmarks are
correctly adjusted so they maintain their position relative to the newly cropped image.

Parameters
•min_indices ((n_dims,) ndarray) – The minimum index over each di-
mension.

•max_indices ((n_dims,) ndarray) – The maximum index over each di-
mension.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image.

Returnscropped_image (type(self)) – A new instance of self, but cropped.
Raises

•ValueError – min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than min_indices.

•ImageBoundaryError – Raised if constrain_to_boundary=False,
and an attempt is made to crop the image in a way that violates the image bounds.

crop_inplace(*args, **kwargs)
Deprecated: please use crop() instead.

crop_to_landmarks(group=None, label=None, boundary=0, constrain_to_boundary=True)
Return a copy of this image cropped so that it is bounded around a set of landmarks with an optional
n_pixel boundary

Parameters
•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•boundary (int, optional) – An extra padding to be added all around the land-
marks bounds.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
:map‘ImageBoundaryError‘ will be raised if an attempt is made to go beyond
the edge of the image.

Returnsimage (Image) – A copy of this image cropped to its landmarks.
RaisesImageBoundaryError – Raised if constrain_to_boundary=False, and

an attempt is made to crop the image in a way that violates the image bounds.

crop_to_landmarks_inplace(*args, **kwargs)
Deprecated: please use crop_to_landmarks() instead.

crop_to_landmarks_proportion(boundary_proportion, group=None, label=None, mini-
mum=True, constrain_to_boundary=True)

Crop this image to be bounded around a set of landmarks with a border proportional to the landmark
spread or range.

Parameters
•boundary_proportion (float) – Additional padding to be added all around
the landmarks bounds defined as a proportion of the landmarks range. See the

2.3. menpo.image 33

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

minimum parameter for a definition of how the range is calculated.
•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•minimum (bool, optional) – If True the specified proportion is relative to the
minimum value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

•constrain_to_boundary (bool, optional) – If True, the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image.

Returnsimage (Image) – This image, cropped to its landmarks with a border proportional
to the landmark spread or range.

RaisesImageBoundaryError – Raised if constrain_to_boundary=False, and
an attempt is made to crop the image in a way that violates the image bounds.

crop_to_landmarks_proportion_inplace(*args, **kwargs)
Deprecated: please use crop_to_landmarks_proportion() instead.

diagonal()
The diagonal size of this image

Typefloat

extract_channels(channels)
A copy of this image with only the specified channels.

Parameterschannels (int or [int]) – The channel index or list of channel indices to retain.
Returnsimage (type(self)) – A copy of this image with only the channels requested.

extract_patches(patch_centers, patch_size=(16, 16), sample_offsets=None,
as_single_array=False)

Extract a set of patches from an image. Given a set of patch centers and a patch size, patches are extracted
from within the image, centred on the given coordinates. Sample offsets denote a set of offsets to extract
from within a patch. This is very useful if you want to extract a dense set of features around a set of
landmarks and simply sample the same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you need to slice the resulting list. So for 2
offsets, the first centers offset patches would be patches[:2].

Currently only 2D images are supported.
Parameters

•patch_centers (PointCloud) – The centers to extract patches around.
•patch_size (tuple or ndarray, optional) – The size of the patch to extract
•sample_offsets (PointCloud, optional) – The offsets to sample from
within a patch. So (0, 0) is the centre of the patch (no offset) and (1, 0) would be
sampling the patch from 1 pixel up the first axis away from the centre.

•as_single_array (bool, optional) – If True, an (n_center *
n_offset, self.shape...) ndarray, thus a single numpy array is re-
turned containing each patch. If False, a list of Image objects is returned
representing each patch.

Returnspatches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if as_single_array=False.

RaisesValueError – If image is not 2D

extract_patches_around_landmarks(group=None, label=None, patch_size=(16, 16), sam-
ple_offsets=None, as_single_array=False)

Extract patches around landmarks existing on this image. Provided the group label and optionally the
landmark label extract a set of patches.

34 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

See extract_patches for more information.

Currently only 2D images are supported.
Parameters

•group (str or None optional) – The landmark group to use as patch centres.
•label (str or None optional) – The landmark label within the group to use as
centres.

•patch_size (tuple or ndarray, optional) – The size of the patch to extract
•sample_offsets (PointCloud, optional) – The offsets to sample from
within a patch. So (0,0) is the centre of the patch (no offset) and (1, 0) would be
sampling the patch from 1 pixel up the first axis away from the centre.

•as_single_array (bool, optional) – If True, an (n_center *
n_offset, self.shape...) ndarray, thus a single numpy array is re-
turned containing each patch. If False, a list of Image objects is returned
representing each patch.

Returnspatches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if as_single_array=False.

RaisesValueError – If image is not 2D

from_vector(vector, n_channels=None, copy=True)
Takes a flattened vector and returns a new image formed by reshaping the vector to the correct pixels and
channels.

The n_channels argument is useful for when we want to add an extra channel to an image but maintain
the shape. For example, when calculating the gradient.

Note that landmarks are transferred in the process.
Parameters

•vector ((n_parameters,) ndarray) – A flattened vector of all pixels and
channels of an image.

•n_channels (int, optional) – If given, will assume that vector is the same
shape as this image, but with a possibly different number of channels.

•copy (bool, optional) – If False, the vector will not be copied in creating the
new image.

Returnsimage (Image) – New image of same shape as this image and the number of speci-
fied channels.

RaisesWarning – If the copy=False flag cannot be honored

from_vector_inplace(vector, copy=True)
Takes a flattened vector and update this image by reshaping the vector to the correct dimensions.

Parameters
•vector ((n_pixels,) bool ndarray) – A vector vector of all the pixels of a
BooleanImage.

•copy (bool, optional) – If False, the vector will be set as the pixels. If True,
a copy of the vector is taken.

RaisesWarning – If copy=False flag cannot be honored

Note: For BooleanImage this is rebuilding a boolean image itself from boolean values. The mask is
in no way interpreted in performing the operation, in contrast to MaskedImage, where only the masked
region is used in from_vector_inplace() and as_vector().

gaussian_pyramid(n_levels=3, downscale=2, sigma=None)
Return the gaussian pyramid of this image. The first image of the pyramid will be the original, unmodified,
image, and counts as level 1.

Parameters
•n_levels (int, optional) – Total number of levels in the pyramid, including the
original unmodified image

2.3. menpo.image 35

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•downscale (float, optional) – Downscale factor.
•sigma (float, optional) – Sigma for gaussian filter. Default is downscale /
3. which corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the gaussian distribution.

Yieldsimage_pyramid (generator) – Generator yielding pyramid layers as Image objects.

gradient(**kwargs)
Returns an Image which is the gradient of this one. In the case of multiple channels, it returns the
gradient over each axis over each channel as a flat list. Take care to note the ordering of the returned
gradient (the gradient over each spatial dimension is taken over each channel).

The first axis of the gradient of a 2D, 3-channel image, will have length 6, the ordering being I[:,
0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]. To be clear, all the y-gradients are
returned over each channel, then all the x-gradients.

Returnsgradient (Image) – The gradient over each axis over each channel. Therefore,
the gradient of a 2D, single channel image, will have length 2. The length of a 2D,
3-channel image, will have length 6.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

indices()
Return the indices of all pixels in this image.

Type(n_dims, n_pixels) ndarray

classmethod init_blank(shape, n_channels=1, fill=0, dtype=<Mock object>)
Returns a blank image.

Parameters
•shape (tuple or list) – The shape of the image. Any floating point values are
rounded up to the nearest integer.

•n_channels (int, optional) – The number of channels to create the image with.
•fill (int, optional) – The value to fill all pixels with.
•dtype (numpy data type, optional) – The data type of the image.

Returnsblank_image (Image) – A new image of the requested size.

normalize_norm_inplace(mode=’all’, **kwargs)
Normalizes this image such that its pixel values have zero mean and its norm equals 1.

Parametersmode ({all, per_channel}, optional) – If all, the normalization is over
all channels. If per_channel, each channel individually is mean centred and nor-
malized in variance.

normalize_std_inplace(mode=’all’, **kwargs)
Normalizes this image such that its pixel values have zero mean and unit variance.

Parametersmode ({all, per_channel}, optional) – If all, the normalization is over
all channels. If per_channel, each channel individually is mean centred and nor-
malized in variance.

pyramid(n_levels=3, downscale=2)
Return a rescaled pyramid of this image. The first image of the pyramid will be the original, unmodified,
image, and counts as level 1.

Parameters
•n_levels (int, optional) – Total number of levels in the pyramid, including the
original unmodified image

•downscale (float, optional) – Downscale factor.
Yieldsimage_pyramid (generator) – Generator yielding pyramid layers as Image objects.

36 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

rescale(scale, round=’ceil’, order=1)
Return a copy of this image, rescaled by a given factor. Landmarks are rescaled appropriately.

Parameters
•scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply
to each dimension. If a single float, the scale will be applied uniformly across
each dimension.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.
RaisesValueError – If less scales than dimensions are provided. If any scale is less than

or equal to 0.

rescale_landmarks_to_diagonal_range(diagonal_range, group=None, label=None,
round=’ceil’, order=1)

Return a copy of this image, rescaled so that the diagonal_range of the bounding box containing its
landmarks matches the specified diagonal_range range.

Parameters
•diagonal_range ((n_dims,) ndarray) – The diagonal_range range that
we want the landmarks of the returned image to have.

•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

rescale_pixels(minimum, maximum, per_channel=True)
A copy of this image with pixels linearly rescaled to fit a range.

Note that the only pixels that will considered and rescaled are those that feature in the vectorized form
of this image. If you want to use this routine on all the pixels in a MaskedImage, consider using
as_unmasked() prior to this call.

Parameters
•minimum (float) – The minimal value of the rescaled pixels
•maximum (float) – The maximal value of the rescaled pixels

2.3. menpo.image 37

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•per_channel (boolean, optional) – If True, each channel will be rescaled
independently. If False, the scaling will be over all channels.

Returnsrescaled_image (type(self)) – A copy of this image with pixels linearly
rescaled to fit in the range provided.

rescale_to_diagonal(diagonal, round=’ceil’)
Return a copy of this image, rescaled so that the it’s diagonal is a new size.

Parameters
•diagonal (int) – The diagonal size of the new image.
•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

rescale_to_reference_shape(reference_shape, group=None, label=None, round=’ceil’, or-
der=1)

Return a copy of this image, rescaled so that the scale of a particular group of landmarks matches the
scale of the passed reference landmarks.

Parameters
•reference_shape (PointCloud) – The reference shape to which the land-
marks scale will be matched against.

•group (str, optional) – The key of the landmark set that should be used. If
None, and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

resize(shape, order=1)
Return a copy of this image, resized to a particular shape. All image information (landmarks, and mask
in the case of MaskedImage) is resized appropriately.

Parameters
•shape (tuple) – The new shape to resize to.
•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsresized_image (type(self)) – A copy of this image, resized.
RaisesValueError – If the number of dimensions of the new shape does not match the

number of dimensions of the image.

38 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

rolled_channels()
Returns the pixels matrix, with the channels rolled to the back axis. This may be required for interacting
with external code bases that require images to have channels as the last axis, rather than the menpo
convention of channels as the first axis.

Returnsrolled_channels (ndarray) – Pixels with channels as the back (last) axis.

rotate_ccw_about_centre(theta, degrees=True, cval=0.0)
Return a rotation of this image clockwise about its centre.

Parameters
•theta (float) – The angle of rotation about the origin.
•degrees (bool, optional) – If True, theta is interpreted as a degree. If False,
theta is interpreted as radians.

•cval (float, optional) – The value to be set outside the rotated image bound-
aries.

Returnsrotated_image (type(self)) – The rotated image.

sample(points_to_sample, order=1, mode=’constant’, cval=0.0)
Sample this image at the given sub-pixel accurate points. The input PointCloud should have the same
number of dimensions as the image e.g. a 2D PointCloud for a 2D multi-channel image. A numpy array
will be returned the has the values for every given point across each channel of the image.

Parameters
•points_to_sample (PointCloud) – Array of points to sample from the
image. Should be (n_points, n_dims)

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]. See warp_to_shape for more information.

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

Returnssampled_pixels ((n_points, n_channels) ndarray) – The interpolated values taken
across every channel of the image.

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualizes the image object using the visualize_images widget. Currently only supports the ren-
dering of 2D images.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the images will have the form of plus/minus buttons or a slider.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

warp_to_mask(template_mask, transform, warp_landmarks=False, order=1, mode=’constant’,
cval=0.0, batch_size=None)

Return a copy of this image warped into a different reference space.

Note that warping into a mask is slower than warping into a full image. If you don’t need a non-linear
mask, consider :meth:warp_to_shape instead.

Parameters
•template_mask (BooleanImage) – Defines the shape of the result, and
what pixels should be sampled.

•transform (Transform) – Transform from the template space back to
this image. Defines, for each pixel location on the template, which pixel location
should be sampled from on this image.

•warp_landmarks (bool, optional) – If True, result will have the same land-
mark dictionary as self, but with each landmark updated to the warped posi-

2.3. menpo.image 39

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

tion.
•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

•batch_size (int or None, optional) – This should only be considered for large
images. Setting this value can cause warping to become much slower, particular
for cached warps such as Piecewise Affine. This size indicates how many points
in the image should be warped at a time, which keeps memory usage low. If
None, no batching is used and all points are warped at once.

Returnswarped_image (MaskedImage) – A copy of this image, warped.

warp_to_shape(template_shape, transform, warp_landmarks=False, order=1, mode=’constant’,
cval=0.0, batch_size=None)

Return a copy of this image warped into a different reference space.
Parameters

•template_shape (tuple or ndarray) – Defines the shape of the result, and
what pixel indices should be sampled (all of them).

•transform (Transform) – Transform from the template_shape space
back to this image. Defines, for each index on template_shape, which pixel
location should be sampled from on this image.

•warp_landmarks (bool, optional) – If True, result will have the same land-
mark dictionary as self, but with each landmark updated to the warped position.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

•batch_size (int or None, optional) – This should only be considered for large
images. Setting this value can cause warping to become much slower, particular
for cached warps such as Piecewise Affine. This size indicates how many points
in the image should be warped at a time, which keeps memory usage low. If
None, no batching is used and all points are warped at once.

Returnswarped_image (type(self)) – A copy of this image, warped.

zoom(scale, cval=0.0)
Zoom this image about the centre point. scale values greater than 1.0 denote zooming in to the image

40 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

and values less than 1.0 denote zooming out of the image. The size of the image will not change, if you
wish to scale an image, please see rescale().

Parameters
•scale (float) – scale > 1.0 denotes zooming in. Thus the image will ap-
pear larger and areas at the edge of the zoom will be ‘cropped’ out. scale <
1.0 denotes zooming out. The image will be padded by the value of cval.

•cval (float, optional) – The value to be set outside the rotated image bound-
aries.

has_landmarks
Whether the object has landmarks.

Typebool

has_landmarks_outside_bounds
Indicates whether there are landmarks located outside the image bounds.

Typebool

height
The height of the image.

This is the height according to image semantics, and is thus the size of the second to last dimension.
Typeint

landmarks
The landmarks object.

TypeLandmarkManager

n_channels
The number of channels on each pixel in the image.

Typeint

n_dims
The number of dimensions in the image. The minimum possible n_dims is 2.

Typeint

n_elements
Total number of data points in the image (prod(shape), n_channels)

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_pixels
Total number of pixels in the image (prod(shape),)

Typeint

shape
The shape of the image (with n_channel values at each point).

Typetuple

width
The width of the image.

This is the width according to image semantics, and is thus the size of the last dimension.
Typeint

2.3. menpo.image 41

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

BooleanImage

class menpo.image.BooleanImage(mask_data, copy=True)
Bases: Image

A mask image made from binary pixels. The region of the image that is left exposed by the mask is referred to
as the ‘masked region’. The set of ‘masked’ pixels is those pixels corresponding to a True value in the mask.

Parameters
•mask_data ((M, N, ..., L) ndarray) – The binary mask data. Note that there
is no channel axis - a 2D Mask Image is built from just a 2D numpy array of mask_data.
Automatically coerced in to boolean values.

•copy (bool, optional) – If False, the image_data will not be copied on assignment.
Note that if the array you provide is not boolean, there will still be copy. In general
this should only be used if you know what you are doing.

all_true()
True iff every element of the mask is True.

Typebool

as_PILImage()
Return a PIL copy of the image. Depending on the image data type, different operations are performed:

dtype Processing
uint8 No processing, directly converted to PIL
bool Scale by 255, convert to uint8
float32 Scale by 255, convert to uint8
float64 Scale by 255, convert to uint8
OTHER Raise ValueError

Image must only have 1 or 3 channels and be 2 dimensional. Non uint8 images must be in the rage [0,
1] to be converted.

Returnspil_image (PILImage) – PIL copy of image
Raises

•ValueError – If image is not 2D and 1 channel or 3 channels.
•ValueError – If pixels data type is not float32, float64, bool or uint8
•ValueError – If pixels data type is float32 or float64 and the pixel range is
outside of [0, 1]

as_greyscale(mode=’luminosity’, channel=None)
Returns a greyscale version of the image. If the image does not represent a 2D RGB image, then the
luminosity mode will fail.

Parameters
•mode ({average, luminosity, channel}, optional) –

mode Greyscale Algorithm
average Equal average of all channels
luminosity Calculates the luminance using the

CCIR 601 formula:

𝑌 ′ = 0.2989𝑅′ + 0.5870𝐺′ + 0.1140𝐵′

channel A specific channel is chosen as the in-
tensity value.

•channel (int, optional) – The channel to be taken. Only used if mode is
channel.

Returnsgreyscale_image (MaskedImage) – A copy of this image in greyscale.

42 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

as_histogram(keep_channels=True, bins=’unique’)
Histogram binning of the values of this image.

Parameters
•keep_channels (bool, optional) – If set to False, it returns a single his-
togram for all the channels of the image. If set to True, it returns a list of
histograms, one for each channel.

•bins ({unique}, positive int or sequence of scalars, optional) – If set equal to
’unique’, the bins of the histograms are centred on the unique values of each
channel. If set equal to a positive int, then this is the number of bins. If set equal
to a sequence of scalars, these will be used as bins centres.

Returns
•hist (ndarray or list with n_channels ndarrays inside) – The his-
togram(s). If keep_channels=False, then hist is an ndarray. If
keep_channels=True, then hist is a list with len(hist)=n_channels.

•bin_edges (ndarray or list with n_channels ndarrays inside) – An array or a list
of arrays corresponding to the above histograms that store the bins’ edges.

RaisesValueError – Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples
Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

as_masked(mask=None, copy=True)
Impossible for a BooleanImage to be transformed to a MaskedImage.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

bounds_false(boundary=0, constrain_to_bounds=True)
Returns the minimum to maximum indices along all dimensions that the mask includes which fully sur-
round the False mask values. In the case of a 2D Image for instance, the min and max define two corners
of a rectangle bounding the False pixel values.

Parameters
•boundary (int >= 0, optional) – A number of pixels that should be added to
the extent. A negative value can be used to shrink the bounds in.

•constrain_to_bounds (bool, optional) – If True, the bounding extent is
snapped to not go beyond the edge of the image. If False, the bounds are left
unchanged.

Returns
•min_b ((D,) ndarray) – The minimum extent of the True mask region with
the boundary along each dimension. If constrain_to_bounds=True, is
clipped to legal image bounds.

•max_b ((D,) ndarray) – The maximum extent of the True mask region with
the boundary along each dimension. If constrain_to_bounds=True, is
clipped to legal image bounds.

bounds_true(boundary=0, constrain_to_bounds=True)

2.3. menpo.image 43

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returns the minimum to maximum indices along all dimensions that the mask includes which fully sur-
round the True mask values. In the case of a 2D Image for instance, the min and max define two corners
of a rectangle bounding the True pixel values.

Parameters
•boundary (int, optional) – A number of pixels that should be added to the
extent. A negative value can be used to shrink the bounds in.

•constrain_to_bounds (bool, optional) – If True, the bounding extent is
snapped to not go beyond the edge of the image. If False, the bounds are left
unchanged.

•Returns –
•-------- –
•min_b ((D,) ndarray) – The minimum extent of the True mask region with
the boundary along each dimension. If constrain_to_bounds=True, is
clipped to legal image bounds.

•max_b ((D,) ndarray) – The maximum extent of the True mask region with
the boundary along each dimension. If constrain_to_bounds=True, is
clipped to legal image bounds.

centre()
The geometric centre of the Image - the subpixel that is in the middle.

Useful for aligning shapes and images.
Type(n_dims,) ndarray

constrain_landmarks_to_bounds()
Move landmarks that are located outside the image bounds on the bounds.

constrain_points_to_bounds(points)
Constrains the points provided to be within the bounds of this image.

Parameterspoints ((d,) ndarray) – Points to be snapped to the image boundaries.
Returnsbounded_points ((d,) ndarray) – Points snapped to not stray outside the image

edges.

constrain_to_landmarks(group=None, label=None, trilist=None, batch_size=None)
Restricts this mask to be equal to the convex hull around the landmarks chosen. This is not a per-pixel
convex hull, but instead relies on a triangulated approximation.

Parameters
•group (str, optional) – The key of the landmark set that should be used. If
None, and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If no label is passed, the convex hull of all landmarks is used.

•trilist ((t, 3) ndarray, optional) – Triangle list to be used on the land-
marked points in selecting the mask region. If None, defaults to performing
Delaunay triangulation on the points.

•batch_size (int or None, optional) – This should only be considered for
large images. Setting this value will cause constraining to become much slower.
This size indicates how many points in the image should be checked at a time,
which keeps memory usage low. If None, no batching is used and all points are
checked at once.

constrain_to_pointcloud(pointcloud, batch_size=None, point_in_pointcloud=’pwa’,
trilist=None)

Restricts this mask to be equal to the convex hull around a pointcloud. The choice of whether a pixel
is inside or outside of the pointcloud is determined by the point_in_pointcloud parameter. By
default a Piecewise Affine transform is used to test for containment, which is useful when building effi-
ciently aligning images. For large images, a faster and pixel-accurate method can be used (‘convex_hull’).
Alternatively, a callable can be provided to override the test. By default, the provided implementations

44 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

are only valid for 2D images.
Parameters

•pointcloud (PointCloud) – The pointcloud of points that should be con-
strained to.

•batch_size (int or None, optional) – This should only be considered for
large images. Setting this value will cause constraining to become much slower.
This size indicates how many points in the image should be checked at a time,
which keeps memory usage low. If None, no batching is used and all points are
checked at once. By default, this is only used for the ‘pwa’ point_in_pointcloud
choice.

•point_in_pointcloud ({‘pwa’, ‘convex_hull’} or callable) – The method
used to check if pixels in the image fall inside the pointcloud or not. Can be
accurate to a Piecewise Affine transform, a pixel accurate convex hull or any
arbitrary callable. If a callable is passed, it should take two parameters, the
PointCloud to constrain with and the pixel locations ((d, n_dims) ndarray) to
test and should return a (d, 1) boolean ndarray of whether the pixels were inside
(True) or outside (False) of the PointCloud.

•trilist ((t, 3) ndarray, optional) – Deprecated. Please provide a Trimesh
instead of relying on this parameter.

Raises
•ValueError – If the image is not 2D and a default implementation is chosen.
•ValueError – If the chosen point_in_pointcloud is unknown.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

crop(min_indices, max_indices, constrain_to_boundary=False)
Return a cropped copy of this image using the given minimum and maximum indices. Landmarks are
correctly adjusted so they maintain their position relative to the newly cropped image.

Parameters
•min_indices ((n_dims,) ndarray) – The minimum index over each di-
mension.

•max_indices ((n_dims,) ndarray) – The maximum index over each di-
mension.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image.

Returnscropped_image (type(self)) – A new instance of self, but cropped.
Raises

•ValueError – min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than min_indices.

•ImageBoundaryError – Raised if constrain_to_boundary=False,
and an attempt is made to crop the image in a way that violates the image bounds.

crop_inplace(*args, **kwargs)
Deprecated: please use crop() instead.

crop_to_landmarks(group=None, label=None, boundary=0, constrain_to_boundary=True)
Return a copy of this image cropped so that it is bounded around a set of landmarks with an optional

2.3. menpo.image 45

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_pixel boundary
Parameters

•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•boundary (int, optional) – An extra padding to be added all around the land-
marks bounds.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
:map‘ImageBoundaryError‘ will be raised if an attempt is made to go beyond
the edge of the image.

Returnsimage (Image) – A copy of this image cropped to its landmarks.
RaisesImageBoundaryError – Raised if constrain_to_boundary=False, and

an attempt is made to crop the image in a way that violates the image bounds.

crop_to_landmarks_inplace(*args, **kwargs)
Deprecated: please use crop_to_landmarks() instead.

crop_to_landmarks_proportion(boundary_proportion, group=None, label=None, mini-
mum=True, constrain_to_boundary=True)

Crop this image to be bounded around a set of landmarks with a border proportional to the landmark
spread or range.

Parameters
•boundary_proportion (float) – Additional padding to be added all around
the landmarks bounds defined as a proportion of the landmarks range. See the
minimum parameter for a definition of how the range is calculated.

•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•minimum (bool, optional) – If True the specified proportion is relative to the
minimum value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

•constrain_to_boundary (bool, optional) – If True, the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image.

Returnsimage (Image) – This image, cropped to its landmarks with a border proportional
to the landmark spread or range.

RaisesImageBoundaryError – Raised if constrain_to_boundary=False, and
an attempt is made to crop the image in a way that violates the image bounds.

crop_to_landmarks_proportion_inplace(*args, **kwargs)
Deprecated: please use crop_to_landmarks_proportion() instead.

diagonal()
The diagonal size of this image

Typefloat

extract_channels(channels)
A copy of this image with only the specified channels.

Parameterschannels (int or [int]) – The channel index or list of channel indices to retain.
Returnsimage (type(self)) – A copy of this image with only the channels requested.

extract_patches(patch_centers, patch_size=(16, 16), sample_offsets=None,
as_single_array=False)

46 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Extract a set of patches from an image. Given a set of patch centers and a patch size, patches are extracted
from within the image, centred on the given coordinates. Sample offsets denote a set of offsets to extract
from within a patch. This is very useful if you want to extract a dense set of features around a set of
landmarks and simply sample the same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you need to slice the resulting list. So for 2
offsets, the first centers offset patches would be patches[:2].

Currently only 2D images are supported.
Parameters

•patch_centers (PointCloud) – The centers to extract patches around.
•patch_size (tuple or ndarray, optional) – The size of the patch to extract
•sample_offsets (PointCloud, optional) – The offsets to sample from
within a patch. So (0, 0) is the centre of the patch (no offset) and (1, 0) would be
sampling the patch from 1 pixel up the first axis away from the centre.

•as_single_array (bool, optional) – If True, an (n_center *
n_offset, self.shape...) ndarray, thus a single numpy array is re-
turned containing each patch. If False, a list of Image objects is returned
representing each patch.

Returnspatches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if as_single_array=False.

RaisesValueError – If image is not 2D

extract_patches_around_landmarks(group=None, label=None, patch_size=(16, 16), sam-
ple_offsets=None, as_single_array=False)

Extract patches around landmarks existing on this image. Provided the group label and optionally the
landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.
Parameters

•group (str or None optional) – The landmark group to use as patch centres.
•label (str or None optional) – The landmark label within the group to use as
centres.

•patch_size (tuple or ndarray, optional) – The size of the patch to extract
•sample_offsets (PointCloud, optional) – The offsets to sample from
within a patch. So (0,0) is the centre of the patch (no offset) and (1, 0) would be
sampling the patch from 1 pixel up the first axis away from the centre.

•as_single_array (bool, optional) – If True, an (n_center *
n_offset, self.shape...) ndarray, thus a single numpy array is re-
turned containing each patch. If False, a list of Image objects is returned
representing each patch.

Returnspatches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if as_single_array=False.

RaisesValueError – If image is not 2D

false_indices()
The indices of pixels that are Flase.

Type(n_dims, n_false) ndarray

from_vector(vector, copy=True)
Takes a flattened vector and returns a new BooleanImage formed by reshaping the vector to the correct
dimensions. Note that this is rebuilding a boolean image itself from boolean values. The mask is in
no way interpreted in performing the operation, in contrast to MaskedImage, where only the masked
region is used in from_vector() and :meth‘as_vector‘. Any image landmarks are transferred in the
process.

Parameters

2.3. menpo.image 47

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•vector ((n_pixels,) bool ndarray) – A flattened vector of all the pixels of
a BooleanImage.

•copy (bool, optional) – If False, no copy of the vector will be taken.
Returnsimage (BooleanImage) – New BooleanImage of same shape as this image
RaisesWarning – If copy=False cannot be honored.

from_vector_inplace(vector, copy=True)
Takes a flattened vector and update this image by reshaping the vector to the correct dimensions.

Parameters
•vector ((n_pixels,) bool ndarray) – A vector vector of all the pixels of a
BooleanImage.

•copy (bool, optional) – If False, the vector will be set as the pixels. If True,
a copy of the vector is taken.

RaisesWarning – If copy=False flag cannot be honored

Note: For BooleanImage this is rebuilding a boolean image itself from boolean values. The mask is
in no way interpreted in performing the operation, in contrast to MaskedImage, where only the masked
region is used in from_vector_inplace() and as_vector().

gaussian_pyramid(n_levels=3, downscale=2, sigma=None)
Return the gaussian pyramid of this image. The first image of the pyramid will be the original, unmodified,
image, and counts as level 1.

Parameters
•n_levels (int, optional) – Total number of levels in the pyramid, including the
original unmodified image

•downscale (float, optional) – Downscale factor.
•sigma (float, optional) – Sigma for gaussian filter. Default is downscale /
3. which corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the gaussian distribution.

Yieldsimage_pyramid (generator) – Generator yielding pyramid layers as Image objects.

gradient(**kwargs)
Returns an Image which is the gradient of this one. In the case of multiple channels, it returns the
gradient over each axis over each channel as a flat list. Take care to note the ordering of the returned
gradient (the gradient over each spatial dimension is taken over each channel).

The first axis of the gradient of a 2D, 3-channel image, will have length 6, the ordering being I[:,
0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]. To be clear, all the y-gradients are
returned over each channel, then all the x-gradients.

Returnsgradient (Image) – The gradient over each axis over each channel. Therefore,
the gradient of a 2D, single channel image, will have length 2. The length of a 2D,
3-channel image, will have length 6.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

indices()
Return the indices of all pixels in this image.

Type(n_dims, n_pixels) ndarray

classmethod init_blank(shape, fill=True, round=’ceil’, **kwargs)
Returns a blank BooleanImage of the requested shape

Parameters
•shape (tuple or list) – The shape of the image. Any floating point values are
rounded according to the round kwarg.

48 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•fill (bool, optional) – The mask value to be set everywhere.
•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

Returnsblank_image (BooleanImage) – A blank mask of the requested size

invert()
Returns a copy of this boolean image, which is inverted.

Returnsinverted (BooleanImage) – A copy of this boolean mask, where all True values
are False and all False values are True.

invert_inplace()
Inverts this Boolean Image inplace.

n_false()
The number of False values in the mask.

Typeint

n_true()
The number of True values in the mask.

Typeint

normalize_norm_inplace(mode=’all’, **kwargs)
Normalizes this image such that its pixel values have zero mean and its norm equals 1.

Parametersmode ({all, per_channel}, optional) – If all, the normalization is over
all channels. If per_channel, each channel individually is mean centred and nor-
malized in variance.

normalize_std_inplace(mode=’all’, **kwargs)
Normalizes this image such that its pixel values have zero mean and unit variance.

Parametersmode ({all, per_channel}, optional) – If all, the normalization is over
all channels. If per_channel, each channel individually is mean centred and nor-
malized in variance.

proportion_false()
The proportion of the mask which is False

Typefloat

proportion_true()
The proportion of the mask which is True.

Typefloat

pyramid(n_levels=3, downscale=2)
Return a rescaled pyramid of this image. The first image of the pyramid will be the original, unmodified,
image, and counts as level 1.

Parameters
•n_levels (int, optional) – Total number of levels in the pyramid, including the
original unmodified image

•downscale (float, optional) – Downscale factor.
Yieldsimage_pyramid (generator) – Generator yielding pyramid layers as Image objects.

rescale(scale, round=’ceil’, order=1)
Return a copy of this image, rescaled by a given factor. Landmarks are rescaled appropriately.

Parameters
•scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply
to each dimension. If a single float, the scale will be applied uniformly across
each dimension.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

2.3. menpo.image 49

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.
RaisesValueError – If less scales than dimensions are provided. If any scale is less than

or equal to 0.

rescale_landmarks_to_diagonal_range(diagonal_range, group=None, label=None,
round=’ceil’, order=1)

Return a copy of this image, rescaled so that the diagonal_range of the bounding box containing its
landmarks matches the specified diagonal_range range.

Parameters
•diagonal_range ((n_dims,) ndarray) – The diagonal_range range that
we want the landmarks of the returned image to have.

•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

rescale_pixels(minimum, maximum, per_channel=True)
A copy of this image with pixels linearly rescaled to fit a range.

Note that the only pixels that will considered and rescaled are those that feature in the vectorized form
of this image. If you want to use this routine on all the pixels in a MaskedImage, consider using
as_unmasked() prior to this call.

Parameters
•minimum (float) – The minimal value of the rescaled pixels
•maximum (float) – The maximal value of the rescaled pixels
•per_channel (boolean, optional) – If True, each channel will be rescaled
independently. If False, the scaling will be over all channels.

Returnsrescaled_image (type(self)) – A copy of this image with pixels linearly
rescaled to fit in the range provided.

rescale_to_diagonal(diagonal, round=’ceil’)
Return a copy of this image, rescaled so that the it’s diagonal is a new size.

Parameters
•diagonal (int) – The diagonal size of the new image.

50 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

rescale_to_reference_shape(reference_shape, group=None, label=None, round=’ceil’, or-
der=1)

Return a copy of this image, rescaled so that the scale of a particular group of landmarks matches the
scale of the passed reference landmarks.

Parameters
•reference_shape (PointCloud) – The reference shape to which the land-
marks scale will be matched against.

•group (str, optional) – The key of the landmark set that should be used. If
None, and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

resize(shape, order=1)
Return a copy of this image, resized to a particular shape. All image information (landmarks, and mask
in the case of MaskedImage) is resized appropriately.

Parameters
•shape (tuple) – The new shape to resize to.
•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsresized_image (type(self)) – A copy of this image, resized.
RaisesValueError – If the number of dimensions of the new shape does not match the

number of dimensions of the image.

rolled_channels()
Returns the pixels matrix, with the channels rolled to the back axis. This may be required for interacting
with external code bases that require images to have channels as the last axis, rather than the menpo
convention of channels as the first axis.

Returnsrolled_channels (ndarray) – Pixels with channels as the back (last) axis.

rotate_ccw_about_centre(theta, degrees=True, cval=0.0)
Return a rotation of this image clockwise about its centre.

Parameters

2.3. menpo.image 51

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•theta (float) – The angle of rotation about the origin.
•degrees (bool, optional) – If True, theta is interpreted as a degree. If False,
theta is interpreted as radians.

•cval (float, optional) – The value to be set outside the rotated image bound-
aries.

Returnsrotated_image (type(self)) – The rotated image.

sample(points_to_sample, mode=’constant’, cval=False, **kwargs)
Sample this image at the given sub-pixel accurate points. The input PointCloud should have the same
number of dimensions as the image e.g. a 2D PointCloud for a 2D multi-channel image. A numpy array
will be returned the has the values for every given point across each channel of the image.

Parameters
•points_to_sample (PointCloud) – Array of points to sample from the
image. Should be (n_points, n_dims)

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

Returnssampled_pixels ((n_points, n_channels) bool ndarray) – The interpolated values
taken across every channel of the image.

true_indices()
The indices of pixels that are True.

Type(n_dims, n_true) ndarray

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualizes the image object using the visualize_images widget. Currently only supports the ren-
dering of 2D images.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the images will have the form of plus/minus buttons or a slider.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

warp_to_mask(template_mask, transform, warp_landmarks=True, mode=’constant’, cval=False,
batch_size=None)

Return a copy of this BooleanImage warped into a different reference space.

Note that warping into a mask is slower than warping into a full image. If you don’t need a non-linear
mask, consider warp_to_shape instead.

Parameters
•template_mask (BooleanImage) – Defines the shape of the result, and
what pixels should be sampled.

•transform (Transform) – Transform from the template space back to
this image. Defines, for each pixel location on the template, which pixel location
should be sampled from on this image.

•warp_landmarks (bool, optional) – If True, result will have the same land-
mark dictionary as self, but with each landmark updated to the warped position.

•mode ({constant, nearest, reflect or wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

•batch_size (int or None, optional) – This should only be considered for large
images. Setting this value can cause warping to become much slower, particular
for cached warps such as Piecewise Affine. This size indicates how many points

52 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

in the image should be warped at a time, which keeps memory usage low. If
None, no batching is used and all points are warped at once.

Returnswarped_image (BooleanImage) – A copy of this image, warped.

warp_to_shape(template_shape, transform, warp_landmarks=True, mode=’constant’, cval=False,
order=None, batch_size=None)

Return a copy of this BooleanImage warped into a different reference space.

Note that the order keyword argument is in fact ignored, as any order other than 0 makes no sense on a
binary image. The keyword argument is present only for compatibility with the Image warp_to_shape
API.

Parameters
•template_shape ((n_dims,) tuple or ndarray) – Defines the shape of
the result, and what pixel indices should be sampled (all of them).

•transform (Transform) – Transform from the template_shape space
back to this image. Defines, for each index on template_shape, which pixel
location should be sampled from on this image.

•warp_landmarks (bool, optional) – If True, result will have the same land-
mark dictionary as self, but with each landmark updated to the warped position.

•mode ({constant, nearest, reflect or wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

•batch_size (int or None, optional) – This should only be considered for large
images. Setting this value can cause warping to become much slower, particular
for cached warps such as Piecewise Affine. This size indicates how many points
in the image should be warped at a time, which keeps memory usage low. If
None, no batching is used and all points are warped at once.

Returnswarped_image (BooleanImage) – A copy of this image, warped.

zoom(scale, cval=0.0)
Zoom this image about the centre point. scale values greater than 1.0 denote zooming in to the image
and values less than 1.0 denote zooming out of the image. The size of the image will not change, if you
wish to scale an image, please see rescale().

Parameters
•scale (float) – scale > 1.0 denotes zooming in. Thus the image will ap-
pear larger and areas at the edge of the zoom will be ‘cropped’ out. scale <
1.0 denotes zooming out. The image will be padded by the value of cval.

•cval (float, optional) – The value to be set outside the rotated image bound-
aries.

has_landmarks
Whether the object has landmarks.

Typebool

has_landmarks_outside_bounds
Indicates whether there are landmarks located outside the image bounds.

Typebool

height
The height of the image.

This is the height according to image semantics, and is thus the size of the second to last dimension.
Typeint

landmarks
The landmarks object.

TypeLandmarkManager

2.3. menpo.image 53

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

mask
Returns the pixels of the mask with no channel axis. This is what should be used to mask any k-
dimensional image.

Type(M, N, ..., L), bool ndarray

n_channels
The number of channels on each pixel in the image.

Typeint

n_dims
The number of dimensions in the image. The minimum possible n_dims is 2.

Typeint

n_elements
Total number of data points in the image (prod(shape), n_channels)

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_pixels
Total number of pixels in the image (prod(shape),)

Typeint

shape
The shape of the image (with n_channel values at each point).

Typetuple

width
The width of the image.

This is the width according to image semantics, and is thus the size of the last dimension.
Typeint

MaskedImage

class menpo.image.MaskedImage(image_data, mask=None, copy=True)
Bases: Image

Represents an n-dimensional k-channel image, which has a mask. Images can be masked in order to identify
a region of interest. All images implicitly have a mask that is defined as the the entire image. The mask is an
instance of BooleanImage.

Parameters
•image_data ((C, M, N ..., Q) ndarray) – The pixel data for the image,
where the first axis represents the number of channels.

•mask ((M, N) bool ndarray or BooleanImage, optional) – A binary array repre-
senting the mask. Must be the same shape as the image. Only one mask is supported
for an image (so the mask is applied to every channel equally).

•copy (bool, optional) – If False, the image_data will not be copied on assign-
ment. If a mask is provided, this also won’t be copied. In general this should only be
used if you know what you are doing.

RaisesValueError – Mask is not the same shape as the image

54 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

_view_2d(figure_id=None, new_figure=False, channels=None, masked=True, inter-
polation=’bilinear’, cmap_name=None, alpha=1.0, render_axes=False,
axes_font_name=’sans-serif’, axes_font_size=10, axes_font_style=’normal’,
axes_font_weight=’normal’, axes_x_limits=None, axes_y_limits=None, figure_size=(10,
8))

View the image using the default image viewer. This method will appear on the Image as view if the
Image is 2D.

Returns
•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•channels (int or list of int or all or None) – If int or list of int, the specified
channel(s) will be rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode. If None and
the image is not RGB, it is equivalent to all.

•masked (bool, optional) – If True, only the masked pixels will be rendered.
•interpolation (See Below, optional) – The interpolation used to render the image.
For example, if bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36,
hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
bessel, mitchell, sinc, lanczos}

•cmap_name (str, optional,) – If None, single channel and three channel images
default to greyscale and rgb colormaps respectively.

•alpha (float, optional) – The alpha blending value, between 0 (transparent) and
1 (opaque).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

RaisesValueError – If Image is not 2D

2.3. menpo.image 55

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

_view_landmarks_2d(channels=None, masked=True, group=None, with_labels=None,
without_labels=None, figure_id=None, new_figure=False, interpola-
tion=’bilinear’, cmap_name=None, alpha=1.0, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•channels (int or list of int or all or None) – If int or list of int, the specified
channel(s) will be rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode. If None and
the image is not RGB, it is equivalent to all.

•masked (bool, optional) – If True, only the masked pixels will be rendered.
•group (str or‘‘None‘‘ optionals) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•interpolation (See Below, optional) – The interpolation used to render the
image. For example, if bilinear, the image will be smooth and if nearest,
the image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

•cmap_name (str, optional,) – If None, single channel and three channel images
default to greyscale and rgb colormaps respectively.

•alpha (float, optional) – The alpha blending value, between 0 (transparent) and
1 (opaque).

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or

56 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

2.3. menpo.image 57

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

58 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_PILImage()
Return a PIL copy of the image. Depending on the image data type, different operations are performed:

dtype Processing
uint8 No processing, directly converted to PIL
bool Scale by 255, convert to uint8
float32 Scale by 255, convert to uint8
float64 Scale by 255, convert to uint8
OTHER Raise ValueError

Image must only have 1 or 3 channels and be 2 dimensional. Non uint8 images must be in the rage [0,
1] to be converted.

Returnspil_image (PILImage) – PIL copy of image
Raises

•ValueError – If image is not 2D and 1 channel or 3 channels.
•ValueError – If pixels data type is not float32, float64, bool or uint8
•ValueError – If pixels data type is float32 or float64 and the pixel range is
outside of [0, 1]

as_greyscale(mode=’luminosity’, channel=None)
Returns a greyscale version of the image. If the image does not represent a 2D RGB image, then the
luminosity mode will fail.

Parameters
•mode ({average, luminosity, channel}, optional) –

mode Greyscale Algorithm
average Equal average of all channels
luminosity Calculates the luminance using the

CCIR 601 formula:

𝑌 ′ = 0.2989𝑅′ + 0.5870𝐺′ + 0.1140𝐵′

channel A specific channel is chosen as the in-
tensity value.

•channel (int, optional) – The channel to be taken. Only used if mode is
channel.

Returnsgreyscale_image (MaskedImage) – A copy of this image in greyscale.

as_histogram(keep_channels=True, bins=’unique’)
Histogram binning of the values of this image.

Parameters

2.3. menpo.image 59

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•keep_channels (bool, optional) – If set to False, it returns a single his-
togram for all the channels of the image. If set to True, it returns a list of
histograms, one for each channel.

•bins ({unique}, positive int or sequence of scalars, optional) – If set equal to
’unique’, the bins of the histograms are centred on the unique values of each
channel. If set equal to a positive int, then this is the number of bins. If set equal
to a sequence of scalars, these will be used as bins centres.

Returns
•hist (ndarray or list with n_channels ndarrays inside) – The his-
togram(s). If keep_channels=False, then hist is an ndarray. If
keep_channels=True, then hist is a list with len(hist)=n_channels.

•bin_edges (ndarray or list with n_channels ndarrays inside) – An array or a list
of arrays corresponding to the above histograms that store the bins’ edges.

RaisesValueError – Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples
Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

as_masked(mask=None, copy=True)
Return a copy of this image with an attached mask behavior.

A custom mask may be provided, or None. See the MaskedImage constructor for details of how the
kwargs will be handled.

Parameters
•mask ((self.shape) ndarray or BooleanImage) – A mask to attach to
the newly generated masked image.

•copy (bool, optional) – If False, the produced MaskedImage will share
pixels with self. Only suggested to be used for performance.

Returnsmasked_image (MaskedImage) – An image with the same pixels and landmarks
as this one, but with a mask.

as_unmasked(copy=True, fill=None)
Return a copy of this image without the masking behavior.

By default the mask is simply discarded. However, there is an optional kwarg, fill, that can be set
which will fill the non-masked areas with the given value.

Parameters
•copy (bool, optional) – If False, the produced Image will share pixels with
self. Only suggested to be used for performance.

•fill (float or None, optional) – If None the mask is simply discarded. If a
number, the unmasked regions are filled with the given value.

Returnsimage (Image) – An image with the same pixels and landmarks as this one, but
with no mask.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

60 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

build_mask_around_landmarks(patch_size, group=None, label=None)
Restricts this images mask to be patches around each landmark in the chosen landmark group. This is
useful for visualizing patch based methods.

Parameters
•patch_shape (tuple) – The size of the patch. Any floating point values are
rounded up to the nearest integer.

•group (str, optional) – The key of the landmark set that should be used. If
None, and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If no label is passed, the convex hull of all landmarks is used.

centre()
The geometric centre of the Image - the subpixel that is in the middle.

Useful for aligning shapes and images.
Type(n_dims,) ndarray

constrain_landmarks_to_bounds()
Move landmarks that are located outside the image bounds on the bounds.

constrain_mask_to_landmarks(group=None, label=None, batch_size=None,
point_in_pointcloud=’pwa’, trilist=None)

Restricts this mask to be equal to the convex hull around the chosen landmarks.

The choice of whether a pixel is inside or outside of the pointcloud is determined by the
point_in_pointcloud parameter. By default a Piecewise Affine transform is used to test for con-
tainment, which is useful when building efficiently aligning images. For large images, a faster and pixel-
accurate method can be used (‘convex_hull’). Alternatively, a callable can be provided to override the
test. By default, the provided implementations are only valid for 2D images.

Parameters
•group (str, optional) – The key of the landmark set that should be used. If
None, and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If no label is passed, the convex hull of all landmarks is used.

•batch_size (int or None, optional) – This should only be considered for
large images. Setting this value will cause constraining to become much slower.
This size indicates how many points in the image should be checked at a time,
which keeps memory usage low. If None, no batching is used and all points are
checked at once. By default, this is only used for the ‘pwa’ point_in_pointcloud
choice.

•point_in_pointcloud ({‘pwa’, ‘convex_hull’} or callable) – The method
used to check if pixels in the image fall inside the pointcloud or not. Can be
accurate to a Piecewise Affine transform, a pixel accurate convex hull or any
arbitrary callable. If a callable is passed, it should take two parameters, the
PointCloud to constrain with and the pixel locations ((d, n_dims) ndarray) to
test and should return a (d, 1) boolean ndarray of whether the pixels were inside
(True) or outside (False) of the PointCloud.

•trilist ((t, 3) ndarray, optional) – Deprecated. Please provide a Trimesh
instead of relying on this parameter.

constrain_points_to_bounds(points)
Constrains the points provided to be within the bounds of this image.

Parameterspoints ((d,) ndarray) – Points to be snapped to the image boundaries.
Returnsbounded_points ((d,) ndarray) – Points snapped to not stray outside the image

edges.

copy()
Generate an efficient copy of this object.

2.3. menpo.image 61

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

crop(min_indices, max_indices, constrain_to_boundary=False)
Return a cropped copy of this image using the given minimum and maximum indices. Landmarks are
correctly adjusted so they maintain their position relative to the newly cropped image.

Parameters
•min_indices ((n_dims,) ndarray) – The minimum index over each di-
mension.

•max_indices ((n_dims,) ndarray) – The maximum index over each di-
mension.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image.

Returnscropped_image (type(self)) – A new instance of self, but cropped.
Raises

•ValueError – min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than min_indices.

•ImageBoundaryError – Raised if constrain_to_boundary=False,
and an attempt is made to crop the image in a way that violates the image bounds.

crop_inplace(*args, **kwargs)
Deprecated: please use crop() instead.

crop_to_landmarks(group=None, label=None, boundary=0, constrain_to_boundary=True)
Return a copy of this image cropped so that it is bounded around a set of landmarks with an optional
n_pixel boundary

Parameters
•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•boundary (int, optional) – An extra padding to be added all around the land-
marks bounds.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
:map‘ImageBoundaryError‘ will be raised if an attempt is made to go beyond
the edge of the image.

Returnsimage (Image) – A copy of this image cropped to its landmarks.
RaisesImageBoundaryError – Raised if constrain_to_boundary=False, and

an attempt is made to crop the image in a way that violates the image bounds.

crop_to_landmarks_inplace(*args, **kwargs)
Deprecated: please use crop_to_landmarks() instead.

crop_to_landmarks_proportion(boundary_proportion, group=None, label=None, mini-
mum=True, constrain_to_boundary=True)

Crop this image to be bounded around a set of landmarks with a border proportional to the landmark
spread or range.

Parameters
•boundary_proportion (float) – Additional padding to be added all around
the landmarks bounds defined as a proportion of the landmarks range. See the

62 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

minimum parameter for a definition of how the range is calculated.
•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•minimum (bool, optional) – If True the specified proportion is relative to the
minimum value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

•constrain_to_boundary (bool, optional) – If True, the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image.

Returnsimage (Image) – This image, cropped to its landmarks with a border proportional
to the landmark spread or range.

RaisesImageBoundaryError – Raised if constrain_to_boundary=False, and
an attempt is made to crop the image in a way that violates the image bounds.

crop_to_landmarks_proportion_inplace(*args, **kwargs)
Deprecated: please use crop_to_landmarks_proportion() instead.

crop_to_true_mask(boundary=0, constrain_to_boundary=True)
Crop this image to be bounded just the True values of it’s mask.

Parameters
•boundary (int, optional) – An extra padding to be added all around the true
mask region.

•constrain_to_boundary (bool, optional) – If True the crop will
be snapped to not go beyond this images boundary. If False, an
ImageBoundaryError will be raised if an attempt is made to go beyond
the edge of the image. Note that is only possible if boundary != 0.

Returnscropped_image (type(self)) – A copy of this image, cropped to the true mask.
RaisesImageBoundaryError – Raised if 11constrain_to_boundary=False‘1, and an at-

tempt is made to crop the image in a way that violates the image bounds.

diagonal()
The diagonal size of this image

Typefloat

extract_channels(channels)
A copy of this image with only the specified channels.

Parameterschannels (int or [int]) – The channel index or list of channel indices to retain.
Returnsimage (type(self)) – A copy of this image with only the channels requested.

extract_patches(patch_centers, patch_size=(16, 16), sample_offsets=None,
as_single_array=False)

Extract a set of patches from an image. Given a set of patch centers and a patch size, patches are extracted
from within the image, centred on the given coordinates. Sample offsets denote a set of offsets to extract
from within a patch. This is very useful if you want to extract a dense set of features around a set of
landmarks and simply sample the same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you need to slice the resulting list. So for 2
offsets, the first centers offset patches would be patches[:2].

Currently only 2D images are supported.
Parameters

•patch_centers (PointCloud) – The centers to extract patches around.
•patch_size (tuple or ndarray, optional) – The size of the patch to extract
•sample_offsets (PointCloud, optional) – The offsets to sample from
within a patch. So (0, 0) is the centre of the patch (no offset) and (1, 0) would be

2.3. menpo.image 63

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

sampling the patch from 1 pixel up the first axis away from the centre.
•as_single_array (bool, optional) – If True, an (n_center *
n_offset, self.shape...) ndarray, thus a single numpy array is re-
turned containing each patch. If False, a list of Image objects is returned
representing each patch.

Returnspatches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if as_single_array=False.

RaisesValueError – If image is not 2D

extract_patches_around_landmarks(group=None, label=None, patch_size=(16, 16), sam-
ple_offsets=None, as_single_array=False)

Extract patches around landmarks existing on this image. Provided the group label and optionally the
landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.
Parameters

•group (str or None optional) – The landmark group to use as patch centres.
•label (str or None optional) – The landmark label within the group to use as
centres.

•patch_size (tuple or ndarray, optional) – The size of the patch to extract
•sample_offsets (PointCloud, optional) – The offsets to sample from
within a patch. So (0,0) is the centre of the patch (no offset) and (1, 0) would be
sampling the patch from 1 pixel up the first axis away from the centre.

•as_single_array (bool, optional) – If True, an (n_center *
n_offset, self.shape...) ndarray, thus a single numpy array is re-
turned containing each patch. If False, a list of Image objects is returned
representing each patch.

Returnspatches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if as_single_array=False.

RaisesValueError – If image is not 2D

from_vector(vector, n_channels=None)
Takes a flattened vector and returns a new image formed by reshaping the vector to the correct pixels and
channels. Note that the only region of the image that will be filled is the masked region.

On masked images, the vector is always copied.

The n_channels argument is useful for when we want to add an extra channel to an image but maintain
the shape. For example, when calculating the gradient.

Note that landmarks are transferred in the process.
Parameters

•vector ((n_pixels,)) – A flattened vector of all pixels and channels of an
image.

•n_channels (int, optional) – If given, will assume that vector is the same
shape as this image, but with a possibly different number of channels.

Returnsimage (MaskedImage) – New image of same shape as this image and the number
of specified channels.

from_vector_inplace(vector, copy=True)
Takes a flattened vector and updates this image by reshaping the vector to the correct pixels and channels.
Note that the only region of the image that will be filled is the masked region.

Parameters
•vector ((n_parameters,)) – A flattened vector of all pixels and channels
of an image.

64 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•copy (bool, optional) – If False, the vector will be set as the pixels with no
copy made. If True a copy of the vector is taken.

RaisesWarning – If copy=False cannot be honored.

gaussian_pyramid(n_levels=3, downscale=2, sigma=None)
Return the gaussian pyramid of this image. The first image of the pyramid will be the original, unmodified,
image, and counts as level 1.

Parameters
•n_levels (int, optional) – Total number of levels in the pyramid, including the
original unmodified image

•downscale (float, optional) – Downscale factor.
•sigma (float, optional) – Sigma for gaussian filter. Default is downscale /
3. which corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the gaussian distribution.

Yieldsimage_pyramid (generator) – Generator yielding pyramid layers as Image objects.

gradient(**kwargs)
Returns an Image which is the gradient of this one. In the case of multiple channels, it returns the
gradient over each axis over each channel as a flat list. Take care to note the ordering of the returned
gradient (the gradient over each spatial dimension is taken over each channel).

The first axis of the gradient of a 2D, 3-channel image, will have length 6, the ordering being I[:,
0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]. To be clear, all the y-gradients are
returned over each channel, then all the x-gradients.

Returnsgradient (Image) – The gradient over each axis over each channel. Therefore,
the gradient of a 2D, single channel image, will have length 2. The length of a 2D,
3-channel image, will have length 6.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

indices()
Return the indices of all true pixels in this image.

Type(n_dims, n_true_pixels) ndarray

classmethod init_blank(shape, n_channels=1, fill=0, dtype=<Mock object>, mask=None)
Generate a blank masked image

Parameters
•shape (tuple or list) – The shape of the image. Any floating point values are
rounded up to the nearest integer.

•n_channels (int, optional) – The number of channels to create the image with.
•fill (int, optional) – The value to fill all pixels with.
•dtype (numpy datatype, optional) – The datatype of the image.
•mask ((M, N) bool ndarray or BooleanImage) – An optional mask that can
be applied to the image. Has to have a shape equal to that of the image.

Notes
Subclasses of MaskedImage need to overwrite this method and explicitly call this superclass method

super(SubClass, cls).init_blank(shape,**kwargs)

in order to appropriately propagate the subclass type to cls.

Returnsblank_image (MaskedImage) – A new masked image of the requested size.

2.3. menpo.image 65

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

masked_pixels()
Get the pixels covered by the True values in the mask.

Type(n_channels, mask.n_true) ndarray

n_false_elements()
The number of False elements of the image over all the channels.

Typeint

n_false_pixels()
The number of False values in the mask.

Typeint

n_true_elements()
The number of True elements of the image over all the channels.

Typeint

n_true_pixels()
The number of True values in the mask.

Typeint

normalize_norm_inplace(mode=’all’, limit_to_mask=True, **kwargs)
Normalizes this image such that it’s pixel values have zero mean and its norm equals 1.

Parameters
•mode ({all, per_channel}, optional) – If all, the normalization is over
all channels. If per_channel, each channel individually is mean centred and
normalized in variance.

•limit_to_mask (bool, optional) – If True, the normalization is only per-
formed wrt the masked pixels. If False, the normalization is wrt all pixels,
regardless of their masking value.

normalize_std_inplace(mode=’all’, limit_to_mask=True)
Normalizes this image such that it’s pixel values have zero mean and unit variance.

Parameters
•mode ({all, per_channel}, optional) – If all, the normalization is over
all channels. If per_channel, each channel individually is mean centred and
normalized in variance.

•limit_to_mask (bool, optional) – If True, the normalization is only per-
formed wrt the masked pixels. If False, the normalization is wrt all pixels,
regardless of their masking value.

pyramid(n_levels=3, downscale=2)
Return a rescaled pyramid of this image. The first image of the pyramid will be the original, unmodified,
image, and counts as level 1.

Parameters
•n_levels (int, optional) – Total number of levels in the pyramid, including the
original unmodified image

•downscale (float, optional) – Downscale factor.
Yieldsimage_pyramid (generator) – Generator yielding pyramid layers as Image objects.

rescale(scale, round=’ceil’, order=1)
Return a copy of this image, rescaled by a given factor. Landmarks are rescaled appropriately.

Parameters
•scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply
to each dimension. If a single float, the scale will be applied uniformly across
each dimension.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

66 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.
RaisesValueError – If less scales than dimensions are provided. If any scale is less than

or equal to 0.

rescale_landmarks_to_diagonal_range(diagonal_range, group=None, label=None,
round=’ceil’, order=1)

Return a copy of this image, rescaled so that the diagonal_range of the bounding box containing its
landmarks matches the specified diagonal_range range.

Parameters
•diagonal_range ((n_dims,) ndarray) – The diagonal_range range that
we want the landmarks of the returned image to have.

•group (str, optional) – The key of the landmark set that should be used. If
None and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

rescale_pixels(minimum, maximum, per_channel=True)
A copy of this image with pixels linearly rescaled to fit a range.

Note that the only pixels that will considered and rescaled are those that feature in the vectorized form
of this image. If you want to use this routine on all the pixels in a MaskedImage, consider using
as_unmasked() prior to this call.

Parameters
•minimum (float) – The minimal value of the rescaled pixels
•maximum (float) – The maximal value of the rescaled pixels
•per_channel (boolean, optional) – If True, each channel will be rescaled
independently. If False, the scaling will be over all channels.

Returnsrescaled_image (type(self)) – A copy of this image with pixels linearly
rescaled to fit in the range provided.

rescale_to_diagonal(diagonal, round=’ceil’)
Return a copy of this image, rescaled so that the it’s diagonal is a new size.

Parameters
•diagonal (int) – The diagonal size of the new image.

2.3. menpo.image 67

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

rescale_to_reference_shape(reference_shape, group=None, label=None, round=’ceil’, or-
der=1)

Return a copy of this image, rescaled so that the scale of a particular group of landmarks matches the
scale of the passed reference landmarks.

Parameters
•reference_shape (PointCloud) – The reference shape to which the land-
marks scale will be matched against.

•group (str, optional) – The key of the landmark set that should be used. If
None, and if there is only one set of landmarks, this set will be used.

•label (str, optional) – The label of of the landmark manager that you wish to
use. If None all landmarks in the group are used.

•round ({ceil, floor, round}, optional) – Rounding function to be ap-
plied to floating point shapes.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsrescaled_image (type(self)) – A copy of this image, rescaled.

resize(shape, order=1)
Return a copy of this image, resized to a particular shape. All image information (landmarks, and mask
in the case of MaskedImage) is resized appropriately.

Parameters
•shape (tuple) – The new shape to resize to.
•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

Returnsresized_image (type(self)) – A copy of this image, resized.
RaisesValueError – If the number of dimensions of the new shape does not match the

number of dimensions of the image.

rolled_channels()
Returns the pixels matrix, with the channels rolled to the back axis. This may be required for interacting
with external code bases that require images to have channels as the last axis, rather than the menpo
convention of channels as the first axis.

Returnsrolled_channels (ndarray) – Pixels with channels as the back (last) axis.

rotate_ccw_about_centre(theta, degrees=True, cval=0.0)
Return a rotation of this image clockwise about its centre.

Parameters

68 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•theta (float) – The angle of rotation about the origin.
•degrees (bool, optional) – If True, theta is interpreted as a degree. If False,
theta is interpreted as radians.

•cval (float, optional) – The value to be set outside the rotated image bound-
aries.

Returnsrotated_image (type(self)) – The rotated image.

sample(points_to_sample, order=1, mode=’constant’, cval=0.0)
Sample this image at the given sub-pixel accurate points. The input PointCloud should have the same
number of dimensions as the image e.g. a 2D PointCloud for a 2D multi-channel image. A numpy array
will be returned the has the values for every given point across each channel of the image.

If the points to sample are outside of the mask (fall on a False value in the mask), an exception is
raised. This exception contains the information of which points were outside of the mask (False) and
also returns the sampled points.

Parameters
•points_to_sample (PointCloud) – Array of points to sample from the
image. Should be (n_points, n_dims)

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]. See warp_to_shape for more information.

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

Returnssampled_pixels ((n_points, n_channels) ndarray) – The interpolated values taken
across every channel of the image.

RaisesOutOfMaskSampleError – One of the points to sample was outside of the valid
area of the mask (False in the mask). This exception contains both the mask of valid
sample points, as well as the sampled points themselves, in case you want to ignore
the error.

set_boundary_pixels(value=0.0, n_pixels=1)
Returns a copy of this MaskedImage for which n pixels along the its mask boundary have been set to a
particular value. This is useful in situations where there is absent data in the image which can cause, for
example, erroneous computations of gradient or features.

Parameters
•value (float or (n_channels, 1) ndarray) –
•n_pixels (int, optional) – The number of pixels along the mask boundary that
will be set to 0.

ReturnsMaskedImage – The copy of the image for which the n pixels along its mask
boundary have been set to a particular value.

set_masked_pixels(pixels, copy=True)
Update the masked pixels only to new values.

Parameters
•pixels (ndarray) – The new pixels to set.
•copy (bool, optional) – If False a copy will be avoided in assignment. This
can only happen if the mask is all True - in all other cases it will raise a warning.

RaisesWarning – If the copy=False flag cannot be honored.

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualizes the image object using the visualize_images widget. Currently only supports the ren-
dering of 2D images.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the images will have the form of plus/minus buttons or a slider.

2.3. menpo.image 69

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

warp_to_mask(template_mask, transform, warp_landmarks=False, order=1, mode=’constant’,
cval=0.0, batch_size=None)

Warps this image into a different reference space.
Parameters

•template_mask (BooleanImage) – Defines the shape of the result, and
what pixels should be sampled.

•transform (Transform) – Transform from the template space back to
this image. Defines, for each pixel location on the template, which pixel location
should be sampled from on this image.

•warp_landmarks (bool, optional) – If True, result will have the same land-
mark dictionary as self, but with each landmark updated to the warped posi-
tion.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

•batch_size (int or None, optional) – This should only be considered for large
images. Setting this value can cause warping to become much slower, particular
for cached warps such as Piecewise Affine. This size indicates how many points
in the image should be warped at a time, which keeps memory usage low. If
None, no batching is used and all points are warped at once.

Returnswarped_image (type(self)) – A copy of this image, warped.

warp_to_shape(template_shape, transform, warp_landmarks=False, order=1, mode=’constant’,
cval=0.0, batch_size=None)

Return a copy of this MaskedImage warped into a different reference space.
Parameters

•template_shape (tuple or ndarray) – Defines the shape of the result, and
what pixel indices should be sampled (all of them).

•transform (Transform) – Transform from the template_shape space
back to this image. Defines, for each index on template_shape, which pixel
location should be sampled from on this image.

•warp_landmarks (bool, optional) – If True, result will have the same land-
mark dictionary as self, but with each landmark updated to the warped position.

•order (int, optional) – The order of interpolation. The order has to be in the
range [0,5]

70 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Order Interpolation
0 Nearest-neighbor
1 Bi-linear (default)
2 Bi-quadratic
3 Bi-cubic
4 Bi-quartic
5 Bi-quintic

•mode ({constant, nearest, reflect, wrap}, optional) – Points
outside the boundaries of the input are filled according to the given mode.

•cval (float, optional) – Used in conjunction with mode constant, the value
outside the image boundaries.

•batch_size (int or None, optional) – This should only be considered for large
images. Setting this value can cause warping to become much slower, particular
for cached warps such as Piecewise Affine. This size indicates how many points
in the image should be warped at a time, which keeps memory usage low. If
None, no batching is used and all points are warped at once.

Returnswarped_image (MaskedImage) – A copy of this image, warped.

zoom(scale, cval=0.0)
Zoom this image about the centre point. scale values greater than 1.0 denote zooming in to the image
and values less than 1.0 denote zooming out of the image. The size of the image will not change, if you
wish to scale an image, please see rescale().

Parameters
•scale (float) – scale > 1.0 denotes zooming in. Thus the image will ap-
pear larger and areas at the edge of the zoom will be ‘cropped’ out. scale <
1.0 denotes zooming out. The image will be padded by the value of cval.

•cval (float, optional) – The value to be set outside the rotated image bound-
aries.

has_landmarks
Whether the object has landmarks.

Typebool

has_landmarks_outside_bounds
Indicates whether there are landmarks located outside the image bounds.

Typebool

height
The height of the image.

This is the height according to image semantics, and is thus the size of the second to last dimension.
Typeint

landmarks
The landmarks object.

TypeLandmarkManager

n_channels
The number of channels on each pixel in the image.

Typeint

n_dims
The number of dimensions in the image. The minimum possible n_dims is 2.

Typeint

n_elements
Total number of data points in the image (prod(shape), n_channels)

Typeint

2.3. menpo.image 71

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_pixels
Total number of pixels in the image (prod(shape),)

Typeint

shape
The shape of the image (with n_channel values at each point).

Typetuple

width
The width of the image.

This is the width according to image semantics, and is thus the size of the last dimension.
Typeint

2.3.2 Exceptions

ImageBoundaryError

class menpo.image.ImageBoundaryError(requested_min, requested_max, snapped_min,
snapped_max)

Bases: ValueError

Exception that is thrown when an attempt is made to crop an image beyond the edge of it’s boundary.
Parameters

•requested_min ((d,) ndarray) – The per-dimension minimum index requested
for the crop

•requested_max ((d,) ndarray) – The per-dimension maximum index requested
for the crop

•snapped_min ((d,) ndarray) – The per-dimension minimum index that could be
used if the crop was constrained to the image boundaries.

•requested_max – The per-dimension maximum index that could be used if the crop
was constrained to the image boundaries.

2.4 menpo.feature

2.4.1 Features

no_op

menpo.feature.no_op(image, *args, **kwargs)
A no operation feature - does nothing but return a copy of the pixels passed in.

Parameterspixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels. This
means an N-dimensional image is represented by an N+1 dimensional array.

Returnspixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – A copy of the image
that was passed in.

72 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

gradient

menpo.feature.gradient(image, *args, **kwargs)
Calculates the gradient of an input image. The image is assumed to have channel information on the first axis.
In the case of multiple channels, it returns the gradient over each axis over each channel as the first axis.

The gradient is computed using second order accurate central differences in the interior and first order accurate
one-side (forward or backwards) differences at the boundaries.

Parameterspixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array where the first dimension is interpreted as channels. This means an
N-dimensional image is represented by an N+1 dimensional array.

Returnsgradient (ndarray) – The gradient over each axis over each channel. Therefore, the first
axis of the gradient of a 2D, single channel image, will have length 2. The first axis of the
gradient of a 2D, 3-channel image, will have length 6, the ordering being I[:, 0, 0]
= [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]. To be clear, all the y-gradients are
returned over each channel, then all the x-gradients.

gaussian_filter

menpo.feature.gaussian_filter(image, *args, **kwargs)
Calculates the convolution of the input image with a multidimensional Gaussian filter.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.
This means an N-dimensional image is represented by an N+1 dimensional array.

•sigma (float or list of float) – The standard deviation for Gaussian kernel. The stan-
dard deviations of the Gaussian filter are given for each axis as a list, or as a single
float, in which case it is equal for all axes.

Returnsoutput_image (Image or subclass or (X, Y, ..., Z, C) ndarray) – The filtered
image has the same type and size as the input pixels.

igo

menpo.feature.igo(image, *args, **kwargs)
Extracts Image Gradient Orientation (IGO) features from the input image. The output image has N * C number
of channels, where N is the number of channels of the original image and C = 2 or C = 4 depending on
whether double angles are used.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.
This means an N-dimensional image is represented by an N+1 dimensional array.

•double_angles (bool, optional) – Assume that phi represents the gradient orien-
tations.

If this flag is False, the features image is the concatenation of cos(phi) and
sin(phi), thus 2 channels.

If True, the features image is the concatenation of cos(phi), sin(phi), cos(2
* phi), sin(2 * phi), thus 4 channels.

•verbose (bool, optional) – Flag to print IGO related information.
Returnsigo (Image or subclass or (X, Y, ..., Z, C) ndarray) – The IGO features image.

It has the same type and shape as the input pixels. The output number of channels depends
on the double_angles flag.

RaisesValueError – Image has to be 2D in order to extract IGOs.

2.4. menpo.feature 73

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

References

es

menpo.feature.es(image, *args, **kwargs)
Extracts Edge Structure (ES) features from the input image. The output image has N * C number of channels,
where N is the number of channels of the original image and C = 2.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either an image
object itself or an array where the first axis represents the number of channels. This
means an N-dimensional image is represented by an N+1 dimensional array.

•verbose (bool, optional) – Flag to print ES related information.
Returnses (Image or subclass or (X, Y, ..., Z, C) ndarray) – The ES features image. It

has the same type and shape as the input pixels. The output number of channels is C =
2.

RaisesValueError – Image has to be 2D in order to extract ES features.

References

lbp

menpo.feature.lbp(image, *args, **kwargs)
Extracts Local Binary Pattern (LBP) features from the input image. The output image has N * C number of
channels, where N is the number of channels of the original image and C is the number of radius/samples values
combinations that are used in the LBP computation.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.
This means an N-dimensional image is represented by an N+1 dimensional array.

•radius (int or list of int or None, optional) – It defines the radius of the circle (or
circles) at which the sampling points will be extracted. The radius (or radii) values
must be greater than zero. There must be a radius value for each samples value, thus
they both need to have the same length. If None, then [1, 2, 3, 4] is used.

•samples (int or list of int or None, optional) – It defines the number of sampling
points that will be extracted at each circle. The samples value (or values) must be
greater than zero. There must be a samples value for each radius value, thus they both
need to have the same length. If None, then [8, 8, 8, 8] is used.

•mapping_type ({u2, ri, riu2, none}, optional) – It defines the mapping type of
the LBP codes. Select u2 for uniform-2 mapping, ri for rotation-invariant mapping,
riu2 for uniform-2 and rotation-invariant mapping and none to use no mapping and
only the decimal values instead.

•window_step_vertical (float, optional) – Defines the vertical step by which the
window is moved, thus it controls the features density. The metric unit is defined by
window_step_unit.

•window_step_horizontal (float, optional) – Defines the horizontal step by
which the window is moved, thus it controls the features density. The metric unit
is defined by window_step_unit.

•window_step_unit ({pixels, window}, optional) – Defines the metric unit of
the window_step_vertical and window_step_horizontal parameters.

•padding (bool, optional) – If True, the output image is padded with zeros to match
the input image’s size.

74 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•verbose (bool, optional) – Flag to print LBP related information.
•skip_checks (bool, optional) – If True, do not perform any validation of the pa-
rameters.

Returnslbp (Image or subclass or (X, Y, ..., Z, C) ndarray) – The ES features image. It
has the same type and shape as the input pixels. The output number of channels is C =
len(radius) * len(samples).

Raises
•ValueError – Radius and samples must both be either integers or lists
•ValueError – Radius and samples must have the same length
•ValueError – Radius must be > 0
•ValueError – Radii must be > 0
•ValueError – Samples must be > 0
•ValueError – Mapping type must be u2, ri, riu2 or none
•ValueError – Horizontal window step must be > 0
•ValueError – Vertical window step must be > 0
•ValueError – Window step unit must be either pixels or window

References

hog

menpo.feature.hog(image, *args, **kwargs)
Extracts Histograms of Oriented Gradients (HOG) features from the input image.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.
This means an N-dimensional image is represented by an N+1 dimensional array.

•mode ({dense, sparse}, optional) – The sparse case refers to the traditional
usage of HOGs, so predefined parameters values are used.

The sparse case of dalaltriggs algorithm sets window_height =
window_width = block_size and window_step_horizontal =
window_step_vertical = cell_size.

The sparse case of zhuramanan algorithm sets window_height =
window_width = 3 * cell_size and window_step_horizontal
= window_step_vertical = cell_size.

In the dense case, the user can choose values for window_height, window_width,
window_unit, window_step_vertical, window_step_horizontal, window_step_unit and
padding to customize the HOG calculation.

•window_height (float, optional) – Defines the height of the window. The metric
unit is defined by window_unit.

•window_width (float, optional) – Defines the width of the window. The metric unit
is defined by window_unit.

•window_unit ({blocks, pixels}, optional) – Defines the metric unit of the win-
dow_height and window_width parameters.

•window_step_vertical (float, optional) – Defines the vertical step by which the
window is moved, thus it controls the features’ density. The metric unit is defined by
window_step_unit.

•window_step_horizontal (float, optional) – Defines the horizontal step by
which the window is moved, thus it controls the features’ density. The metric unit
is defined by window_step_unit.

•window_step_unit ({pixels, cells}, optional) – Defines the metric unit of
the window_step_vertical and window_step_horizontal parameters.

2.4. menpo.feature 75

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•padding (bool, optional) – If True, the output image is padded with zeros to match
the input image’s size.

•algorithm ({dalaltriggs, zhuramanan}, optional) – Specifies the algo-
rithm used to compute HOGs. dalaltriggs is the implementation of [1] and
zhuramanan is the implementation of [2].

•cell_size (float, optional) – Defines the cell size in pixels. This value is set to both
the width and height of the cell. This option is valid for both algorithms.

•block_size (float, optional) – Defines the block size in cells. This value is set to
both the width and height of the block. This option is valid only for the dalaltriggs
algorithm.

•num_bins (float, optional) – Defines the number of orientation histogram bins. This
option is valid only for the dalaltriggs algorithm.

•signed_gradient (bool, optional) – Flag that defines whether we use signed or
unsigned gradient angles. This option is valid only for the dalaltriggs algorithm.

•l2_norm_clip (float, optional) – Defines the clipping value of the gradients’ L2-
norm. This option is valid only for the dalaltriggs algorithm.

•verbose (bool, optional) – Flag to print HOG related information.
Returnshog (Image or subclass or (X, Y, ..., Z, K) ndarray) – The HOG features image.

It has the same type as the input pixels. The output number of channels in the case of
dalaltriggs is K = num_bins * block_size *block_size and K = 31 in
the case of zhuramanan.

Raises
•ValueError – HOG features mode must be either dense or sparse
•ValueError – Algorithm must be either dalaltriggs or zhuramanan
•ValueError – Number of orientation bins must be > 0
•ValueError – Cell size (in pixels) must be > 0
•ValueError – Block size (in cells) must be > 0
•ValueError – Value for L2-norm clipping must be > 0.0
•ValueError – Window height must be >= block size and <= image height
•ValueError – Window width must be >= block size and <= image width
•ValueError – Window unit must be either pixels or blocks
•ValueError – Horizontal window step must be > 0
•ValueError – Vertical window step must be > 0
•ValueError – Window step unit must be either pixels or cells

References

dsift

daisy

menpo.feature.daisy(image, *args, **kwargs)
Extracts Daisy features from the input image. The output image has N * C number of channels, where N is
the number of channels of the original image and C is the feature channels determined by the input options.
Specifically, C = (rings * histograms + 1) * orientations.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.
This means an N-dimensional image is represented by an N+1 dimensional array.

•step (int, optional) – The sampling step that defines the density of the output image.
•radius (int, optional) – The radius (in pixels) of the outermost ring.
•rings (int, optional) – The number of rings to be used.
•histograms (int, optional) – The number of histograms sampled per ring.

76 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•orientations (int, optional) – The number of orientations (bins) per histogram.
•normalization ([‘l1’, ‘l2’, ‘daisy’, None], optional) – It defines how to normalize
the descriptors If ‘l1’ then L1-normalization is applied at each descriptor. If ‘l2’ then
L2-normalization is applied at each descriptor. If ‘daisy’ then L2-normalization is
applied at individual histograms. If None then no normalization is employed.

•sigmas (list of float or None, optional) – Standard deviation of spatial Gaussian
smoothing for the centre histogram and for each ring of histograms. The list of sigmas
should be sorted from the centre and out. I.e. the first sigma value defines the spatial
smoothing of the centre histogram and the last sigma value defines the spatial smooth-
ing of the outermost ring. Specifying sigmas overrides the rings parameter by setting
rings = len(sigmas) - 1.

•ring_radii (list of float or None, optional) – Radius (in pixels) for each ring.
Specifying ring_radii overrides the rings and radius parameters by setting rings =
len(ring_radii) and radius = ring_radii[-1].

If both sigmas and ring_radii are given, they must satisfy

len(ring_radii) == len(sigmas) + 1

since no radius is needed for the centre histogram.
•verbose (bool) – Flag to print Daisy related information.

Returnsdaisy (Image or subclass or (X, Y, ..., Z, C) ndarray) – The ES features image.
It has the same type and shape as the input pixels. The output number of channels is C =
(rings * histograms + 1) * orientations.

Raises
•ValueError – len(sigmas)-1 != len(ring_radii)
•ValueError – Invalid normalization method.

References

2.4.2 Visualization

glyph

menpo.feature.visualize.glyph(image, *args, **kwargs)
Create the glyph of a feature image that can be used for visualization. If pixels have negative values, the
use_negative flag controls whether there will be created a glyph of both positive and negative values concate-
nated the one on top of the other.

Parameters
•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.

•vectors_block_size (int) – Defines the size of each block with vectors of the
glyph image.

•use_negative (bool) – Defines whether to take into account possible negative val-
ues of feature_data.

•channels (list of int or None) – The list of channels to be used. If None, then all
the channels are employed.

sum_channels

menpo.feature.visualize.sum_channels(image, *args, **kwargs)
Create the sum of the channels of an image that can be used for visualization.

Parameters

2.4. menpo.feature 77

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image
object itself or an array with the pixels. The first dimension is interpreted as channels.

•channels (list of int or None) – The list of channels to be used. If None, then all
the channels are employed.

2.4.3 Widget

features_selection_widget

menpo.feature.features_selection_widget()
Widget that allows for easy selection of a features function and its options. It also has a ‘preview’ tab for visual
inspection. It returns a list of length 1 with the selected features function closure.

Returns

features_function (list of length 1) – The function closure of the features function using
functools.partial. So the function can be called as:

features_image = features_function[0](image)

Examples
The widget can be invoked as

from menpo.feature import features_selection_widget
features_fun = features_selection_widget()

And the returned function can be used as

import menpo.io as mio
image = mio.import_builtin_asset.lenna_png()
features_image = features_fun[0](image)

2.5 menpo.landmark

2.5.1 Abstract Classes

Landmarkable

class menpo.landmark.Landmarkable
Bases: Copyable

Abstract interface for object that can have landmarks attached to them. Landmarkable objects have a public
dictionary of landmarks which are managed by a LandmarkManager. This means that different sets of
landmarks can be attached to the same object. Landmarks can be N-dimensional and are expected to be some
subclass of PointCloud. These landmarks are wrapped inside a LandmarkGroup object that performs
useful tasks like label filtering and viewing.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

78 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

n_dims()
The total number of dimensions.

Typeint

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

TypeLandmarkManager

n_landmark_groups
The number of landmark groups on this object.

Typeint

LabellingError

class menpo.landmark.LabellingError
Bases: Exception

Raised when labelling a landmark manager and the set of landmarks does not match the expected semantic
layout.

2.5.2 Landmarks & Labeller

LandmarkManager

class menpo.landmark.LandmarkManager
Bases: MutableMapping, Transformable

Store for LandmarkGroup instances associated with an object

Every Landmarkable instance has an instance of this class available at the .landmarks property.
It is through this class that all access to landmarks attached to instances is handled. In general the
LandmarkManager provides a dictionary-like interface for storing landmarks. LandmarkGroup instances
are stored under string keys - these keys are refereed to as the group name. A special case is where there is a
single unambiguous LandmarkGroup attached to a LandmarkManager - in this case None can be used as
a key to access the sole group.

Note that all landmarks stored on a Landmarkable in it’s attached LandmarkManager are automatically
transformed and copied with their parent object.

clear()→ None. Remove all items from D.

copy()
Generate an efficient copy of this LandmarkManager.

Returnstype(self) – A copy of this object

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ list of D’s (key, value) pairs, as 2-tuples

items_matching(glob_pattern)
Yield only items (group, LandmarkGroup) where the key matches a given glob.

2.5. menpo.landmark 79

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersglob_pattern (str) – A glob pattern e.g. ‘frontal_face_*’
Yieldsitem ((group, LandmarkGroup)) – Tuple of group, LandmarkGroup where the

group matches the glob

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

keys_matching(glob_pattern)
Yield only landmark group names (keys) matching a given glob.

Parametersglob_pattern (str) – A glob pattern e.g. ‘frontal_face_*’
Yieldskeys (group labels that match the glob pattern)

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ list of D’s values

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualizes the landmark manager object using the visualize_landmarks widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the landmark managers will have the form of plus/minus buttons
or a slider.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

group_labels
All the labels for the landmark set.

Typelist of str

has_landmarks
Whether the object has landmarks or not

Typeint

n_dims
The total number of dimensions.

Typeint

n_groups
Total number of labels.

Typeint

80 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

LandmarkGroup

class menpo.landmark.LandmarkGroup(pointcloud, labels_to_masks, copy=True)
Bases: MutableMapping, Copyable, Viewable

An immutable object that holds a PointCloud (or a subclass) and stores labels for each point. These labels
are defined via masks on the PointCloud. For this reason, the PointCloud is considered to be immutable.

The labels to masks must be within an OrderedDict so that semantic ordering can be maintained.
Parameters

•pointcloud (PointCloud) – The pointcloud representing the landmarks.
•labels_to_masks (ordereddict {str -> bool ndarray}) – For each label, the mask
that specifies the indices in to the pointcloud that belong to the label.

•copy (bool, optional) – If True, a copy of the PointCloud is stored on the group.
Raises

•ValueError – If dict passed instead of OrderedDict
•ValueError – If no set of label masks is passed.
•ValueError – If any of the label masks differs in size to the pointcloud.
•ValueError – If there exists any point in the pointcloud that is not covered by a
label.

clear()→ None. Remove all items from D.

copy()
Generate an efficient copy of this LandmarkGroup.

Returnstype(self) – A copy of this object

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

has_nan_values()
Tests if the LandmarkGroup contains nan values or not. This is particularly useful for annotations with
unknown values or non-visible landmarks that have been mapped to nan values.

Returnshas_nan_values (bool) – If the LandmarkGroup contains nan values.

classmethod init_with_all_label(pointcloud, copy=True)
Static constructor to create a LandmarkGroup with a single default ‘all’ label that covers all points.

Parameters
•pointcloud (PointCloud) – The pointcloud representing the landmarks.
•copy (boolean, optional) – If True, a copy of the PointCloud is stored on
the group.

Returnslmark_group (LandmarkGroup) – Landmark group wrapping the given point-
cloud with a single label called ‘all’ that is True for all points.

items()→ list of D’s (key, value) pairs, as 2-tuples

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

2.5. menpo.landmark 81

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

tojson()
Convert this LandmarkGroup to a dictionary JSON representation.

Returnsjson (dict) – Dictionary conforming to the LJSON v2 specification.

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ list of D’s values

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualizes the landmark group object using the visualize_landmarkgroups widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the landmark managers will have the form of plus/minus buttons
or a slider.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

with_labels(labels=None)
A new landmark group that contains only the certain labels

Parameterslabels (str or list of str, optional) – Labels that should be kept in the returned
landmark group. If None is passed, and if there is only one label on this group, the
label will be substituted automatically.

Returnslandmark_group (LandmarkGroup) – A new landmark group with the same
group label but containing only the given label.

without_labels(labels)
A new landmark group that excludes certain labels label.

Parameterslabels (str or list of str) – Labels that should be excluded in the returned
landmark group.

Returnslandmark_group (LandmarkGroup) – A new landmark group with the same
group label but containing all labels except the given label.

labels
The list of labels that belong to this group.

Typelist of str

lms
The pointcloud representing all the landmarks in the group.

TypePointCloud

n_dims
The dimensionality of these landmarks.

Typeint

n_labels
Number of labels in the group.

Typeint

n_landmarks
The total number of landmarks in the group.

Typeint

82 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

labeller

menpo.landmark.labeller(landmarkable, group, label_func)
Re-label an existing landmark group on a Landmarkable object with a new label set.

Parameters
•landmarkable (Landmarkable) – Landmarkable that will have it’s
LandmarkManager augmented with a new LandmarkGroup

•group (str) – The group label of the existing landmark group that should be re-
labelled. A copy of this group will be attached to it’s landmark manager with new
labels. The group label of this new group and the labels it will have is determined by
label_func

•label_func (func -> (str, LandmarkGroup)) – A labelling function taken from this
module, Takes as input a LandmarkGroup and returns a tuple of (new group label,
new LandmarkGroup with semantic labels applied).

Returnslandmarkable (Landmarkable) – Augmented landmarkable (this is just for conve-
nience, the object will actually be modified in place)

2.5.3 Face Labels

ibug_face_49

menpo.landmark.ibug_face_49(landmark_group)
Apply the ibug’s “standard” 49 point semantic labels (based on the original semantic labels of multiPIE but
removing the annotations corresponding to the jaw region and the 2 describing the inner mouth corners) to the
landmark group.

The group label will be ibug_face_49.

The semantic labels applied are as follows:
•left_eyebrow
•right_eyebrow
•nose
•left_eye
•right_eye
•mouth

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_face_49
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 68 points

References

ibug_face_51

menpo.landmark.ibug_face_51(landmark_group)
Apply the ibug’s “standard” 51 point semantic labels (based on the original semantic labels of multiPIE but
removing the annotations corresponding to the jaw region) to the landmark group.

The group label will be ibug_face_51.

The semantic labels applied are as follows:

2.5. menpo.landmark 83

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•left_eyebrow
•right_eyebrow
•nose
•left_eye
•right_eye
•mouth

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_face_51
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 68 points

References

ibug_face_66

menpo.landmark.ibug_face_66(landmark_group)
Apply the ibug’s “standard” 66 point semantic labels (based on the original semantic labels of multiPIE but
ignoring the 2 points describing the inner mouth corners) to the landmark group.

The group label will be ibug_face_66.

The semantic labels applied are as follows:
•jaw
•left_eyebrow
•right_eyebrow
•nose
•left_eye
•right_eye
•mouth

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_face_66
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 68 points

References

ibug_face_68

menpo.landmark.ibug_face_68(landmark_group)
Apply the ibug’s “standard” 68 point semantic labels (based on the original semantic labels of multiPIE) to the
landmark group.

The group label will be ibug_face_68.

The semantic labels applied are as follows:
•jaw
•left_eyebrow
•right_eyebrow

84 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•nose
•left_eye
•right_eye
•mouth

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_face_68
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 68 points

References

ibug_face_68_trimesh

menpo.landmark.ibug_face_68_trimesh(landmark_group)
Apply the ibug’s “standard” 68 point triangulation to the landmarks in the given landmark group.

The group label will be ibug_face_68_trimesh.

The semantic labels applied are as follows:
•tri

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_face_68_trimesh
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 68 points

References

ibug_face_65_closed_mouth

menpo.landmark.ibug_face_65_closed_mouth(landmark_group)
Apply the ibug’s “standard” 68 point semantic labels (based on the original semantic labels of multiPIE) to
the landmarks in the given landmark group - but ignore the 3 points that are coincident for a closed mouth.
Therefore, there only 65 points are returned.

The group label will be ibug_face_65_closed_mouth.

The semantic labels applied are as follows:
•jaw
•left_eyebrow
•right_eyebrow
•nose
•left_eye
•right_eye
•mouth

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_face_65_closed_mouth

2.5. menpo.landmark 85

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•landmark_group (LandmarkGroup) – New landmark group.
Raiseserror (LabellingError) – If the given landmark group contains less than 68 points

References

imm_face

menpo.landmark.imm_face(landmark_group)
Apply the 58 point semantic labels from the IMM dataset to the landmarks in the given landmark group.

The group label will be imm_face.

The semantic labels applied are as follows:
•jaw
•left_eye
•right_eye
•left_eyebrow
•right_eyebrow
•mouth
•nose

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: imm_face
•landmark_group (LandmarkGroup) – New landmark group

Raiseserror (LabellingError) – If the given landmark group contains less than 58 points

References

lfpw_face

menpo.landmark.lfpw_face(landmark_group)
Apply the 29 point semantic labels from the LFPW dataset to the landmarks in the given landmark group.

The group label will be lfpw_face.

The semantic labels applied are as follows:
•chin
•left_eye
•right_eye
•left_eyebrow
•right_eyebrow
•mouth
•nose

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: lfpw_face
•landmark_group (LandmarkGroup) – New landmark group

Raiseserror (LabellingError) – If the given landmark group contains less than 29 points

References

86 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

bu3dfe_83

menpo.landmark.bu3dfe_83(landmark_group)
Apply the BU-3DFE (Binghamton University 3D Facial Expression) Database 83 point facial annotation markup
to this landmark group.

The group label will be bu3dfe_83.

The semantic labels applied are as follows:
•right_eye
•left_eye
•right_eyebrow
•left_eyebrow
•right_nose
•left_nose
•nostrils
•outer_mouth
•inner_mouth
•jaw

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: bu3dfe_83
•landmark_group (LandmarkGroup) – New landmark group.

Raisesclass:menpo.landmark.exceptions.LabellingError – If the given landmark group contains
less than 83 points

References

2.5.4 Eyes Labels

ibug_open_eye

menpo.landmark.ibug_open_eye(landmark_group)
Apply the ibug’s “standard” open eye semantic labels to the landmarks in the given landmark group.

The group label will be ibug_open_eye.

The semantic labels applied are as follows:
•upper_eyelid
•lower_eyelid
•iris
•pupil
•sclera

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_open_eye
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 38 points

2.5. menpo.landmark 87

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

ibug_open_eye_trimesh

menpo.landmark.ibug_open_eye_trimesh(landmark_group)
Apply the ibug’s “standard” open eye semantic labels to the landmarks in the given landmark group.

The group label will be ibug_open_eye_trimesh.

The semantic labels applied are as follows:
•tri

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_open_eye_trimesh
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 38 points

ibug_close_eye_trimesh

menpo.landmark.ibug_close_eye_trimesh(landmark_group)
Apply the ibug’s “standard” close eye semantic labels to the landmarks in the given landmark group.

The group label will be ibug_close_eye_trimesh.

The semantic labels applied are as follows:
•tri

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_close_eye_trimesh
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 38 points

ibug_close_eye_points

menpo.landmark.ibug_close_eye_points(landmark_group)
Apply the ibug’s “standard” close eye semantic labels to the landmarks in the given landmark group.

The group label will be ibug_close_eye.

The semantic labels applied are as follows:
•upper_eyelid
•lower_eyelid

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_close_eye
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 17 points

88 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

2.5.5 Hands Labels

ibug_hand

menpo.landmark.ibug_hand(landmark_group)
Apply the ibug’s “standard” 39 point semantic labels to the landmark group.

The group label will be ibug_hand.

The semantic labels applied are as follows:
•thumb
•index
•middle
•ring
•pinky
•palm

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_hand
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 39 points

2.5.6 Pose Labels

stickmen_pose

menpo.landmark.stickmen_pose(landmark_group)
Apply the stickmen “standard” 12 point semantic labels to the landmark group.

The group label will be stickmen_pose.

The semantic labels applied are as follows:
•torso
•right_upper_arm
•left_upper_arm
•right_lower_arm
•left_lower_arm
•head

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: stickmen_pose
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 12 points

References

flic_pose

menpo.landmark.flic_pose(landmark_group)
Apply the flic “standard” 11 point semantic labels to the landmark group.

2.5. menpo.landmark 89

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

The group label will be flic_pose.

The semantic labels applied are as follows:
•left_arm
•right_arm
•hips
•face

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: flic_pose
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 11 points

References

lsp_pose

menpo.landmark.lsp_pose(landmark_group)
Apply the lsp “standard” 14 point semantic labels to the landmark group.

The group label will be lsp_pose.

The semantic labels applied are as follows:
•left_leg
•right_leg
•left_arm
•right_arm
•head

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: lsp_pose
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 14 points

References

2.5.7 Car Labels

streetscene_car_view_0

menpo.landmark.streetscene_car_view_0(landmark_group)
Apply the 8 point semantic labels of the view 0 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_0.

The semantic labels applied are as follows:
•front
•bonnet
•windshield

90 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: streetscene_car_view_0
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

streetscene_car_view_1

menpo.landmark.streetscene_car_view_1(landmark_group)
Apply the 14 point semantic labels of the view 1 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_1.

The semantic labels applied are as follows:
•front
•bonnet
•windshield
•left_side

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: streetscene_car_view_1
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

streetscene_car_view_2

menpo.landmark.streetscene_car_view_2(landmark_group)
Apply the 10 point semantic labels of the view 2 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_2.

The semantic labels applied are as follows:
•left_side

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ‘streetscene_car_view_2’
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

2.5. menpo.landmark 91

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

streetscene_car_view_3

menpo.landmark.streetscene_car_view_3(landmark_group)
Apply the 14 point semantic labels of the view 3 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_2.

The semantic labels applied are as follows:
•left_side
•rear windshield
•trunk
•rear

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: streetscene_car_view_3
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

streetscene_car_view_4

menpo.landmark.streetscene_car_view_4(landmark_group)
Apply the 14 point semantic labels of the view 4 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_4.

The semantic labels applied are as follows:
•front
•bonnet
•windshield
•right_side

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ‘streetscene_car_view_4’
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

streetscene_car_view_5

menpo.landmark.streetscene_car_view_5(landmark_group)
Apply the 10 point semantic labels of the view 5 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_5.

The semantic labels applied are as follows:
•right_side

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

92 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returns
•group (str) – The group label: streetscene_car_view_5
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

streetscene_car_view_6

menpo.landmark.streetscene_car_view_6(landmark_group)
Apply the 14 point semantic labels of the view 6 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_6.

The semantic labels applied are as follows:
•right_side
•rear_windshield
•trunk
•rear

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: streetscene_car_view_3
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

streetscene_car_view_7

menpo.landmark.streetscene_car_view_7(landmark_group)
Apply the 8 point semantic labels of the view 0 of the MIT Street Scene Car dataset to the landmark group.

The group label will be streetscene_car_view_7.

The semantic labels applied are as follows:
•rear_windshield
•trunk
•rear

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: streetscene_car_view_7
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 20 points

References

2.5. menpo.landmark 93

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

2.5.8 Tongue Labels

ibug_tongue

menpo.landmark.ibug_tongue(landmark_group)
Apply the ibug’s “standard” tongue semantic labels to the landmarks in the given landmark group.

The group label will be ibug_tongue.

The semantic labels applied are as follows:
•outline
•bisector

Parameterslandmark_group (LandmarkGroup) – The landmark group to apply semantic
labels to.

Returns
•group (str) – The group label: ibug_tongue
•landmark_group (LandmarkGroup) – New landmark group.

Raiseserror (LabellingError) – If the given landmark group contains less than 19 points

2.6 menpo.math

2.6.1 Decomposition

eigenvalue_decomposition

menpo.math.eigenvalue_decomposition(C, eps=1e-10)
Eigenvalue decomposition of a given covariance (or scatter) matrix.

Parameters
•C ((N, N) ndarray) – Covariance/Scatter matrix
•eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues
smaller than the specified eps value, together with their corresponding eigenvectors,
will be automatically discarded. The final limit is computed as

limit = np.max(np.abs(eigenvalues)) * eps

Returns
•pos_eigenvectors ((N, p) ndarray) – The matrix with the eigenvectors correspond-
ing to positive eigenvalues.

•pos_eigenvalues ((p,) ndarray) – The array of positive eigenvalues.

ipca

menpo.math.ipca(B, U_a, l_a, n_a, m_a=None, f=1.0, eps=1e-10)
Perform Incremental PCA on the eigenvectors U_a, eigenvalues l_a and mean vector m_a (if present) given a
new data matrix B.

Parameters
•B ((n_samples, n_dims) ndarray) – New data matrix.
•U_a ((n_components, n_dims) ndarray) – Eigenvectors to be updated.
•l_a ((n_components) ndarray) – Eigenvalues to be updated.
•n_a (int) – Total number of samples used to produce U_a, s_a and m_a.
•m_a ((n_dims,) ndarray, optional) – Mean to be updated. If None or (n_dims,)
ndarray filled with 0s the data matrix will not be centred.

94 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•f ([0, 1] float, optional) – Forgetting factor that weights the relative contribution of
new samples vs old samples. If 1.0, all samples are weighted equally and, hence, the
results is the exact same as performing batch PCA on the concatenated list of old and
new simples. If <1.0, more emphasis is put on the new samples. See [1] for details.

•eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues
smaller than the specified eps value, together with their corresponding eigenvectors,
will be automatically discarded.

Returns
•U (eigenvectors) ((n_components, n_dims) ndarray) – Updated eigenvectors.
•s (eigenvalues) ((n_components,) ndarray) – Updated positive eigenvalues.
•m (mean vector) ((n_dims,) ndarray) – Updated mean.

References

pca

menpo.math.pca(X, centre=True, inplace=False, eps=1e-10)
Apply Principal Component Analysis (PCA) on the data matrix X. In the case where the data matrix is very large,
it is advisable to set inplace = True. However, note this destructively edits the data matrix by subtracting
the mean inplace.

Parameters
•X ((n_samples, n_dims) ndarray) – Data matrix.
•centre (bool, optional) – Whether to centre the data matrix. If False, zero will be
subtracted.

•inplace (bool, optional) – Whether to do the mean subtracting inplace or not. This
is crucial if the data matrix is greater than half the available memory size.

•eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues
smaller than the specified eps value, together with their corresponding eigenvectors,
will be automatically discarded.

Returns
•U (eigenvectors) ((‘‘(n_components, n_dims))‘‘ ndarray) – Eigenvectors of
the data matrix.

•l (eigenvalues) ((n_components,) ndarray) – Positive eigenvalues of the data ma-
trix.

•m (mean vector) ((n_dimensions,) ndarray) – Mean that was subtracted from
the data matrix.

2.6.2 Linear Algebra

dot_inplace_right

menpo.math.dot_inplace_right(a, b, block_size=1000)
Inplace dot product for memory efficiency. It computes a * b = c where b will be replaced inplace with c.

Parameters
•a ((n_small, k) ndarray, n_small <= k) – The first array to dot - assumed to be
small. n_small must be smaller than k so the result can be stored within the memory
space of b.

•b ((k, n_big) ndarray) – Second array to dot - assumed to be large. Will be dam-
aged by this function call as it is used to store the output inplace.

•block_size (int, optional) – The size of the block of b that a will be dotted against
in each iteration. larger block sizes increase the time performance of the dot product at
the cost of a higher memory overhead for the operation.

2.6. menpo.math 95

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsc ((n_small, n_big) ndarray) – The output of the operation. Exactly the same as a
memory view onto b (b[:n_small]) as b is modified inplace to store the result.

dot_inplace_left

menpo.math.dot_inplace_left(a, b, block_size=1000)
Inplace dot product for memory efficiency. It computes a * b = c, where a will be replaced inplace with c.

Parameters
•a ((n_big, k) ndarray) – First array to dot - assumed to be large. Will be damaged
by this function call as it is used to store the output inplace.

•b ((k, n_small) ndarray, n_small <= k) – The second array to dot - assumed
to be small. n_small must be smaller than k so the result can be stored within the
memory space of a.

•block_size (int, optional) – The size of the block of a that will be dotted against b
in each iteration. larger block sizes increase the time performance of the dot product at
the cost of a higher memory overhead for the operation.

Returnsc ((n_big, n_small) ndarray) – The output of the operation. Exactly the same as a
memory view onto a (a[:, :n_small]) as a is modified inplace to store the result.

as_matrix

menpo.math.as_matrix(vectorizables, length=None, return_template=False, verbose=False)
Create a matrix from a list/generator of Vectorizable objects. All the objects in the list must be the same
size when vectorized.

Consider using a generator if the matrix you are creating is large and passing the length of the generator explic-
itly.

Parameters
•vectorizables (list or generator if Vectorizable objects) – A list or generator
of objects that supports the vectorizable interface

•length (int, optional) – Length of the vectorizable list. Useful if you are passing a
generator with a known length.

•verbose (bool, optional) – If True, will print the progress of building the matrix.
•return_template (bool, optional) – If True, will return the first element of the
list/generator, which was used as the template. Useful if you need to map back from
the matrix to a list of vectorizable objects.

Returns
•M ((length, n_features) ndarray) – Every row is an element of the list.
•template (Vectorizable, optional) – If return_template == True, will re-
turn the template used to build the matrix M.

RaisesValueError – vectorizables terminates in fewer than length iterations

from_matrix

menpo.math.from_matrix(matrix, template)
Create a generator from a matrix given a template Vectorizable objects as a template. The from_vector
method will be used to reconstruct each object.

If you want a list, warp the returned value in list().
Parameters

•matrix ((n_items, n_features) ndarray) – A matrix whereby every row represents the
data of a vectorizable object.

96 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•template (Vectorizable) – The template object to use to reconstruct each row
of the matrix with.

Returnsvectorizables (generator of Vectorizable) – Every row of the matrix becomes an ele-
ment of the list.

2.6.3 Convolution

log_gabor

menpo.math.log_gabor(image, **kwargs)
Creates a log-gabor filter bank, including smoothing the images via a low-pass filter at the edges.

To create a 2D filter bank, simply specify the number of phi orientations (orientations in the xy-plane).

To create a 3D filter bank, you must specify both the number of phi (azimuth) and theta (elevation) orientations.

This algorithm is directly derived from work by Peter Kovesi.
Parameters

•image ((M, N, ...) ndarray) – Image to be convolved
•num_scales (int, optional) – Number of wavelet scales.

Default 2D 4
Default 3D 4

•num_phi_orientations (int, optional) – Number of filter orientations in the xy-
plane

Default 2D 6
Default 3D 6

•num_theta_orientations (int, optional) – Only required for 3D. Number of
filter orientations in the z-plane

Default 2D N/A
Default 3D 4

•min_wavelength (int, optional) – Wavelength of smallest scale filter.

Default 2D 3
Default 3D 3

•scaling_constant (int, optional) – Scaling factor between successive filters.

Default 2D 2
Default 3D 2

•center_sigma (float, optional) – Ratio of the standard deviation of the Gaussian
describing the Log Gabor filter’s transfer function in the frequency domain to the filter
centre frequency.

Default 2D 0.65
Default 3D 0.65

•d_phi_sigma (float, optional) – Angular bandwidth in xy-plane

Default 2D 1.3
Default 3D 1.5

•d_theta_sigma (float, optional) – Only required for 3D. Angular bandwidth in
z-plane

Default 2D N/A
Default 3D 1.5

Returns

2.6. menpo.math 97

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•complex_conv ((num_scales, num_orientations, image.shape)
ndarray) – Complex valued convolution results. The real part is the result of convolv-
ing with the even symmetric filter, the imaginary part is the result from convolution
with the odd symmetric filter.

•bandpass ((num_scales, image.shape) ndarray) – Bandpass images corre-
sponding to each scale s

•S ((image.shape,) ndarray) – Convolved image

Examples
Return the magnitude of the convolution over the image at scale s and orientation o

np.abs(complex_conv[s, o, :, :])

Return the phase angles

np.angle(complex_conv[s, o, :, :])

References

2.7 menpo.model

2.7.1 LinearModel

class menpo.model.LinearModel(components)
Bases: Copyable

A Linear Model contains a matrix of vector components, each component vector being made up of features.
Parameterscomponents ((n_components, n_features) ndarray) – The components

array.
component_vector(index)

A particular component of the model, in vectorized form.
Parametersindex (int) – The component that is to be returned.
Returnscomponent_vector ((n_features,) ndarray) – The component vector.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

instance_vector(weights)
Creates a new vector instance of the model by weighting together the components.

Parametersweights ((n_weights,) ndarray or list) – The weightings for the first
n_weights components that should be used.

weights[j] is the linear contribution of the j’th principal component to the instance
vector.

Returnsvector ((n_features,) ndarray) – The instance vector for the weighting pro-
vided.

98 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

instance_vectors(weights)
Creates new vectorized instances of the model using all the components of the linear model.

Parametersweights ((n_vectors, n_weights) ndarray or list of lists) – The
weightings for all components of the linear model. All components will be used to
produce the instance.

weights[i, j] is the linear contribution of the j’th principal component to the i’th
instance vector produced.

RaisesValueError – If n_weights > n_available_components
Returnsvectors ((n_vectors, n_features) ndarray) – The instance vectors for the

weighting provided.

orthonormalize_against_inplace(linear_model)
Enforces that the union of this model’s components and another are both mutually orthonormal.

Both models keep its number of components unchanged or else a value error is raised.
Parameterslinear_model (LinearModel) – A second linear model to orthonormalize

this against.
RaisesValueError – The number of features must be greater or equal than the sum of the

number of components in both linear models ({} < {})

orthonormalize_inplace()
Enforces that this model’s components are orthonormalized, s.t.
component_vector(i).dot(component_vector(j) = dirac_delta.

project_out_vector(vector)
Returns a version of vector where all the basis of the model have been projected out.

Parametersvector ((n_features,) ndarray) – A novel vector.
Returnsprojected_out ((n_features,) ndarray) – A copy of vector with all basis of the

model projected out.

project_out_vectors(vectors)
Returns a version of vectors where all the basis of the model have been projected out.

Parametersvectors ((n_vectors, n_features) ndarray) – A matrix of novel vec-
tors.

Returnsprojected_out ((n_vectors, n_features) ndarray) – A copy of vectors
with all basis of the model projected out.

project_vector(vector)
Projects the vector onto the model, retrieving the optimal linear reconstruction weights.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance.
Returnsweights ((n_components,) ndarray) – A vector of optimal linear weights.

project_vectors(vectors)
Projects each of the vectors onto the model, retrieving the optimal linear reconstruction weights for each
instance.

Parametersvectors ((n_samples, n_features) ndarray) – Array of vectorized
novel instances.

Returnsweights ((n_samples, n_components) ndarray) – The matrix of optimal
linear weights.

reconstruct_vector(vector)
Project a vector onto the linear space and rebuild from the weights found.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance to
project.

Returnsreconstructed ((n_features,) ndarray) – The reconstructed vector.

reconstruct_vectors(vectors)
Projects the vectors onto the linear space and rebuilds vectors from the weights found.

2.7. menpo.model 99

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersvectors ((n_vectors, n_features) ndarray) – A set of vectors to
project.

Returnsreconstructed ((n_vectors, n_features) ndarray) – The reconstructed
vectors.

components
The components matrix of the linear model.

Type(n_available_components, n_features) ndarray

n_components
The number of bases of the model.

Typeint

n_features
The number of elements in each linear component.

Typeint

2.7.2 InstanceLinearModel

class menpo.model.InstanceLinearModel(components)
Bases: LinearModel, InstanceBackedModel

Mixin of LinearModel and InstanceBackedModel objects.
Parameters

•components ((n_components, n_features) ndarray) – The components
array.

•template_instance (Vectorizable) – The template instance.
component(index)

A particular component of the model, in vectorized form.
Parametersindex (int) – The component that is to be returned.
Returnscomponent_vector (type(self.template_instance)) – The component vector.

component_vector(index)
A particular component of the model, in vectorized form.

Parametersindex (int) – The component that is to be returned.
Returnscomponent_vector ((n_features,) ndarray) – The component vector.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

instance(weights)
Creates a new instance of the model using the first len(weights) components.

Parametersweights ((n_weights,) ndarray or list) – weights[i] is the linear con-
tribution of the i’th component to the instance vector.

RaisesValueError – If n_weights > n_components
Returnsinstance (type(self.template_instance)) – An instance of the model.

instance_vector(weights)
Creates a new vector instance of the model by weighting together the components.

Parametersweights ((n_weights,) ndarray or list) – The weightings for the first
n_weights components that should be used.

100 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

weights[j] is the linear contribution of the j’th principal component to the instance
vector.

Returnsvector ((n_features,) ndarray) – The instance vector for the weighting pro-
vided.

instance_vectors(weights)
Creates new vectorized instances of the model using all the components of the linear model.

Parametersweights ((n_vectors, n_weights) ndarray or list of lists) – The
weightings for all components of the linear model. All components will be used to
produce the instance.

weights[i, j] is the linear contribution of the j’th principal component to the i’th
instance vector produced.

RaisesValueError – If n_weights > n_available_components
Returnsvectors ((n_vectors, n_features) ndarray) – The instance vectors for the

weighting provided.

orthonormalize_against_inplace(linear_model)
Enforces that the union of this model’s components and another are both mutually orthonormal.

Both models keep its number of components unchanged or else a value error is raised.
Parameterslinear_model (LinearModel) – A second linear model to orthonormalize

this against.
RaisesValueError – The number of features must be greater or equal than the sum of the

number of components in both linear models ({} < {})

orthonormalize_inplace()
Enforces that this model’s components are orthonormalized, s.t.
component_vector(i).dot(component_vector(j) = dirac_delta.

project(instance)
Projects the instance onto the model, retrieving the optimal linear weightings.

Parametersnovel_instance (Vectorizable) – A novel instance.
Returnsprojected ((n_components,) ndarray) – A vector of optimal linear weightings.

project_out(instance)
Returns a version of instance where all the basis of the model have been projected out.

Parametersinstance (Vectorizable) – A novel instance of Vectorizable.
Returnsprojected_out (self.instance_class) – A copy of instance, with all basis of the model

projected out.

project_out_vector(vector)
Returns a version of vector where all the basis of the model have been projected out.

Parametersvector ((n_features,) ndarray) – A novel vector.
Returnsprojected_out ((n_features,) ndarray) – A copy of vector with all basis of the

model projected out.

project_out_vectors(vectors)
Returns a version of vectors where all the basis of the model have been projected out.

Parametersvectors ((n_vectors, n_features) ndarray) – A matrix of novel vec-
tors.

Returnsprojected_out ((n_vectors, n_features) ndarray) – A copy of vectors
with all basis of the model projected out.

project_vector(vector)
Projects the vector onto the model, retrieving the optimal linear reconstruction weights.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance.
Returnsweights ((n_components,) ndarray) – A vector of optimal linear weights.

2.7. menpo.model 101

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

project_vectors(vectors)
Projects each of the vectors onto the model, retrieving the optimal linear reconstruction weights for each
instance.

Parametersvectors ((n_samples, n_features) ndarray) – Array of vectorized
novel instances.

Returnsweights ((n_samples, n_components) ndarray) – The matrix of optimal
linear weights.

reconstruct(instance)
Projects a instance onto the linear space and rebuilds from the weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.
Parametersinstance (Vectorizable) – A novel instance of Vectorizable.
Returnsreconstructed (self.instance_class) – The reconstructed object.

reconstruct_vector(vector)
Project a vector onto the linear space and rebuild from the weights found.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance to
project.

Returnsreconstructed ((n_features,) ndarray) – The reconstructed vector.

reconstruct_vectors(vectors)
Projects the vectors onto the linear space and rebuilds vectors from the weights found.

Parametersvectors ((n_vectors, n_features) ndarray) – A set of vectors to
project.

Returnsreconstructed ((n_vectors, n_features) ndarray) – The reconstructed
vectors.

components
The components matrix of the linear model.

Type(n_available_components, n_features) ndarray

n_components
The number of bases of the model.

Typeint

n_features
The number of elements in each linear component.

Typeint

2.7.3 MeanLinearModel

class menpo.model.MeanLinearModel(components, mean_vector)
Bases: LinearModel

A Linear Model containing a matrix of vector components, each component vector being made up of features.
The model additionally has a mean component which is handled accordingly when either:

1.A component of the model is selected
2.A projection operation is performed

Parameters
•components ((n_components, n_features) ndarray) – The components
array.

•mean_vector ((n_features,) ndarray) – The mean vector.

102 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

component_vector(index, with_mean=True, scale=1.0)
A particular component of the model, in vectorized form.

Parameters
•index (int) – The component that is to be returned
•with_mean (bool, optional) – If True, the component will be blended with
the mean vector before being returned. If not, the component is returned on it’s
own.

•scale (float, optional) – A scale factor that should be directly applied to the
component. Only valid in the case where with_mean == True.

Returnscomponent_vector ((n_features,) ndarray) – The component vector.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

instance_vector(weights)
Creates a new vector instance of the model by weighting together the components.

Parametersweights ((n_weights,) ndarray or list) – The weightings for the first
n_weights components that should be used.

weights[j] is the linear contribution of the j’th principal component to the instance
vector.

Returnsvector ((n_features,) ndarray) – The instance vector for the weighting pro-
vided.

instance_vectors(weights)
Creates new vectorized instances of the model using all the components of the linear model.

Parametersweights ((n_vectors, n_weights) ndarray or list of lists) – The
weightings for all components of the linear model. All components will be used to
produce the instance.

weights[i, j] is the linear contribution of the j’th principal component to the i’th
instance vector produced.

RaisesValueError – If n_weights > n_available_components
Returnsvectors ((n_vectors, n_features) ndarray) – The instance vectors for the

weighting provided.

orthonormalize_against_inplace(linear_model)
Enforces that the union of this model’s components and another are both mutually orthonormal.

Both models keep its number of components unchanged or else a value error is raised.
Parameterslinear_model (LinearModel) – A second linear model to orthonormalize

this against.
RaisesValueError – The number of features must be greater or equal than the sum of the

number of components in both linear models ({} < {})

orthonormalize_inplace()
Enforces that this model’s components are orthonormalized, s.t.
component_vector(i).dot(component_vector(j) = dirac_delta.

project_out_vector(vector)
Returns a version of vector where all the basis of the model have been projected out.

Parametersvector ((n_features,) ndarray) – A novel vector.

2.7. menpo.model 103

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsprojected_out ((n_features,) ndarray) – A copy of vector with all basis of the
model projected out.

project_out_vectors(vectors)
Returns a version of vectors where all the basis of the model have been projected out.

Parametersvectors ((n_vectors, n_features) ndarray) – A matrix of novel vec-
tors.

Returnsprojected_out ((n_vectors, n_features) ndarray) – A copy of vectors
with all basis of the model projected out.

project_vector(vector)
Projects the vector onto the model, retrieving the optimal linear reconstruction weights.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance.
Returnsweights ((n_components,) ndarray) – A vector of optimal linear weights.

project_vectors(vectors)
Projects each of the vectors onto the model, retrieving the optimal linear reconstruction weights for each
instance.

Parametersvectors ((n_samples, n_features) ndarray) – Array of vectorized
novel instances.

Returnsprojected ((n_samples, n_components) ndarray) – The matrix of optimal
linear weights.

reconstruct_vector(vector)
Project a vector onto the linear space and rebuild from the weights found.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance to
project.

Returnsreconstructed ((n_features,) ndarray) – The reconstructed vector.

reconstruct_vectors(vectors)
Projects the vectors onto the linear space and rebuilds vectors from the weights found.

Parametersvectors ((n_vectors, n_features) ndarray) – A set of vectors to
project.

Returnsreconstructed ((n_vectors, n_features) ndarray) – The reconstructed
vectors.

components
The components matrix of the linear model.

Type(n_available_components, n_features) ndarray

n_components
The number of bases of the model.

Typeint

n_features
The number of elements in each linear component.

Typeint

2.7.4 MeanInstanceLinearModel

class menpo.model.MeanInstanceLinearModel(components, mean_vector, template_instance)
Bases: MeanLinearModel, InstanceBackedModel

Mixin of MeanLinearModel and InstanceBackedModel objects.
Parameters

•components ((n_components, n_features) ndarray) – The components
array.

•mean_vector ((n_features,) ndarray) – The mean vector.

104 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•template_instance (Vectorizable) – The template instance.
component(index, with_mean=True, scale=1.0)

Return a particular component of the linear model.
Parameters

•index (int) – The component that is to be returned
•with_mean (bool, optional) – If True, the component will be blended with
the mean vector before being returned. If not, the component is returned on it’s
own.

•scale (float, optional) – A scale factor that should be applied to the
component. Only valid in the case where with_mean == True. See
component_vector() for how this scale factor is interpreted.

Returnscomponent (type(self.template_instance)) – The requested component.

component_vector(index, with_mean=True, scale=1.0)
A particular component of the model, in vectorized form.

Parameters
•index (int) – The component that is to be returned
•with_mean (bool, optional) – If True, the component will be blended with
the mean vector before being returned. If not, the component is returned on it’s
own.

•scale (float, optional) – A scale factor that should be directly applied to the
component. Only valid in the case where with_mean == True.

Returnscomponent_vector ((n_features,) ndarray) – The component vector.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

instance(weights)
Creates a new instance of the model using the first len(weights) components.

Parametersweights ((n_weights,) ndarray or list) – weights[i] is the linear con-
tribution of the i’th component to the instance vector.

RaisesValueError – If n_weights > n_components
Returnsinstance (type(self.template_instance)) – An instance of the model.

instance_vector(weights)
Creates a new vector instance of the model by weighting together the components.

Parametersweights ((n_weights,) ndarray or list) – The weightings for the first
n_weights components that should be used.

weights[j] is the linear contribution of the j’th principal component to the instance
vector.

Returnsvector ((n_features,) ndarray) – The instance vector for the weighting pro-
vided.

instance_vectors(weights)
Creates new vectorized instances of the model using all the components of the linear model.

Parametersweights ((n_vectors, n_weights) ndarray or list of lists) – The
weightings for all components of the linear model. All components will be used to
produce the instance.

weights[i, j] is the linear contribution of the j’th principal component to the i’th

2.7. menpo.model 105

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

instance vector produced.
RaisesValueError – If n_weights > n_available_components
Returnsvectors ((n_vectors, n_features) ndarray) – The instance vectors for the

weighting provided.

mean()
Return the mean of the model.

TypeVectorizable

orthonormalize_against_inplace(linear_model)
Enforces that the union of this model’s components and another are both mutually orthonormal.

Both models keep its number of components unchanged or else a value error is raised.
Parameterslinear_model (LinearModel) – A second linear model to orthonormalize

this against.
RaisesValueError – The number of features must be greater or equal than the sum of the

number of components in both linear models ({} < {})

orthonormalize_inplace()
Enforces that this model’s components are orthonormalized, s.t.
component_vector(i).dot(component_vector(j) = dirac_delta.

project(instance)
Projects the instance onto the model, retrieving the optimal linear weightings.

Parametersnovel_instance (Vectorizable) – A novel instance.
Returnsprojected ((n_components,) ndarray) – A vector of optimal linear weightings.

project_out(instance)
Returns a version of instance where all the basis of the model have been projected out.

Parametersinstance (Vectorizable) – A novel instance of Vectorizable.
Returnsprojected_out (self.instance_class) – A copy of instance, with all basis of the model

projected out.

project_out_vector(vector)
Returns a version of vector where all the basis of the model have been projected out.

Parametersvector ((n_features,) ndarray) – A novel vector.
Returnsprojected_out ((n_features,) ndarray) – A copy of vector with all basis of the

model projected out.

project_out_vectors(vectors)
Returns a version of vectors where all the basis of the model have been projected out.

Parametersvectors ((n_vectors, n_features) ndarray) – A matrix of novel vec-
tors.

Returnsprojected_out ((n_vectors, n_features) ndarray) – A copy of vectors
with all basis of the model projected out.

project_vector(vector)
Projects the vector onto the model, retrieving the optimal linear reconstruction weights.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance.
Returnsweights ((n_components,) ndarray) – A vector of optimal linear weights.

project_vectors(vectors)
Projects each of the vectors onto the model, retrieving the optimal linear reconstruction weights for each
instance.

Parametersvectors ((n_samples, n_features) ndarray) – Array of vectorized
novel instances.

Returnsprojected ((n_samples, n_components) ndarray) – The matrix of optimal
linear weights.

106 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

reconstruct(instance)
Projects a instance onto the linear space and rebuilds from the weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.
Parametersinstance (Vectorizable) – A novel instance of Vectorizable.
Returnsreconstructed (self.instance_class) – The reconstructed object.

reconstruct_vector(vector)
Project a vector onto the linear space and rebuild from the weights found.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance to
project.

Returnsreconstructed ((n_features,) ndarray) – The reconstructed vector.

reconstruct_vectors(vectors)
Projects the vectors onto the linear space and rebuilds vectors from the weights found.

Parametersvectors ((n_vectors, n_features) ndarray) – A set of vectors to
project.

Returnsreconstructed ((n_vectors, n_features) ndarray) – The reconstructed
vectors.

components
The components matrix of the linear model.

Type(n_available_components, n_features) ndarray

n_components
The number of bases of the model.

Typeint

n_features
The number of elements in each linear component.

Typeint

2.7.5 PCAModel

class menpo.model.PCAModel(samples, centre=True, n_samples=None, verbose=False)
Bases: MeanInstanceLinearModel

A MeanInstanceLinearModel where components are Principal Components.

Principal Component Analysis (PCA) by eigenvalue decomposition of the data’s scatter matrix. For details of
the implementation of PCA, see pca.

Parameters
•samples (list or iterable of Vectorizable) – List or iterable of samples to build
the model from.

•centre (bool, optional) – When True (default) PCA is performed after mean cen-
tering the data. If False the data is assumed to be centred, and the mean will be
0.

•n_samples (int, optional) – If provided then samplesmust be an iterator that yields
n_samples. If not provided then samples has to be a list (so we know how large the
data matrix needs to be).

component(index, with_mean=True, scale=1.0)
Return a particular component of the linear model.

Parameters

2.7. menpo.model 107

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•index (int) – The component that is to be returned
•with_mean (bool, optional) – If True, the component will be blended with
the mean vector before being returned. If not, the component is returned on it’s
own.

•scale (float, optional) – A scale factor that should be applied to the
component. Only valid in the case where with_mean == True. See
component_vector() for how this scale factor is interpreted.

Returnscomponent (type(self.template_instance)) – The requested component.

component_vector(index, with_mean=True, scale=1.0)
A particular component of the model, in vectorized form.

Parameters
•index (int) – The component that is to be returned
•with_mean (bool, optional) – If True, the component will be blended with
the mean vector before being returned. If not, the component is returned on it’s
own.

•scale (float, optional) – A scale factor that should be applied to the component.
Only valid in the case where with_mean is True. The scale is applied in units
of standard deviations (so a scale of 1.0 with_mean visualizes the mean plus 1
std. dev of the component in question).

Returnscomponent_vector ((n_features,) ndarray) – The component vector of the
given index.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

eigenvalues_cumulative_ratio()
Returns the cumulative ratio between the variance captured by the active components and the total amount
of variance present on the original samples.

Returnseigenvalues_cumulative_ratio ((n_active_components,) ndarray) – Array
of cumulative eigenvalues.

eigenvalues_ratio()
Returns the ratio between the variance captured by each active component and the total amount of variance
present on the original samples.

Returnseigenvalues_ratio ((n_active_components,) ndarray) – The active eigen-
values array scaled by the original variance.

increment(samples, n_samples=None, forgetting_factor=1.0, verbose=False)
Update the eigenvectors, eigenvalues and mean vector of this model by performing incremental PCA on
the given samples.

Parameters
•samples (list of Vectorizable) – List of new samples to update the model
from.

•n_samples (int, optional) – If provided then samplesmust be an iterator that
yields n_samples. If not provided then samples has to be a list (so we know
how large the data matrix needs to be).

•forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that
weights the relative contribution of new samples vs old samples. If 1.0, all sam-
ples are weighted equally and, hence, the results is the exact same as performing

108 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

batch PCA on the concatenated list of old and new simples. If <1.0, more em-
phasis is put on the new samples. See [1] for details.

References

instance(weights)
Creates a new instance of the model using the first len(weights) components.

Parametersweights ((n_weights,) ndarray or list) – weights[i] is the linear con-
tribution of the i’th component to the instance vector.

RaisesValueError – If n_weights > n_components
Returnsinstance (type(self.template_instance)) – An instance of the model.

instance_vector(weights)
Creates a new vector instance of the model by weighting together the components.

Parametersweights ((n_weights,) ndarray or list) – The weightings for the first
n_weights components that should be used.

weights[j] is the linear contribution of the j’th principal component to the instance
vector.

Returnsvector ((n_features,) ndarray) – The instance vector for the weighting pro-
vided.

instance_vectors(weights)
Creates new vectorized instances of the model using the first components in a particular weighting.

Parametersweights ((n_vectors, n_weights) ndarray or list of lists) – The
weightings for the first n_weights components that should be used per instance that
is to be produced

weights[i, j] is the linear contribution of the j’th principal component to the i’th
instance vector produced. Note that if n_weights < n_components, only the
first n_weight components are used in the reconstruction (i.e. unspecified weights
are implicitly 0).

Returnsvectors ((n_vectors, n_features) ndarray) – The instance vectors for the
weighting provided.

RaisesValueError – If n_weights > n_components

inverse_noise_variance()
Returns the inverse of the noise variance.

Returnsinverse_noise_variance (float) – Inverse of the noise variance.
RaisesValueError – If noise_variance() == 0

mean()
Return the mean of the model.

TypeVectorizable

noise_variance()
Returns the average variance captured by the inactive components, i.e. the sample noise assumed in a
Probabilistic PCA formulation.

If all components are active, then noise_variance == 0.0.
Returnsnoise_variance (float) – The mean variance of the inactive components.

noise_variance_ratio()
Returns the ratio between the noise variance and the total amount of variance present on the original
samples.

Returnsnoise_variance_ratio (float) – The ratio between the noise variance and the variance
present in the original samples.

original_variance()

2.7. menpo.model 109

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returns the total amount of variance captured by the original model, i.e. the amount of variance present
on the original samples.

Returnsoptional_variance (float) – The variance captured by the model.

orthonormalize_against_inplace(linear_model)
Enforces that the union of this model’s components and another are both mutually orthonormal.

Note that the model passed in is guaranteed to not have it’s number of available components changed.
This model, however, may loose some dimensionality due to reaching a degenerate state.

The removed components will always be trimmed from the end of components (i.e. the components which
capture the least variance). If trimming is performed, n_components and n_available_components would
be altered - see trim_components() for details.

Parameterslinear_model (LinearModel) – A second linear model to orthonormalize
this against.

orthonormalize_inplace()
Enforces that this model’s components are orthonormalized, s.t.
component_vector(i).dot(component_vector(j) = dirac_delta.

plot_eigenvalues(figure_id=None, new_figure=False, render_lines=True, line_colour=’b’,
line_style=’-‘, line_width=2, render_markers=True, marker_style=’o’,
marker_size=6, marker_face_colour=’b’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
figure_size=(10, 6), render_grid=True, grid_line_style=’–‘,
grid_line_width=0.5)

Plot of the eigenvalues.
Parameters

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•render_lines (bool, optional) – If True, the line will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
``1``, ``2``, ``3``, ``4``, ``8``}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`

110 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

or
`list` of length ``3``

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
``monospace``}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font
style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
``book``, ``medium``, ``roman``, ``semibold``,
``demibold``, ``demi``, ``bold``, ``heavy``,
``extra bold``, ``black``}

•figure_size ((float, float) or None, optional) – The size of the figure in
inches.

•render_grid (bool, optional) – If True, the grid will be rendered.
•grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.
•grid_line_width (float, optional) – The width of the grid lines.

Returnsviewer (MatplotlibRenderer) – The viewer object.

plot_eigenvalues_cumulative_ratio(figure_id=None, new_figure=False,
render_lines=True, line_colour=’b’,
line_style=’-‘, line_width=2, ren-
der_markers=True, marker_style=’o’,
marker_size=6, marker_face_colour=’b’,
marker_edge_colour=’k’, marker_edge_width=1.0,
render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’,
axes_font_weight=’normal’, figure_size=(10,
6), render_grid=True, grid_line_style=’–‘,
grid_line_width=0.5)

Plot of the cumulative variance ratio captured by the eigenvalues.
Parameters

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•render_lines (bool, optional) – If True, the line will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions

2.7. menpo.model 111

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
``1``, ``2``, ``3``, ``4``, ``8``}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
``monospace``}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font
style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
``book``, ``medium``, ``roman``, ``semibold``,
``demibold``, ``demi``, ``bold``, ``heavy``,
``extra bold``, ``black``}

•figure_size ((float, float) or None, optional) – The size of the figure in
inches.

•render_grid (bool, optional) – If True, the grid will be rendered.
•grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

112 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•grid_line_width (float, optional) – The width of the grid lines.
Returnsviewer (MatplotlibRenderer) – The viewer object.

plot_eigenvalues_cumulative_ratio_widget(figure_size=(10, 6), style=’coloured’)
Plot of the cumulative variance ratio captured by the eigenvalues using plot_graph widget.

Parameters
•figure_size ((float, float) or None, optional) – The size of the figure in
inches.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

plot_eigenvalues_ratio(figure_id=None, new_figure=False, render_lines=True,
line_colour=’b’, line_style=’-‘, line_width=2, render_markers=True,
marker_style=’o’, marker_size=6, marker_face_colour=’b’,
marker_edge_colour=’k’, marker_edge_width=1.0, ren-
der_axes=True, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’, fig-
ure_size=(10, 6), render_grid=True, grid_line_style=’–‘,
grid_line_width=0.5)

Plot of the variance ratio captured by the eigenvalues.
Parameters

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•render_lines (bool, optional) – If True, the line will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
``1``, ``2``, ``3``, ``4``, ``8``}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

2.7. menpo.model 113

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
``monospace``}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font
style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
``book``, ``medium``, ``roman``, ``semibold``,
``demibold``, ``demi``, ``bold``, ``heavy``,
``extra bold``, ``black``}

•figure_size ((float, float) or None, optional) – The size of the figure in
inches.

•render_grid (bool, optional) – If True, the grid will be rendered.
•grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.
•grid_line_width (float, optional) – The width of the grid lines.

Returnsviewer (MatplotlibRenderer) – The viewer object.

plot_eigenvalues_ratio_widget(figure_size=(10, 6), style=’coloured’)
Plot of the variance ratio captured by the eigenvalues using plot_graph widget.

Parameters
•figure_size ((float, float) or None, optional) – The size of the figure in
inches.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

plot_eigenvalues_widget(figure_size=(10, 6), style=’coloured’)
Plot of the eigenvalues using plot_graph widget.

Parameters
•figure_size ((float, float) or None, optional) – The size of the figure in
inches.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

project(instance)
Projects the instance onto the model, retrieving the optimal linear weightings.

Parametersnovel_instance (Vectorizable) – A novel instance.
Returnsprojected ((n_components,) ndarray) – A vector of optimal linear weightings.

project_out(instance)
Returns a version of instance where all the basis of the model have been projected out.

Parametersinstance (Vectorizable) – A novel instance of Vectorizable.

114 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsprojected_out (self.instance_class) – A copy of instance, with all basis of the model
projected out.

project_out_vector(vector)
Returns a version of vector where all the basis of the model have been projected out.

Parametersvector ((n_features,) ndarray) – A novel vector.
Returnsprojected_out ((n_features,) ndarray) – A copy of vector with all basis of the

model projected out.

project_out_vectors(vectors)
Returns a version of vectors where all the basis of the model have been projected out.

Parametersvectors ((n_vectors, n_features) ndarray) – A matrix of novel vec-
tors.

Returnsprojected_out ((n_vectors, n_features) ndarray) – A copy of vectors
with all basis of the model projected out.

project_vector(vector)
Projects the vector onto the model, retrieving the optimal linear reconstruction weights.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance.
Returnsweights ((n_components,) ndarray) – A vector of optimal linear weights.

project_vectors(vectors)
Projects each of the vectors onto the model, retrieving the optimal linear reconstruction weights for each
instance.

Parametersvectors ((n_samples, n_features) ndarray) – Array of vectorized
novel instances.

Returnsprojected ((n_samples, n_components) ndarray) – The matrix of optimal
linear weights.

project_whitened(instance)
Projects the instance onto the whitened components, retrieving the whitened linear weightings.

Parametersinstance (Vectorizable) – A novel instance.
Returnsprojected ((n_components,)) – A vector of whitened linear weightings

project_whitened_vector(vector_instance)
Projects the vector_instance onto the whitened components, retrieving the whitened linear weightings.

Parametersvector_instance ((n_features,) ndarray) – A novel vector.
Returnsprojected ((n_features,) ndarray) – A vector of whitened linear weightings

reconstruct(instance)
Projects a instance onto the linear space and rebuilds from the weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.
Parametersinstance (Vectorizable) – A novel instance of Vectorizable.
Returnsreconstructed (self.instance_class) – The reconstructed object.

reconstruct_vector(vector)
Project a vector onto the linear space and rebuild from the weights found.

Parametersvector ((n_features,) ndarray) – A vectorized novel instance to
project.

Returnsreconstructed ((n_features,) ndarray) – The reconstructed vector.

reconstruct_vectors(vectors)
Projects the vectors onto the linear space and rebuilds vectors from the weights found.

2.7. menpo.model 115

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersvectors ((n_vectors, n_features) ndarray) – A set of vectors to
project.

Returnsreconstructed ((n_vectors, n_features) ndarray) – The reconstructed
vectors.

trim_components(n_components=None)
Permanently trims the components down to a certain amount. The number of active components will be
automatically reset to this particular value.

This will reduce self.n_components down to n_components (if None, self.n_active_components will be
used), freeing up memory in the process.

Once the model is trimmed, the trimmed components cannot be recovered.
Parametersn_components (int >= 1 or float > 0.0 or None, optional) – The number of

components that are kept or else the amount (ratio) of variance that is kept. If None,
self.n_active_components is used.

Notes
In case n_components is greater than the total number of components or greater than the amount of
variance currently kept, this method does not perform any action.

variance()
Returns the total amount of variance retained by the active components.

Returnsvariance (float) – Total variance captured by the active components.

variance_ratio()
Returns the ratio between the amount of variance retained by the active components and the total amount
of variance present on the original samples.

Returnsvariance_ratio (float) – Ratio of active components variance and total variance
present in original samples.

whitened_components()
Returns the active components of the model whitened.

Returnswhitened_components ((n_active_components, n_features) ndar-
ray) – The whitened components.

components
Returns the active components of the model.

Type(n_active_components, n_features) ndarray

eigenvalues
Returns the eigenvalues associated to the active components of the model, i.e. the amount of variance
captured by each active component.

Type(n_active_components,) ndarray

n_active_components
The number of components currently in use on this model.

Typeint

n_components
The number of bases of the model.

Typeint

n_features
The number of elements in each linear component.

Typeint

116 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

2.8 menpo.shape

2.8.1 Base Classes

Shape

class menpo.shape.base.Shape
Bases: Vectorizable, Transformable, Landmarkable, LandmarkableViewable, Viewable

Abstract representation of shape. Shapes are Transformable, Vectorizable, Landmarkable,
LandmarkableViewable and Viewable. This base class handles transforming landmarks when
the shape is transformed. Therefore, implementations of Shape have to implement the abstract
_transform_self_inplace() method that handles transforming the Shape itself.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Update the state of this object from a vector form.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of this ob-
ject

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

n_dims()
The total number of dimensions.

Typeint

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

2.8. menpo.shape 117

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

TypeLandmarkManager

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

2.8.2 PointCloud

PointCloud

class menpo.shape.PointCloud(points, copy=True)
Bases: Shape

An N-dimensional point cloud. This is internally represented as an ndarray of shape (n_points, n_dims).
This class is important for dealing with complex functionality such as viewing and representing metadata such
as landmarks.

Currently only 2D and 3D pointclouds are viewable.
Parameters

•points ((n_points, n_dims) ndarray) – The array representing the points.
•copy (bool, optional) – If False, the points will not be copied on assignment. Note
that this will miss out on additional checks. Further note that we still demand that the
array is C-contiguous - if it isn’t, a copy will be generated anyway. In general this
should only be used if you know what you are doing.

_view_2d(figure_id=None, new_figure=False, image_view=True, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’r’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None, **kwargs)

Visualization of the PointCloud in 2D.
Returns

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it is
in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

118 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters

2.8. menpo.shape 119

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

120 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

2.8. menpo.shape 121

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

122 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the PointCloud. This
is then broadcast across the dimensions of the PointCloud and returns a new PointCloud containing only
those points that were True in the mask.

Parametersmask ((n_points,) ndarray) – 1D array of booleans
Returnspointcloud (PointCloud) – A new pointcloud that has been masked.
RaisesValueError – Mask must have same number of points as pointcloud.

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

2.8. menpo.shape 123

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point
cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

range(boundary=0)
The range of the extent of the PointCloud.

Parametersboundary (float) – A optional padding distance that is used to extend the
bounds from which the range is computed. Default is 0, no extension is performed.

Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each
dimension.

tojson()
Convert this PointCloud to a dictionary representation suitable for inclusion in the LJSON landmark
format.

Returnsjson (dict) – Dictionary with points keys.

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the PointCloud using the visualize_pointclouds widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

TypeLandmarkManager

n_dims
The number of dimensions in the pointcloud.

Typeint

n_landmark_groups
The number of landmark groups on this object.

124 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

2.8.3 Graphs

UndirectedGraph

class menpo.shape.UndirectedGraph(adjacency_matrix, copy=True, skip_checks=False)
Bases: Graph

Class for Undirected Graph definition and manipulation.
Parameters

•adjacency_matrix ((n_vertices, n_vertices,) ndarray or
csr_matrix) – The adjacency matrix of the graph. The non-edges must be repre-
sented with zeros and the edges can have a weight value.

Noteadjacency_matrix must be symmetric.
•copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.
Raises

•ValueError – adjacency_matrix must be either a numpy.ndarray or a
scipy.sparse.csr_matrix.

•ValueError – Graph must have at least two vertices.
•ValueError – adjacency_matrix must be square (n_vertices, n_vertices,), ({adja-
cency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given instead.

•ValueError – The adjacency matrix of an undirected graph must be symmetric.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],

[1, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0],

2.8. menpo.shape 125

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

[0, 0, 0, 1, 0, 0]])
graph = UndirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(

([1] * 14,
([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
[1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),

shape=(6, 6))
graph = UndirectedGraph(adjacency_matrix)

The adjacency matrix of the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0]])

graph = UndirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],

[2, 0, 4, 2, 4, 3])),
shape=(6, 6))

graph = UndirectedGraph(adjacency_matrix)

find_all_paths(start, end, path=[])
Returns a list of lists with all the paths (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.
•path (list, optional) – An existing path to append to.

Returnspaths (list of list) – The list containing all the paths from start to end.

find_all_shortest_paths(algorithm=’auto’, unweighted=False)
Returns the distances and predecessors arrays of the graph’s shortest paths.

Parameters

126 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path between each vertex such that the sum of weights
is minimized, find the path such that the number of edges is minimized.

Returns
•distances ((n_vertices, n_vertices,) ndarray) – The matrix of dis-
tances between all graph vertices. distances[i,j] gives the shortest dis-
tance from vertex i to vertex j along the graph.

•predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of
predecessors, which can be used to reconstruct the shortest paths. Each entry
predecessors[i, j] gives the index of the previous vertex in the path
from vertex i to vertex j. If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

find_path(start, end, method=’bfs’, skip_checks=False)
Returns a list with the first path (without cycles) found from the start vertex to the end vertex. It can
employ either depth-first search or breadth-first search.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•method ({bfs, dfs}, optional) – The method to be used.
•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returnspath (list) – The path’s vertices.
RaisesValueError – Method must be either bfs or dfs.

find_shortest_path(start, end, algorithm=’auto’, unweighted=False, skip_checks=False)
Returns a list with the shortest path (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returns
•path (list) – The shortest path’s vertices, including start and end. If there
was not path connecting the vertices, then an empty list is returned.

•distance (int or float) – The distance (cost) of the path from start to end.

2.8. menpo.shape 127

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

get_adjacency_list()
Returns the adjacency list of the graph, i.e. a list of length n_vertices that for each vertex has a list of
the vertex neighbours. If the graph is directed, the neighbours are children.

Returnsadjacency_list (list of list of length n_vertices) – The adjacency list of the
graph.

has_cycles()
Checks if the graph has at least one cycle.

Returnshas_cycles (bool) – True if the graph has cycles.

has_isolated_vertices()
Whether the graph has any isolated vertices, i.e. vertices with no edge connections.

Returnshas_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

classmethod init_from_edges(edges, n_vertices, skip_checks=False)
Initialize graph from edges array.

Parameters
•edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs
of vertices that are connected with an edge.

•n_vertices (int) – The total number of vertices, assuming that the numbering
of vertices starts from 0. edges and n_vertices can be defined in a way to
set isolated vertices.

•skip_checks (bool, optional) – If True, no checks will be performed.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],

[1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
[3, 5], [5, 3]])

graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

Finally, the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

128 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

is_edge(vertex_1, vertex_2, skip_checks=False)
Whether there is an edge between the provided vertices.

Parameters
•vertex_1 (int) – The first selected vertex. Parent if the graph is directed.
•vertex_2 (int) – The second selected vertex. Child if the graph is directed.
•skip_checks (bool, optional) – If False, the given vertices will be checked.

Returnsis_edge (bool) – True if there is an edge connecting vertex_1 and vertex_2.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

is_tree()
Checks if the graph is tree.

Returnsis_true (bool) – If the graph is a tree.

isolated_vertices()
Returns the isolated vertices of the graph (if any), i.e. the vertices that have no edge connections.

Returnsisolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

minimum_spanning_tree(root_vertex)
Returns the minimum spanning tree of the graph using Kruskal’s algorithm.

Parametersroot_vertex (int) – The vertex that will be set as root in the output MST.
Returnsmst (Tree) – The computed minimum spanning tree.
RaisesValueError – Cannot compute minimum spanning tree of a graph with isolated

vertices

n_neighbours(vertex, skip_checks=False)
Returns the number of neighbours of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsn_neighbours (int) – The number of neighbours.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

n_paths(start, end)
Returns the number of all the paths (without cycles) existing from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.

Returnspaths (int) – The paths’ numbers.

neighbours(vertex, skip_checks=False)
Returns the neighbours of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsneighbours (list) – The list of neighbours.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

2.8. menpo.shape 129

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_edges
Returns the number of edges.

Typeint

n_vertices
Returns the number of vertices.

Typeint

vertices
Returns the list of vertices.

Typelist

DirectedGraph

class menpo.shape.DirectedGraph(adjacency_matrix, copy=True, skip_checks=False)
Bases: Graph

Class for Directed Graph definition and manipulation.
Parameters

•adjacency_matrix ((n_vertices, n_vertices,) ndarray or
csr_matrix) – The adjacency matrix of the graph in which the rows represent
source vertices and columns represent destination vertices. The non-edges must be
represented with zeros and the edges can have a weight value.

•copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.
Raises

•ValueError – adjacency_matrix must be either a numpy.ndarray or a
scipy.sparse.csr_matrix.

•ValueError – Graph must have at least two vertices.
•ValueError – adjacency_matrix must be square (n_vertices, n_vertices,), ({adja-
cency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given instead.

Examples
The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],

[1, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0],

130 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

[0, 0, 0, 0, 0, 0]])
graph = DirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],

[0, 0, 2, 1, 3, 4, 4, 5])),
shape=(6, 6))

graph = DirectedGraph(adjacency_matrix)

The following graph with isolated vertices

0<--|
|
|

1 2
|
v

3------>4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])

graph = DirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 3, ([2, 2, 3], [0, 4, 4])),

shape=(6, 6))
graph = DirectedGraph(adjacency_matrix)

children(vertex, skip_checks=False)
Returns the children of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnschildren (list) – The list of children.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

find_all_paths(start, end, path=[])
Returns a list of lists with all the paths (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.
•path (list, optional) – An existing path to append to.

Returnspaths (list of list) – The list containing all the paths from start to end.

2.8. menpo.shape 131

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

find_all_shortest_paths(algorithm=’auto’, unweighted=False)
Returns the distances and predecessors arrays of the graph’s shortest paths.

Parameters
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path between each vertex such that the sum of weights
is minimized, find the path such that the number of edges is minimized.

Returns
•distances ((n_vertices, n_vertices,) ndarray) – The matrix of dis-
tances between all graph vertices. distances[i,j] gives the shortest dis-
tance from vertex i to vertex j along the graph.

•predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of
predecessors, which can be used to reconstruct the shortest paths. Each entry
predecessors[i, j] gives the index of the previous vertex in the path
from vertex i to vertex j. If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

find_path(start, end, method=’bfs’, skip_checks=False)
Returns a list with the first path (without cycles) found from the start vertex to the end vertex. It can
employ either depth-first search or breadth-first search.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•method ({bfs, dfs}, optional) – The method to be used.
•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returnspath (list) – The path’s vertices.
RaisesValueError – Method must be either bfs or dfs.

find_shortest_path(start, end, algorithm=’auto’, unweighted=False, skip_checks=False)
Returns a list with the shortest path (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returns
•path (list) – The shortest path’s vertices, including start and end. If there

132 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

was not path connecting the vertices, then an empty list is returned.
•distance (int or float) – The distance (cost) of the path from start to end.

get_adjacency_list()
Returns the adjacency list of the graph, i.e. a list of length n_vertices that for each vertex has a list of
the vertex neighbours. If the graph is directed, the neighbours are children.

Returnsadjacency_list (list of list of length n_vertices) – The adjacency list of the
graph.

has_cycles()
Checks if the graph has at least one cycle.

Returnshas_cycles (bool) – True if the graph has cycles.

has_isolated_vertices()
Whether the graph has any isolated vertices, i.e. vertices with no edge connections.

Returnshas_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

init_from_edges(edges, n_vertices, skip_checks=False)
Initialize graph from edges array.

Parameters
•edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs
of vertices that are connected with an edge.

•n_vertices (int) – The total number of vertices, assuming that the numbering
of vertices starts from 0. edges and n_vertices can be defined in a way to
set isolated vertices.

•skip_checks (bool, optional) – If True, no checks will be performed.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],

[1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
[3, 5], [5, 3]])

graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |

2.8. menpo.shape 133

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

v v
3------>4
|
v
5

can be represented as

from menpo.shape import DirectedGraph
import numpy as np
edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],

[3, 4], [3, 5]])
graph = DirectedGraph.init_from_edges(edges, n_vertices=6)

Finally, the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

is_edge(vertex_1, vertex_2, skip_checks=False)
Whether there is an edge between the provided vertices.

Parameters
•vertex_1 (int) – The first selected vertex. Parent if the graph is directed.
•vertex_2 (int) – The second selected vertex. Child if the graph is directed.
•skip_checks (bool, optional) – If False, the given vertices will be checked.

Returnsis_edge (bool) – True if there is an edge connecting vertex_1 and vertex_2.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

is_tree()
Checks if the graph is tree.

Returnsis_true (bool) – If the graph is a tree.

isolated_vertices()
Returns the isolated vertices of the graph (if any), i.e. the vertices that have no edge connections.

Returnsisolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

n_children(vertex, skip_checks=False)
Returns the number of children of the selected vertex.

Parametersvertex (int) – The selected vertex.
Returns

•n_children (int) – The number of children.

134 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•skip_checks (bool, optional) – If False, the given vertex will be checked.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_parents(vertex, skip_checks=False)
Returns the number of parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsn_parents (int) – The number of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_paths(start, end)
Returns the number of all the paths (without cycles) existing from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.

Returnspaths (int) – The paths’ numbers.

parents(vertex, skip_checks=False)
Returns the parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsparents (list) – The list of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_edges
Returns the number of edges.

Typeint

n_vertices
Returns the number of vertices.

Typeint

vertices
Returns the list of vertices.

Typelist

Tree

class menpo.shape.Tree(adjacency_matrix, root_vertex, copy=True, skip_checks=False)
Bases: DirectedGraph

Class for Tree definitions and manipulation.
Parameters

•adjacency_matrix ((n_vertices, n_vertices,) ndarray or
csr_matrix) – The adjacency matrix of the tree in which the rows represent par-
ents and columns represent children. The non-edges must be represented with zeros
and the edges can have a weight value.

NoteA tree must not have isolated vertices.
•root_vertex (int) – The vertex to be set as root.
•copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.
Raises

•ValueError – adjacency_matrix must be either a numpy.ndarray or a
scipy.sparse.csr_matrix.

2.8. menpo.shape 135

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•ValueError – Graph must have at least two vertices.
•ValueError – adjacency_matrix must be square (n_vertices, n_vertices,), ({adja-
cency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given instead.

•ValueError – The provided edges do not represent a tree.
•ValueError – The root_vertex must be in the range [0, n_vertices - 1].
•ValueError – The combination of adjacency matrix and root vertex is not valid.
BFS returns a different tree.

Examples
The following tree

0
|

___|___
1 2
| |

| |
3 4 5
| | |
| | |
6 7 8

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])

tree = Tree(adjacency_matrix, root_vertex=0)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([0, 0, 1, 1, 2, 3, 4, 5],

[1, 2, 3, 4, 5, 6, 7, 8])),
shape=(9, 9))

tree = Tree(adjacency_matrix, root_vertex=0)

children(vertex, skip_checks=False)
Returns the children of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnschildren (list) – The list of children.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

depth_of_vertex(vertex, skip_checks=False)
Returns the depth of the specified vertex.

Parameters
•vertex (int) – The selected vertex.

136 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•skip_checks (bool, optional) – If False, the given vertex will be checked.
Returnsdepth (int) – The depth of the selected vertex.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

find_all_paths(start, end, path=[])
Returns a list of lists with all the paths (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.
•path (list, optional) – An existing path to append to.

Returnspaths (list of list) – The list containing all the paths from start to end.

find_all_shortest_paths(algorithm=’auto’, unweighted=False)
Returns the distances and predecessors arrays of the graph’s shortest paths.

Parameters
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path between each vertex such that the sum of weights
is minimized, find the path such that the number of edges is minimized.

Returns
•distances ((n_vertices, n_vertices,) ndarray) – The matrix of dis-
tances between all graph vertices. distances[i,j] gives the shortest dis-
tance from vertex i to vertex j along the graph.

•predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of
predecessors, which can be used to reconstruct the shortest paths. Each entry
predecessors[i, j] gives the index of the previous vertex in the path
from vertex i to vertex j. If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

find_path(start, end, method=’bfs’, skip_checks=False)
Returns a list with the first path (without cycles) found from the start vertex to the end vertex. It can
employ either depth-first search or breadth-first search.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•method ({bfs, dfs}, optional) – The method to be used.
•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returnspath (list) – The path’s vertices.
RaisesValueError – Method must be either bfs or dfs.

find_shortest_path(start, end, algorithm=’auto’, unweighted=False, skip_checks=False)
Returns a list with the shortest path (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

2.8. menpo.shape 137

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returns
•path (list) – The shortest path’s vertices, including start and end. If there
was not path connecting the vertices, then an empty list is returned.

•distance (int or float) – The distance (cost) of the path from start to end.

get_adjacency_list()
Returns the adjacency list of the graph, i.e. a list of length n_vertices that for each vertex has a list of
the vertex neighbours. If the graph is directed, the neighbours are children.

Returnsadjacency_list (list of list of length n_vertices) – The adjacency list of the
graph.

has_cycles()
Checks if the graph has at least one cycle.

Returnshas_cycles (bool) – True if the graph has cycles.

has_isolated_vertices()
Whether the graph has any isolated vertices, i.e. vertices with no edge connections.

Returnshas_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

init_from_edges(edges, n_vertices, skip_checks=False)
Initialize graph from edges array.

Parameters
•edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs
of vertices that are connected with an edge.

•n_vertices (int) – The total number of vertices, assuming that the numbering
of vertices starts from 0. edges and n_vertices can be defined in a way to
set isolated vertices.

•skip_checks (bool, optional) – If True, no checks will be performed.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np

138 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
[1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
[3, 5], [5, 3]])

graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be represented as

from menpo.shape import DirectedGraph
import numpy as np
edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],

[3, 4], [3, 5]])
graph = DirectedGraph.init_from_edges(edges, n_vertices=6)

Finally, the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

is_edge(vertex_1, vertex_2, skip_checks=False)
Whether there is an edge between the provided vertices.

Parameters
•vertex_1 (int) – The first selected vertex. Parent if the graph is directed.
•vertex_2 (int) – The second selected vertex. Child if the graph is directed.
•skip_checks (bool, optional) – If False, the given vertices will be checked.

Returnsis_edge (bool) – True if there is an edge connecting vertex_1 and vertex_2.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

2.8. menpo.shape 139

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

is_leaf(vertex, skip_checks=False)
Whether the vertex is a leaf.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsis_leaf (bool) – If True, then selected vertex is a leaf.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

is_tree()
Checks if the graph is tree.

Returnsis_true (bool) – If the graph is a tree.

isolated_vertices()
Returns the isolated vertices of the graph (if any), i.e. the vertices that have no edge connections.

Returnsisolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

n_children(vertex, skip_checks=False)
Returns the number of children of the selected vertex.

Parametersvertex (int) – The selected vertex.
Returns

•n_children (int) – The number of children.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_parents(vertex, skip_checks=False)
Returns the number of parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsn_parents (int) – The number of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_paths(start, end)
Returns the number of all the paths (without cycles) existing from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.

Returnspaths (int) – The paths’ numbers.

n_vertices_at_depth(depth)
Returns the number of vertices at the specified depth.

Parametersdepth (int) – The selected depth.
Returnsn_vertices (int) – The number of vertices that lie in the specified depth.

parent(vertex, skip_checks=False)
Returns the parent of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsparent (int) – The parent vertex.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

parents(vertex, skip_checks=False)
Returns the parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

140 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsparents (list) – The list of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

vertices_at_depth(depth)
Returns a list of vertices at the specified depth.

Parametersdepth (int) – The selected depth.
Returnsvertices (list) – The vertices that lie in the specified depth.

leaves
Returns a list with the all leaves of the tree.

Typelist

maximum_depth
Returns the maximum depth of the tree.

Typeint

n_edges
Returns the number of edges.

Typeint

n_leaves
Returns the number of leaves of the tree.

Typeint

n_vertices
Returns the number of vertices.

Typeint

vertices
Returns the list of vertices.

Typelist

2.8.4 PointGraphs

Mix-ins of Graphs and PointCloud for graphs with geometry.

PointUndirectedGraph

class menpo.shape.PointUndirectedGraph(points, adjacency_matrix, copy=True,
skip_checks=False)

Bases: PointGraph, UndirectedGraph

Class for defining an Undirected Graph with geometry.
Parameters

•points ((n_vertices, n_dims,) ndarray) – The array of point locations.
•adjacency_matrix ((n_vertices, n_vertices,) ndarray or
csr_matrix) – The adjacency matrix of the graph. The non-edges must be repre-
sented with zeros and the edges can have a weight value.

Noteadjacency_matrix must be symmetric.
•copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.
Raises

•ValueError – A point for each graph vertex needs to be passed. Got n_points
points instead of n_vertices.

•ValueError – adjacency_matrix must be either a numpy.ndarray or a
scipy.sparse.csr_matrix.

2.8. menpo.shape 141

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•ValueError – Graph must have at least two vertices.
•ValueError – adjacency_matrix must be square (n_vertices, n_vertices,), ({adja-
cency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given instead.

•ValueError – The adjacency matrix of an undirected graph must be symmetric.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],

[1, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0]])

points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
[0, 0]])

graph = PointUndirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(

([1] * 14,
([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
[1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),

shape=(6, 6))
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
graph = PointUndirectedGraph(points, adjacency_matrix)

The adjacency matrix of the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

5

can be defined as

142 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

import numpy as np
adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0]])

points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
[0, 0]])

graph = PointUndirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],

[2, 0, 4, 2, 4, 3])),
shape=(6, 6))

points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
[0, 0]])

graph = PointUndirectedGraph(points, adjacency_matrix)

_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=’r’, line_style=’-‘, line_width=1.0, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’k’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

Visualization of the PointGraph in 2D.
Returns

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointGraph will be viewed as if it is
in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

2.8. menpo.shape 143

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.

144 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

2.8. menpo.shape 145

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

146 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

2.8. menpo.shape 147

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

find_all_paths(start, end, path=[])
Returns a list of lists with all the paths (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.
•path (list, optional) – An existing path to append to.

Returnspaths (list of list) – The list containing all the paths from start to end.

find_all_shortest_paths(algorithm=’auto’, unweighted=False)
Returns the distances and predecessors arrays of the graph’s shortest paths.

Parameters
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path between each vertex such that the sum of weights
is minimized, find the path such that the number of edges is minimized.

Returns
•distances ((n_vertices, n_vertices,) ndarray) – The matrix of dis-
tances between all graph vertices. distances[i,j] gives the shortest dis-
tance from vertex i to vertex j along the graph.

148 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of
predecessors, which can be used to reconstruct the shortest paths. Each entry
predecessors[i, j] gives the index of the previous vertex in the path
from vertex i to vertex j. If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

find_path(start, end, method=’bfs’, skip_checks=False)
Returns a list with the first path (without cycles) found from the start vertex to the end vertex. It can
employ either depth-first search or breadth-first search.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•method ({bfs, dfs}, optional) – The method to be used.
•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returnspath (list) – The path’s vertices.
RaisesValueError – Method must be either bfs or dfs.

find_shortest_path(start, end, algorithm=’auto’, unweighted=False, skip_checks=False)
Returns a list with the shortest path (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returns
•path (list) – The shortest path’s vertices, including start and end. If there
was not path connecting the vertices, then an empty list is returned.

•distance (int or float) – The distance (cost) of the path from start to end.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the PointUndirect-
edGraph. This is then broadcast across the dimensions of the PointUndirectedGraph and returns a new
PointUndirectedGraph containing only those points that were True in the mask.

Parametersmask ((n_vertices,) ndarray) – 1D array of booleans
Returnspointgraph (PointUndirectedGraph) – A new pointgraph that has been

masked.
RaisesValueError – Mask must be a 1D boolean array of the same number of entries as

points in this PointUndirectedGraph.

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

2.8. menpo.shape 149

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

get_adjacency_list()
Returns the adjacency list of the graph, i.e. a list of length n_vertices that for each vertex has a list of
the vertex neighbours. If the graph is directed, the neighbours are children.

Returnsadjacency_list (list of list of length n_vertices) – The adjacency list of the
graph.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_cycles()
Checks if the graph has at least one cycle.

Returnshas_cycles (bool) – True if the graph has cycles.

has_isolated_vertices()
Whether the graph has any isolated vertices, i.e. vertices with no edge connections.

Returnshas_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_from_edges(points, edges, copy=True, skip_checks=False)
Construct a PointUndirectedGraph from edges array.

Parameters
•points ((n_vertices, n_dims,) ndarray) – The array of point loca-
tions.

•edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs
of vertices that are connected with an edge.

•copy (bool, optional) – If False, the adjacency_matrix will not be
copied on assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

150 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],

[1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
[3, 5], [5, 3]])

graph = PointUndirectedGraph.init_from_edges(points, edges)

Finally, the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

5

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = PointUndirectedGraph.init_from_edges(points, edges)

is_edge(vertex_1, vertex_2, skip_checks=False)
Whether there is an edge between the provided vertices.

Parameters
•vertex_1 (int) – The first selected vertex. Parent if the graph is directed.
•vertex_2 (int) – The second selected vertex. Child if the graph is directed.
•skip_checks (bool, optional) – If False, the given vertices will be checked.

Returnsis_edge (bool) – True if there is an edge connecting vertex_1 and vertex_2.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

is_tree()
Checks if the graph is tree.

Returnsis_true (bool) – If the graph is a tree.

isolated_vertices()
Returns the isolated vertices of the graph (if any), i.e. the vertices that have no edge connections.

Returnsisolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

minimum_spanning_tree(root_vertex)
Returns the minimum spanning tree of the graph using Kruskal’s algorithm.

Parametersroot_vertex (int) – The vertex that will be set as root in the output MST.
Returnsmst (PointTree) – The computed minimum spanning tree with the points of self.
RaisesValueError – Cannot compute minimum spanning tree of a graph with isolated

vertices

2.8. menpo.shape 151

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_neighbours(vertex, skip_checks=False)
Returns the number of neighbours of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsn_neighbours (int) – The number of neighbours.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

n_paths(start, end)
Returns the number of all the paths (without cycles) existing from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.

Returnspaths (int) – The paths’ numbers.

neighbours(vertex, skip_checks=False)
Returns the neighbours of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsneighbours (list) – The list of neighbours.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point
cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

range(boundary=0)
The range of the extent of the PointCloud.

Parametersboundary (float) – A optional padding distance that is used to extend the
bounds from which the range is computed. Default is 0, no extension is performed.

Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each
dimension.

tojson()
Convert this PointGraph to a dictionary representation suitable for inclusion in the LJSON landmark
format.

Returnsjson (dict) – Dictionary with points and connectivity keys.

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the PointGraph using the visualize_pointclouds widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int) tuple, optional) – The initial size of the rendered fig-
ure.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

152 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

landmarks
The landmarks object.

TypeLandmarkManager

n_dims
The number of dimensions in the pointcloud.

Typeint

n_edges
Returns the number of edges.

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

n_vertices
Returns the number of vertices.

Typeint

vertices
Returns the list of vertices.

Typelist

PointDirectedGraph

class menpo.shape.PointDirectedGraph(points, adjacency_matrix, copy=True, skip_checks=False)
Bases: PointGraph, DirectedGraph

Class for defining a directed graph with geometry.
Parameters

•points ((n_vertices, n_dims) ndarray) – The array representing the points.
•adjacency_matrix ((n_vertices, n_vertices,) ndarray or
csr_matrix) – The adjacency matrix of the graph in which the rows represent
source vertices and columns represent destination vertices. The non-edges must be
represented with zeros and the edges can have a weight value.

•copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.
Raises

•ValueError – A point for each graph vertex needs to be passed. Got {n_points}
points instead of {n_vertices}.

•ValueError – adjacency_matrix must be either a numpy.ndarray or a
scipy.sparse.csr_matrix.

•ValueError – Graph must have at least two vertices.
•ValueError – adjacency_matrix must be square (n_vertices, n_vertices,), ({adja-
cency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given instead.

Examples

2.8. menpo.shape 153

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],

[1, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])

points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
[0, 0]])

graph = PointDirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],

[0, 0, 2, 1, 3, 4, 4, 5])),
shape=(6, 6))

points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
[0, 0]])

graph = PointDirectedGraph(points, adjacency_matrix)

The following graph with isolated vertices

0<--|
|
|

1 2
|
v

3------>4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0],

154 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

[0, 0, 0, 0, 0, 0]])
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
graph = PointDirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 3, ([2, 2, 3], [0, 4, 4])),

shape=(6, 6))
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
graph = PointDirectedGraph(points, adjacency_matrix)

_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=’r’, line_style=’-‘, line_width=1.0, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’k’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

Visualization of the PointGraph in 2D.
Returns

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointGraph will be viewed as if it is
in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.

2.8. menpo.shape 155

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

156 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.

2.8. menpo.shape 157

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

158 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

2.8. menpo.shape 159

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

children(vertex, skip_checks=False)
Returns the children of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnschildren (list) – The list of children.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

find_all_paths(start, end, path=[])
Returns a list of lists with all the paths (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.
•path (list, optional) – An existing path to append to.

Returnspaths (list of list) – The list containing all the paths from start to end.

find_all_shortest_paths(algorithm=’auto’, unweighted=False)
Returns the distances and predecessors arrays of the graph’s shortest paths.

Parameters
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path between each vertex such that the sum of weights
is minimized, find the path such that the number of edges is minimized.

Returns
•distances ((n_vertices, n_vertices,) ndarray) – The matrix of dis-
tances between all graph vertices. distances[i,j] gives the shortest dis-

160 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

tance from vertex i to vertex j along the graph.
•predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of
predecessors, which can be used to reconstruct the shortest paths. Each entry
predecessors[i, j] gives the index of the previous vertex in the path
from vertex i to vertex j. If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

find_path(start, end, method=’bfs’, skip_checks=False)
Returns a list with the first path (without cycles) found from the start vertex to the end vertex. It can
employ either depth-first search or breadth-first search.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•method ({bfs, dfs}, optional) – The method to be used.
•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returnspath (list) – The path’s vertices.
RaisesValueError – Method must be either bfs or dfs.

find_shortest_path(start, end, algorithm=’auto’, unweighted=False, skip_checks=False)
Returns a list with the shortest path (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returns
•path (list) – The shortest path’s vertices, including start and end. If there
was not path connecting the vertices, then an empty list is returned.

•distance (int or float) – The distance (cost) of the path from start to end.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the PointDirectedGraph.
This is then broadcast across the dimensions of the PointDirectedGraph and returns a new PointDirected-
Graph containing only those points that were True in the mask.

Parametersmask ((n_points,) ndarray) – 1D array of booleans
Returnspointgraph (PointDirectedGraph) – A new pointgraph that has been masked.
RaisesValueError – Mask must be a 1D boolean array of the same number of entries as

points in this PointDirectedGraph.

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

2.8. menpo.shape 161

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

get_adjacency_list()
Returns the adjacency list of the graph, i.e. a list of length n_vertices that for each vertex has a list of
the vertex neighbours. If the graph is directed, the neighbours are children.

Returnsadjacency_list (list of list of length n_vertices) – The adjacency list of the
graph.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_cycles()
Checks if the graph has at least one cycle.

Returnshas_cycles (bool) – True if the graph has cycles.

has_isolated_vertices()
Whether the graph has any isolated vertices, i.e. vertices with no edge connections.

Returnshas_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

init_from_edges(points, edges, copy=True, skip_checks=False)
Construct a PointGraph from edges array.

Parameters
•points ((n_vertices, n_dims,) ndarray) – The array of point loca-
tions.

•edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs
of vertices that are connected with an edge.

•copy (bool, optional) – If False, the adjacency_matrix will not be
copied on assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.

Examples
The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

162 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],

[1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
[3, 5], [5, 3]])

graph = PointUndirectedGraph.init_from_edges(points, edges)

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be represented as

from menpo.shape import PointDirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],

[3, 4], [3, 5]])
graph = PointDirectedGraph.init_from_edges(points, edges)

Finally, the following graph with isolated vertices

0---|
|
|

1 2
|
|

3-------4

5

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],

[0, 0]])
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = PointUndirectedGraph.init_from_edges(points, edges)

2.8. menpo.shape 163

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

is_edge(vertex_1, vertex_2, skip_checks=False)
Whether there is an edge between the provided vertices.

Parameters
•vertex_1 (int) – The first selected vertex. Parent if the graph is directed.
•vertex_2 (int) – The second selected vertex. Child if the graph is directed.
•skip_checks (bool, optional) – If False, the given vertices will be checked.

Returnsis_edge (bool) – True if there is an edge connecting vertex_1 and vertex_2.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

is_tree()
Checks if the graph is tree.

Returnsis_true (bool) – If the graph is a tree.

isolated_vertices()
Returns the isolated vertices of the graph (if any), i.e. the vertices that have no edge connections.

Returnsisolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

n_children(vertex, skip_checks=False)
Returns the number of children of the selected vertex.

Parametersvertex (int) – The selected vertex.
Returns

•n_children (int) – The number of children.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_parents(vertex, skip_checks=False)
Returns the number of parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsn_parents (int) – The number of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_paths(start, end)
Returns the number of all the paths (without cycles) existing from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.

Returnspaths (int) – The paths’ numbers.

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point
cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

parents(vertex, skip_checks=False)
Returns the parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsparents (list) – The list of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

range(boundary=0)

164 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

The range of the extent of the PointCloud.
Parametersboundary (float) – A optional padding distance that is used to extend the

bounds from which the range is computed. Default is 0, no extension is performed.
Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each

dimension.

relative_location_edge(parent, child)
Returns the relative location between the provided vertices. That is if vertex j is the parent and vertex i is
its child and vector l denotes the coordinates of a vertex, then

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
= [[x_i - x_j], [y_i - y_j]]

Parameters
•parent (int) – The first selected vertex which is considered as the parent.
•child (int) – The second selected vertex which is considered as the child.

Returnsrelative_location ((2,) ndarray) – The relative location vector.
RaisesValueError – Vertices parent and child are not connected with an edge.

relative_locations()
Returns the relative location between the vertices of each edge. If vertex j is the parent and vertex i is its
child and vector l denotes the coordinates of a vertex, then:

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
= [[x_i - x_j], [y_i - y_j]]

Returnsrelative_locations ((n_vertexes, 2) ndarray) – The relative locations vector.

tojson()
Convert this PointGraph to a dictionary representation suitable for inclusion in the LJSON landmark
format.

Returnsjson (dict) – Dictionary with points and connectivity keys.

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the PointGraph using the visualize_pointclouds widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int) tuple, optional) – The initial size of the rendered fig-
ure.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

TypeLandmarkManager

n_dims
The number of dimensions in the pointcloud.

Typeint

n_edges
Returns the number of edges.

2.8. menpo.shape 165

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

n_vertices
Returns the number of vertices.

Typeint

vertices
Returns the list of vertices.

Typelist

PointTree

class menpo.shape.PointTree(points, adjacency_matrix, root_vertex, copy=True, skip_checks=False)
Bases: PointDirectedGraph, Tree

Class for defining a Tree with geometry.
Parameters

•points ((n_vertices, n_dims) ndarray) – The array representing the points.
•adjacency_matrix ((n_vertices, n_vertices,) ndarray or
csr_matrix) – The adjacency matrix of the tree in which the rows represent par-
ents and columns represent children. The non-edges must be represented with zeros
and the edges can have a weight value.

NoteA tree must not have isolated vertices.
•root_vertex (int) – The vertex to be set as root.
•copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.
Raises

•ValueError – A point for each graph vertex needs to be passed. Got {n_points}
points instead of {n_vertices}.

•ValueError – adjacency_matrix must be either a numpy.ndarray or a
scipy.sparse.csr_matrix.

•ValueError – Graph must have at least two vertices.
•ValueError – adjacency_matrix must be square (n_vertices, n_vertices,), ({adja-
cency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given instead.

•ValueError – The provided edges do not represent a tree.
•ValueError – The root_vertex must be in the range [0, n_vertices - 1].
•ValueError – The combination of adjacency matrix and root vertex is not valid.
BFS returns a different tree.

Examples
The following tree

166 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

0
|

___|___
1 2
| |

| |
3 4 5
| | |
| | |
6 7 8

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])

points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
[50, 10], [0, 0], [20, 0], [50, 0]])

tree = PointTree(points, adjacency_matrix, root_vertex=0)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([0, 0, 1, 1, 2, 3, 4, 5],

[1, 2, 3, 4, 5, 6, 7, 8])),
shape=(9, 9))

points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
[50, 10], [0, 0], [20, 0], [50, 0]])

tree = PointTree(points, adjacency_matrix, root_vertex=0)

_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=’r’, line_style=’-‘, line_width=1.0, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’k’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

Visualization of the PointGraph in 2D.
Returns

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointGraph will be viewed as if it is
in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

2.8. menpo.shape 167

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.

168 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or

2.8. menpo.shape 169

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

170 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

2.8. menpo.shape 171

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

children(vertex, skip_checks=False)
Returns the children of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnschildren (list) – The list of children.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

172 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

depth_of_vertex(vertex, skip_checks=False)
Returns the depth of the specified vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsdepth (int) – The depth of the selected vertex.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

find_all_paths(start, end, path=[])
Returns a list of lists with all the paths (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.
•path (list, optional) – An existing path to append to.

Returnspaths (list of list) – The list containing all the paths from start to end.

find_all_shortest_paths(algorithm=’auto’, unweighted=False)
Returns the distances and predecessors arrays of the graph’s shortest paths.

Parameters
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path between each vertex such that the sum of weights
is minimized, find the path such that the number of edges is minimized.

Returns
•distances ((n_vertices, n_vertices,) ndarray) – The matrix of dis-
tances between all graph vertices. distances[i,j] gives the shortest dis-
tance from vertex i to vertex j along the graph.

•predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of
predecessors, which can be used to reconstruct the shortest paths. Each entry
predecessors[i, j] gives the index of the previous vertex in the path
from vertex i to vertex j. If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

find_path(start, end, method=’bfs’, skip_checks=False)
Returns a list with the first path (without cycles) found from the start vertex to the end vertex. It can
employ either depth-first search or breadth-first search.

2.8. menpo.shape 173

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•method ({bfs, dfs}, optional) – The method to be used.
•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returnspath (list) – The path’s vertices.
RaisesValueError – Method must be either bfs or dfs.

find_shortest_path(start, end, algorithm=’auto’, unweighted=False, skip_checks=False)
Returns a list with the shortest path (without cycles) found from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the path starts.
•end (int) – The vertex to which the path ends.
•algorithm (‘str’, see below, optional) – The algorithm to be used. Possible
options are:

‘dijkstra’ Dijkstra’s algorithm with Fibonacci heaps
‘bellman-ford’ Bellman-Ford algorithm
‘johnson’ Johnson’s algorithm
‘floyd-warshall’ Floyd-Warshall algorithm
‘auto’ Select the best among the above

•unweighted (bool, optional) – If True, then find unweighted distances. That
is, rather than finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

•skip_checks (bool, optional) – If True, then input arguments won’t pass
through checks. Useful for efficiency.

Returns
•path (list) – The shortest path’s vertices, including start and end. If there
was not path connecting the vertices, then an empty list is returned.

•distance (int or float) – The distance (cost) of the path from start to end.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the PointTree. This is
then broadcast across the dimensions of the PointTree and returns a new PointTree containing only those
points that were True in the mask.

Parametersmask ((n_points,) ndarray) – 1D array of booleans
Returnspointtree (PointTree) – A new pointtree that has been masked.
Raises

•ValueError – Mask must be a 1D boolean array of the same number of entries
as points in this PointTree.

•ValueError – Cannot remove root vertex.

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

174 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

get_adjacency_list()
Returns the adjacency list of the graph, i.e. a list of length n_vertices that for each vertex has a list of
the vertex neighbours. If the graph is directed, the neighbours are children.

Returnsadjacency_list (list of list of length n_vertices) – The adjacency list of the
graph.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_cycles()
Checks if the graph has at least one cycle.

Returnshas_cycles (bool) – True if the graph has cycles.

has_isolated_vertices()
Whether the graph has any isolated vertices, i.e. vertices with no edge connections.

Returnshas_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_from_edges(points, edges, root_vertex, copy=True, skip_checks=False)
Construct a PointTree from edges array.

Parameters
•points ((n_vertices, n_dims,) ndarray) – The array of point loca-
tions.

•edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs
of vertices that are connected with an edge.

•root_vertex (int) – That vertex that will be set as root.
•copy (bool, optional) – If False, the adjacency_matrix will not be
copied on assignment.

•skip_checks (bool, optional) – If True, no checks will be performed.

Examples
The following tree

0
|

___|___
1 2
| |

| |
3 4 5
| | |
| | |
6 7 8

can be defined as

from menpo.shape import PointTree
import numpy as np
points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],

[50, 10], [0, 0], [20, 0], [50, 0]])

2.8. menpo.shape 175

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

edges = np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
[4, 7], [5, 8]])

tree = PointTree.init_from_edges(points, edges, root_vertex=0)

is_edge(vertex_1, vertex_2, skip_checks=False)
Whether there is an edge between the provided vertices.

Parameters
•vertex_1 (int) – The first selected vertex. Parent if the graph is directed.
•vertex_2 (int) – The second selected vertex. Child if the graph is directed.
•skip_checks (bool, optional) – If False, the given vertices will be checked.

Returnsis_edge (bool) – True if there is an edge connecting vertex_1 and vertex_2.
RaisesValueError – The vertex must be between 0 and {n_vertices-1}.

is_leaf(vertex, skip_checks=False)
Whether the vertex is a leaf.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsis_leaf (bool) – If True, then selected vertex is a leaf.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

is_tree()
Checks if the graph is tree.

Returnsis_true (bool) – If the graph is a tree.

isolated_vertices()
Returns the isolated vertices of the graph (if any), i.e. the vertices that have no edge connections.

Returnsisolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

n_children(vertex, skip_checks=False)
Returns the number of children of the selected vertex.

Parametersvertex (int) – The selected vertex.
Returns

•n_children (int) – The number of children.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_parents(vertex, skip_checks=False)
Returns the number of parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsn_parents (int) – The number of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

n_paths(start, end)
Returns the number of all the paths (without cycles) existing from start vertex to end vertex.

Parameters
•start (int) – The vertex from which the paths start.
•end (int) – The vertex from which the paths end.

Returnspaths (int) – The paths’ numbers.

n_vertices_at_depth(depth)
Returns the number of vertices at the specified depth.

Parametersdepth (int) – The selected depth.
Returnsn_vertices (int) – The number of vertices that lie in the specified depth.

176 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point
cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

parent(vertex, skip_checks=False)
Returns the parent of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsparent (int) – The parent vertex.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

parents(vertex, skip_checks=False)
Returns the parents of the selected vertex.

Parameters
•vertex (int) – The selected vertex.
•skip_checks (bool, optional) – If False, the given vertex will be checked.

Returnsparents (list) – The list of parents.
RaisesValueError – The vertex must be in the range [0, n_vertices - 1].

range(boundary=0)
The range of the extent of the PointCloud.

Parametersboundary (float) – A optional padding distance that is used to extend the
bounds from which the range is computed. Default is 0, no extension is performed.

Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each
dimension.

relative_location_edge(parent, child)
Returns the relative location between the provided vertices. That is if vertex j is the parent and vertex i is
its child and vector l denotes the coordinates of a vertex, then

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
= [[x_i - x_j], [y_i - y_j]]

Parameters
•parent (int) – The first selected vertex which is considered as the parent.
•child (int) – The second selected vertex which is considered as the child.

Returnsrelative_location ((2,) ndarray) – The relative location vector.
RaisesValueError – Vertices parent and child are not connected with an edge.

relative_locations()
Returns the relative location between the vertices of each edge. If vertex j is the parent and vertex i is its
child and vector l denotes the coordinates of a vertex, then:

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
= [[x_i - x_j], [y_i - y_j]]

Returnsrelative_locations ((n_vertexes, 2) ndarray) – The relative locations vector.

tojson()
Convert this PointGraph to a dictionary representation suitable for inclusion in the LJSON landmark
format.

Returnsjson (dict) – Dictionary with points and connectivity keys.

2.8. menpo.shape 177

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

vertices_at_depth(depth)
Returns a list of vertices at the specified depth.

Parametersdepth (int) – The selected depth.
Returnsvertices (list) – The vertices that lie in the specified depth.

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the PointGraph using the visualize_pointclouds widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int) tuple, optional) – The initial size of the rendered fig-
ure.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

TypeLandmarkManager

leaves
Returns a list with the all leaves of the tree.

Typelist

maximum_depth
Returns the maximum depth of the tree.

Typeint

n_dims
The number of dimensions in the pointcloud.

Typeint

n_edges
Returns the number of edges.

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_leaves
Returns the number of leaves of the tree.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

n_vertices
Returns the number of vertices.

Typeint

178 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

vertices
Returns the list of vertices.

Typelist

2.8.5 Triangular Meshes

TriMesh

class menpo.shape.TriMesh(points, trilist=None, copy=True)
Bases: PointCloud

A PointCloud with a connectivity defined by a triangle list. These are designed to be explicitly 2D or 3D.
Parameters

•points ((n_points, n_dims) ndarray) – The array representing the points.
•trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delau-
nay triangulation of the points will be used instead.

•copy (bool, optional) – If False, the points will not be copied on assignment. Any
trilist will also not be copied. In general this should only be used if you know what you
are doing.

_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=’r’, line_style=’-‘, line_width=1.0, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’k’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

Visualization of the TriMesh in 2D.
Returns

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the TriMesh will be viewed as if it is in
the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

2.8. menpo.shape 179

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.

180 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

2.8. menpo.shape 181

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

182 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_pointgraph(copy=True, skip_checks=False)
Converts the TriMesh to a PointUndirectedGraph.

Parameters
•copy (bool, optional) – If True, the graph will be a copy.
•skip_checks (bool, optional) – If True, no checks will be performed.

Returnspointgraph (PointUndirectedGraph) – The point graph.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

boundary_tri_index()
Boolean index into triangles that are at the edge of the TriMesh

Returnsboundary_tri_index ((n_tris,) ndarray) – For each triangle (ABC), returns
whether any of it’s edges is not also an edge of another triangle (and so this triangle
exists on the boundary of the TriMesh)

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

2.8. menpo.shape 183

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

edge_indices()
An unordered index into points that rebuilds the edges of this TriMesh.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_indices() for a single index for each physical edge on the TriMesh.

Returnsedge_indices ((n_tris * 3, 2) ndarray) – For each triangle (ABC), returns
the pair of point indices that rebuild AB, AC, BC. All edge indices are concatenated
for a total of n_tris * 3 edge_indices. The ordering is done so that all AB vectors
are first in the returned list, followed by BC, then CA.

edge_lengths()
The length of each edge in this TriMesh.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_indices() for a single index for each physical edge on the TriMesh. The ordering

184 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

matches the case for edges and edge_indices.
Returnsedge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each

edge in this TriMesh.

edge_vectors()
A vector of edges of each triangle face.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_vectors() for a single vector for each physical edge on the TriMesh.

Returnsedges ((n_tris * 3, n_dims) ndarray) – For each triangle (ABC), returns
the edge vectors AB, BC, CA. All edges are concatenated for a total of n_tris * 3
edges. The ordering is done so that all AB vectors are first in the returned list, followed
by BC, then CA.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the TriMesh. This is
then broadcast across the dimensions of the mesh and returns a new mesh containing only those points
that were True in the mask.

Parametersmask ((n_points,) ndarray) – 1D array of booleans
Returnsmesh (TriMesh) – A new mesh that has been masked.

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

mean_edge_length(unique=True)
The mean length of each edge in this TriMesh.

Parametersunique (bool, optional) – If True, each shared edge will only be counted once
towards the average. If false, shared edges will be counted twice.

Returnsmean_edge_length (float) – The mean length of each edge in this TriMesh

mean_tri_area()
The mean area of each triangle face in this TriMesh.

Returnsmean_tri_area (float) – The mean area of each triangle face in this TriMesh
RaisesValueError – If mesh is not 3D

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point

2.8. menpo.shape 185

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

range(boundary=0)
The range of the extent of the PointCloud.

Parametersboundary (float) – A optional padding distance that is used to extend the
bounds from which the range is computed. Default is 0, no extension is performed.

Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each
dimension.

tojson()
Convert this TriMesh to a dictionary representation suitable for inclusion in the LJSON landmark for-
mat. Note that this enforces a simpler representation, and as such is not suitable for a permanent serial-
ization of a TriMesh (to be clear, TriMesh‘s serialized as part of a landmark set will be rebuilt as a
PointUndirectedGraph).

Returnsjson (dict) – Dictionary with points and connectivity keys.

tri_areas()
The area of each triangle face.

Returnsareas ((n_tris,) ndarray) – Area of each triangle, ordered as the trilist is
RaisesValueError – If mesh is not 2D or 3D

tri_normals()
Compute the triangle face normals from the current set of points and triangle list. Only valid for 3D
dimensional meshes.

Returnsnormals ((n_tris, 3) ndarray) – Normal at each triangle face.
RaisesValueError – If mesh is not 3D

unique_edge_indicies()
An unordered index into points that rebuilds the unique edges of this TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsunique_edge_indicies ((n_unique_edges, 2) ndarray) – Return a point in-
dex that rebuilds all edges present in this TriMesh only once.

unique_edge_lengths()
The length of each edge in this TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsedge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each
edge in this TriMesh.

unique_edge_vectors()
An unordered vector of unique edges for the whole TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsunique_edge_vectors ((n_unique_edges, n_dims) ndarray) – Vectors for
each unique edge in this TriMesh.

vertex_normals()
Compute the per-vertex normals from the current set of points and triangle list. Only valid for 3D dimen-
sional meshes.

Returnsnormals ((n_points, 3) ndarray) – Normal at each point.
RaisesValueError – If mesh is not 3D

186 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the TriMesh using the visualize_pointclouds widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int) tuple, optional) – The initial size of the rendered fig-
ure.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

TypeLandmarkManager

n_dims
The number of dimensions in the pointcloud.

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

n_tris
The number of triangles in the triangle list.

Typeint

ColouredTriMesh

class menpo.shape.ColouredTriMesh(points, trilist=None, colours=None, copy=True)
Bases: TriMesh

Combines a TriMesh with a colour per vertex.
Parameters

•points ((n_points, n_dims) ndarray) – The array representing the points.
•trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delau-
nay triangulation of the points will be used instead.

•colours ((N, 3) ndarray, optional) – The floating point RGB colour per vertex. If
not given, grey will be assigned to each vertex.

•copy (bool, optional) – If False, the points, trilist and colours will not be copied on
assignment. In general this should only be used if you know what you are doing.

RaisesValueError – If the number of colour values does not match the number of vertices.

2.8. menpo.shape 187

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=’r’, line_style=’-‘, line_width=1.0, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’k’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

Visualization of the TriMesh in 2D. Currently, explicit coloured TriMesh viewing is not supported, and
therefore viewing falls back to uncoloured 2D TriMesh viewing.

Returns
•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the ColouredTriMesh will be viewed as
if it is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.

188 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.
Raiseswarning – 2D Viewing of Coloured TriMeshes is not supported, automatically falls

back to 2D TriMesh viewing.

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

2.8. menpo.shape 189

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

190 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

2.8. menpo.shape 191

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_pointgraph(copy=True, skip_checks=False)
Converts the TriMesh to a PointUndirectedGraph.

Parameters
•copy (bool, optional) – If True, the graph will be a copy.
•skip_checks (bool, optional) – If True, no checks will be performed.

Returnspointgraph (PointUndirectedGraph) – The point graph.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

boundary_tri_index()
Boolean index into triangles that are at the edge of the TriMesh

Returnsboundary_tri_index ((n_tris,) ndarray) – For each triangle (ABC), returns
whether any of it’s edges is not also an edge of another triangle (and so this triangle
exists on the boundary of the TriMesh)

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

192 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

edge_indices()
An unordered index into points that rebuilds the edges of this TriMesh.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_indices() for a single index for each physical edge on the TriMesh.

Returnsedge_indices ((n_tris * 3, 2) ndarray) – For each triangle (ABC), returns
the pair of point indices that rebuild AB, AC, BC. All edge indices are concatenated
for a total of n_tris * 3 edge_indices. The ordering is done so that all AB vectors
are first in the returned list, followed by BC, then CA.

edge_lengths()
The length of each edge in this TriMesh.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_indices() for a single index for each physical edge on the TriMesh. The ordering
matches the case for edges and edge_indices.

Returnsedge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each
edge in this TriMesh.

edge_vectors()
A vector of edges of each triangle face.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_vectors() for a single vector for each physical edge on the TriMesh.

Returnsedges ((n_tris * 3, n_dims) ndarray) – For each triangle (ABC), returns
the edge vectors AB, BC, CA. All edges are concatenated for a total of n_tris * 3
edges. The ordering is done so that all AB vectors are first in the returned list, followed
by BC, then CA.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the ColouredTriMesh.

2.8. menpo.shape 193

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

This is then broadcast across the dimensions of the mesh and returns a new mesh containing only those
points that were True in the mask.

Parametersmask ((n_points,) ndarray) – 1D array of booleans
Returnsmesh (ColouredTriMesh) – A new mesh that has been masked.

from_vector(vector)
Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnsobject (type(self)) – An new instance of this class.

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

mean_edge_length(unique=True)
The mean length of each edge in this TriMesh.

Parametersunique (bool, optional) – If True, each shared edge will only be counted once
towards the average. If false, shared edges will be counted twice.

Returnsmean_edge_length (float) – The mean length of each edge in this TriMesh

mean_tri_area()
The mean area of each triangle face in this TriMesh.

Returnsmean_tri_area (float) – The mean area of each triangle face in this TriMesh
RaisesValueError – If mesh is not 3D

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point
cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

range(boundary=0)
The range of the extent of the PointCloud.

Parametersboundary (float) – A optional padding distance that is used to extend the
bounds from which the range is computed. Default is 0, no extension is performed.

Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each
dimension.

tojson()
Convert this TriMesh to a dictionary representation suitable for inclusion in the LJSON landmark for-
mat. Note that this enforces a simpler representation, and as such is not suitable for a permanent serial-

194 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

ization of a TriMesh (to be clear, TriMesh‘s serialized as part of a landmark set will be rebuilt as a
PointUndirectedGraph).

Returnsjson (dict) – Dictionary with points and connectivity keys.

tri_areas()
The area of each triangle face.

Returnsareas ((n_tris,) ndarray) – Area of each triangle, ordered as the trilist is
RaisesValueError – If mesh is not 2D or 3D

tri_normals()
Compute the triangle face normals from the current set of points and triangle list. Only valid for 3D
dimensional meshes.

Returnsnormals ((n_tris, 3) ndarray) – Normal at each triangle face.
RaisesValueError – If mesh is not 3D

unique_edge_indicies()
An unordered index into points that rebuilds the unique edges of this TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsunique_edge_indicies ((n_unique_edges, 2) ndarray) – Return a point in-
dex that rebuilds all edges present in this TriMesh only once.

unique_edge_lengths()
The length of each edge in this TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsedge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each
edge in this TriMesh.

unique_edge_vectors()
An unordered vector of unique edges for the whole TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsunique_edge_vectors ((n_unique_edges, n_dims) ndarray) – Vectors for
each unique edge in this TriMesh.

vertex_normals()
Compute the per-vertex normals from the current set of points and triangle list. Only valid for 3D dimen-
sional meshes.

Returnsnormals ((n_points, 3) ndarray) – Normal at each point.
RaisesValueError – If mesh is not 3D

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the TriMesh using the visualize_pointclouds widget.

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int) tuple, optional) – The initial size of the rendered fig-
ure.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

2.8. menpo.shape 195

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

landmarks
The landmarks object.

TypeLandmarkManager

n_dims
The number of dimensions in the pointcloud.

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

n_tris
The number of triangles in the triangle list.

Typeint

TexturedTriMesh

class menpo.shape.TexturedTriMesh(points, tcoords, texture, trilist=None, copy=True)
Bases: TriMesh

Combines a TriMesh with a texture. Also encapsulates the texture coordinates required to render the texture
on the mesh.

Parameters
•points ((n_points, n_dims) ndarray) – The array representing the points.
•tcoords ((N, 2) ndarray) – The texture coordinates for the mesh.
•texture (Image) – The texture for the mesh.
•trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a De-
launay triangulation of the points will be used instead.

•copy (bool, optional) – If False, the points, trilist and texture will not be copied on
assignment. In general this should only be used if you know what you are doing.

_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=’r’, line_style=’-‘, line_width=1.0, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=’k’, marker_edge_colour=’k’,
marker_edge_width=1.0, render_axes=True, axes_font_name=’sans-serif’,
axes_font_size=10, axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

Visualization of the TriMesh in 2D. Currently, explicit textured TriMesh viewing is not supported, and
therefore viewing falls back to untextured 2D TriMesh viewing.

Returns
•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the TexturedTriMesh will be viewed as
if it is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example options:

196 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of the
markers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The font style of
the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes. Example
options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None, optional) – The limits of the x axis.
•axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis.
•figure_size ((float, float) tuple or None, optional) – The size of the figure in
inches.

•label (str, optional) – The name entry in case of a legend.
Returnsviewer (PointGraphViewer2d) – The viewer object.
Raiseswarning – 2D Viewing of Coloured TriMeshes is not supported, automatically falls

back to 2D TriMesh viewing.

2.8. menpo.shape 197

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

_view_landmarks_2d(group=None, with_labels=None, without_labels=None, fig-
ure_id=None, new_figure=False, image_view=True, render_lines=True,
line_colour=None, line_style=’-‘, line_width=1, render_markers=True,
marker_style=’o’, marker_size=20, marker_face_colour=None,
marker_edge_colour=None, marker_edge_width=1.0, ren-
der_numbering=False, numbers_horizontal_align=’center’, num-
bers_vertical_align=’bottom’, numbers_font_name=’sans-serif’,
numbers_font_size=10, numbers_font_style=’normal’, num-
bers_font_weight=’normal’, numbers_font_colour=’k’, ren-
der_legend=False, legend_title=’‘, legend_font_name=’sans-
serif’, legend_font_style=’normal’, legend_font_size=10, leg-
end_font_weight=’normal’, legend_marker_scale=None, leg-
end_location=2, legend_bbox_to_anchor=(1.05, 1.0), leg-
end_border_axes_pad=None, legend_n_columns=1, leg-
end_horizontal_spacing=None, legend_vertical_spacing=None,
legend_border=True, legend_border_padding=None, leg-
end_shadow=False, legend_rounded_corners=False, ren-
der_axes=False, axes_font_name=’sans-serif’, axes_font_size=10,
axes_font_style=’normal’, axes_font_weight=’normal’,
axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

Visualize the landmarks. This method will appear on the Image as view_landmarks if the Image is
2D.

Parameters
•group (str or‘‘None‘‘ optional) – The landmark group to be visualized. If
None and there are more than one landmark groups, an error is raised.

•with_labels (None or str or list of str, optional) – If not None, only show
the given label(s). Should not be used with the without_labels kwarg.

•without_labels (None or str or list of str, optional) – If not None, show all
except the given label(s). Should not be used with the with_labels kwarg.

•figure_id (object, optional) – The id of the figure to be used.
•new_figure (bool, optional) – If True, a new figure is created.
•image_view (bool, optional) – If True the PointCloud will be viewed as if it
is in the image coordinate system.

•render_lines (bool, optional) – If True, the edges will be rendered.
•line_colour (See Below, optional) – The colour of the lines. Example op-
tions:

{r, g, b, c, m, k, w}
or
(3,) ndarray

•line_style ({-, --, -., :}, optional) – The style of the lines.
•line_width (float, optional) – The width of the lines.
•render_markers (bool, optional) – If True, the markers will be rendered.
•marker_style (See Below, optional) – The style of the markers. Example
options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

•marker_size (int, optional) – The size of the markers in points^2.
•marker_face_colour (See Below, optional) – The face (filling) colour of
the markers. Example options

{r, g, b, c, m, k, w}
or

198 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

(3,) ndarray

•marker_edge_colour (See Below, optional) – The edge colour of the mark-
ers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•marker_edge_width (float, optional) – The width of the markers’ edge.
•render_numbering (bool, optional) – If True, the landmarks will be num-
bered.

•numbers_horizontal_align ({center, right, left}, optional)
– The horizontal alignment of the numbers’ texts.

•numbers_vertical_align ({center, top, bottom,
baseline}, optional) – The vertical alignment of the numbers’ texts.

•numbers_font_name (See Below, optional) – The font of the numbers. Ex-
ample options

{serif, sans-serif, cursive, fantasy, monospace}

•numbers_font_size (int, optional) – The font size of the numbers.
•numbers_font_style ({normal, italic, oblique}, optional) –
The font style of the numbers.

•numbers_font_weight (See Below, optional) – The font weight of the num-
bers. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•numbers_font_colour (See Below, optional) – The font colour of the num-
bers. Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

•render_legend (bool, optional) – If True, the legend will be rendered.
•legend_title (str, optional) – The title of the legend.
•legend_font_name (See below, optional) – The font of the legend. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•legend_font_style ({normal, italic, oblique}, optional) –
The font style of the legend.

•legend_font_size (int, optional) – The font size of the legend.
•legend_font_weight (See Below, optional) – The font weight of the leg-
end. Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

•legend_marker_scale (float, optional) – The relative size of the legend
markers with respect to the original

•legend_location (int, optional) – The location of the legend. The prede-
fined values are:

2.8. menpo.shape 199

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

•legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the
legend will be anchored.

•legend_border_axes_pad (float, optional) – The pad between the axes
and legend border.

•legend_n_columns (int, optional) – The number of the legend’s columns.
•legend_horizontal_spacing (float, optional) – The spacing between
the columns.

•legend_vertical_spacing (float, optional) – The vertical space between
the legend entries.

•legend_border (bool, optional) – If True, a frame will be drawn around the
legend.

•legend_border_padding (float, optional) – The fractional whitespace in-
side the legend border.

•legend_shadow (bool, optional) – If True, a shadow will be drawn behind
legend.

•legend_rounded_corners (bool, optional) – If True, the frame’s corners
will be rounded (fancybox).

•render_axes (bool, optional) – If True, the axes will be rendered.
•axes_font_name (See Below, optional) – The font of the axes. Example
options

{serif, sans-serif, cursive, fantasy, monospace}

•axes_font_size (int, optional) – The font size of the axes.
•axes_font_style ({normal, italic, oblique}, optional) – The
font style of the axes.

•axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

•axes_x_limits ((float, float) tuple or None optional) – The limits of the x
axis.

•axes_y_limits ((float, float) tuple or None optional) – The limits of the y
axis.

•figure_size ((float, float) tuple or None optional) – The size of the figure
in inches.

Raises
•ValueError – If both with_labels and without_labels are passed.
•ValueError – If the landmark manager doesn’t contain the provided group
label.

as_pointgraph(copy=True, skip_checks=False)
Converts the TriMesh to a PointUndirectedGraph.

200 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameters
•copy (bool, optional) – If True, the graph will be a copy.
•skip_checks (bool, optional) – If True, no checks will be performed.

Returnspointgraph (PointUndirectedGraph) – The point graph.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

boundary_tri_index()
Boolean index into triangles that are at the edge of the TriMesh

Returnsboundary_tri_index ((n_tris,) ndarray) – For each triangle (ABC), returns
whether any of it’s edges is not also an edge of another triangle (and so this triangle
exists on the boundary of the TriMesh)

bounding_box()
Return a bounding box from two corner points as a directed graph. The the first point (0) should be nearest
the origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

Returnsbounding_box (PointDirectedGraph) – The axis aligned bounding box of the
PointCloud.

bounds(boundary=0)
The minimum to maximum extent of the PointCloud. An optional boundary argument can be provided to
expand the bounds by a constant margin.

Parametersboundary (float) – A optional padding distance that is added to the bounds. De-
fault is 0, meaning the max/min of tightest possible containing square/cube/hypercube
is returned.

Returns
•min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and
boundary along each dimension

•max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud
and boundary along each dimension

centre()
The mean of all the points in this PointCloud (centre of mass).

Returnscentre ((n_dims) ndarray) – The mean of this PointCloud’s points.

centre_of_bounds()
The centre of the absolute bounds of this PointCloud. Contrast with centre(), which is the mean point
position.

Returnscentre (n_dims ndarray) – The centre of the bounds of this PointCloud.

2.8. menpo.shape 201

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

distance_to(pointcloud, **kwargs)
Returns a distance matrix between this PointCloud and another. By default the Euclidean distance is
calculated - see scipy.spatial.distance.cdist for valid kwargs to change the metric and other properties.

Parameterspointcloud (PointCloud) – The second pointcloud to compute distances
between. This must be of the same dimension as this PointCloud.

Returnsdistance_matrix ((n_points, n_points) ndarray) – The symmetric pair-
wise distance matrix between the two PointClouds s.t. distance_matrix[i, j]
is the distance between the i’th point of this PointCloud and the j’th point of the input
PointCloud.

edge_indices()
An unordered index into points that rebuilds the edges of this TriMesh.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_indices() for a single index for each physical edge on the TriMesh.

Returnsedge_indices ((n_tris * 3, 2) ndarray) – For each triangle (ABC), returns
the pair of point indices that rebuild AB, AC, BC. All edge indices are concatenated
for a total of n_tris * 3 edge_indices. The ordering is done so that all AB vectors
are first in the returned list, followed by BC, then CA.

edge_lengths()
The length of each edge in this TriMesh.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_indices() for a single index for each physical edge on the TriMesh. The ordering
matches the case for edges and edge_indices.

Returnsedge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each
edge in this TriMesh.

edge_vectors()
A vector of edges of each triangle face.

Note that there will be two edges present in cases where two triangles ‘share’ an edge. Consider
unique_edge_vectors() for a single vector for each physical edge on the TriMesh.

Returnsedges ((n_tris * 3, n_dims) ndarray) – For each triangle (ABC), returns
the edge vectors AB, BC, CA. All edges are concatenated for a total of n_tris * 3
edges. The ordering is done so that all AB vectors are first in the returned list, followed
by BC, then CA.

from_mask(mask)
A 1D boolean array with the same number of elements as the number of points in the TexturedTriMesh.
This is then broadcast across the dimensions of the mesh and returns a new mesh containing only those
points that were True in the mask.

Parametersmask ((n_points,) ndarray) – 1D array of booleans
Returnsmesh (TexturedTriMesh) – A new mesh that has been masked.

from_vector(flattened)
Builds a new TexturedTriMesh given the flattened 1D vector. Note that the trilist, texture, and tcoords
will be drawn from self.

202 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameters
•flattened ((N,) ndarray) – Vector representing a set of points.
•Returns –
•-------- –
•trimesh (TriMesh) – A new trimesh created from the vector with self
trilist.

from_vector_inplace(vector)
Updates the points of this PointCloud in-place with the reshaped points from the provided vector. Note
that the vector should have the form [x0, y0, x1, y1,, xn, yn] for 2D.

Parametersvector ((n_points,) ndarray) – The vector from which to create the
points’ array.

h_points()
Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

Typetype(self)

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

mean_edge_length(unique=True)
The mean length of each edge in this TriMesh.

Parametersunique (bool, optional) – If True, each shared edge will only be counted once
towards the average. If false, shared edges will be counted twice.

Returnsmean_edge_length (float) – The mean length of each edge in this TriMesh

mean_tri_area()
The mean area of each triangle face in this TriMesh.

Returnsmean_tri_area (float) – The mean area of each triangle face in this TriMesh
RaisesValueError – If mesh is not 3D

norm(**kwargs)
Returns the norm of this PointCloud. This is a translation and rotation invariant measure of the point
cloud’s intrinsic size - in other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by setting kwargs - see
numpy.linalg.norm for valid options.

Returnsnorm (float) – The norm of this PointCloud

range(boundary=0)
The range of the extent of the PointCloud.

Parametersboundary (float) – A optional padding distance that is used to extend the
bounds from which the range is computed. Default is 0, no extension is performed.

Returnsrange ((n_dims,) ndarray) – The range of the PointCloud extent in each
dimension.

tcoords_pixel_scaled()
Returns a PointCloud that is modified to be suitable for directly indexing into the pixels of the texture
(e.g. for manual mapping operations). The resulting tcoords behave just like image landmarks do.

The operations that are performed are:
•Flipping the origin from bottom-left to top-left
•Scaling the tcoords by the image shape (denormalising them)
•Permuting the axis so that

Returnstcoords_scaled (PointCloud) – A copy of the tcoords that behave like Image
landmarks

2.8. menpo.shape 203

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Examples
Recovering pixel values for every texture coordinate:

>>> texture = texturedtrimesh.texture
>>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
>>> pixel_values_at_tcs = texture[tc_ps[: ,0], tc_ps[:, 1]]

tojson()
Convert this TriMesh to a dictionary representation suitable for inclusion in the LJSON landmark for-
mat. Note that this enforces a simpler representation, and as such is not suitable for a permanent serial-
ization of a TriMesh (to be clear, TriMesh‘s serialized as part of a landmark set will be rebuilt as a
PointUndirectedGraph).

Returnsjson (dict) – Dictionary with points and connectivity keys.

tri_areas()
The area of each triangle face.

Returnsareas ((n_tris,) ndarray) – Area of each triangle, ordered as the trilist is
RaisesValueError – If mesh is not 2D or 3D

tri_normals()
Compute the triangle face normals from the current set of points and triangle list. Only valid for 3D
dimensional meshes.

Returnsnormals ((n_tris, 3) ndarray) – Normal at each triangle face.
RaisesValueError – If mesh is not 3D

unique_edge_indicies()
An unordered index into points that rebuilds the unique edges of this TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsunique_edge_indicies ((n_unique_edges, 2) ndarray) – Return a point in-
dex that rebuilds all edges present in this TriMesh only once.

unique_edge_lengths()
The length of each edge in this TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsedge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each
edge in this TriMesh.

unique_edge_vectors()
An unordered vector of unique edges for the whole TriMesh.

Note that each physical edge will only be counted once in this method (i.e. edges shared between neigh-
bouring triangles are only counted once not twice). The ordering should be considered random.

Returnsunique_edge_vectors ((n_unique_edges, n_dims) ndarray) – Vectors for
each unique edge in this TriMesh.

vertex_normals()
Compute the per-vertex normals from the current set of points and triangle list. Only valid for 3D dimen-
sional meshes.

Returnsnormals ((n_points, 3) ndarray) – Normal at each point.
RaisesValueError – If mesh is not 3D

view_widget(browser_style=’buttons’, figure_size=(10, 8), style=’coloured’)
Visualization of the TriMesh using the visualize_pointclouds widget.

204 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameters
•browser_style ({’buttons’, ’slider’}, optional) – It defines whether
the selector of the objects will have the form of plus/minus buttons or a slider.

•figure_size ((int, int) tuple, optional) – The initial size of the rendered fig-
ure.

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the
style of the widget will be coloured. If minimal, then the style is simple using
black and white colours.

has_landmarks
Whether the object has landmarks.

Typebool

landmarks
The landmarks object.

TypeLandmarkManager

n_dims
The number of dimensions in the pointcloud.

Typeint

n_landmark_groups
The number of landmark groups on this object.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

n_points
The number of points in the pointcloud.

Typeint

n_tris
The number of triangles in the triangle list.

Typeint

2.8.6 Group Operations

mean_pointcloud

menpo.shape.mean_pointcloud(pointclouds)
Compute the mean of a list of PointCloud or subclass objects. The list is assumed to be homogeneous i.e all
elements of the list are assumed to belong to the same point cloud subclass just as all elements are also assumed
to have the same number of points and represent semantically equivalent point clouds.

Parameterspointclouds (list of PointCloud or subclass) – List of point cloud or subclass
objects from which we want to compute the mean.

Returnsmean_pointcloud (PointCloud or subclass) – The mean point cloud or subclass.

2.8. menpo.shape 205

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

2.9 menpo.transform

2.9.1 Homogeneous Transforms

Homogeneous

class menpo.transform.Homogeneous(h_matrix, copy=True, skip_checks=False)
Bases: ComposableTransform, Vectorizable, VComposable, VInvertible

A simple n-dimensional homogeneous transformation.

Adds a unit homogeneous coordinate to points, performs the dot product, re-normalizes by division by the
homogeneous coordinate, and returns the result.

Can be composed with another Homogeneous, so long as the dimensionality matches.
Parameters

•h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix
defining this transform.

•copy (bool, optional) – If False, avoid copying h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, avoid sanity checks on the h_matrix.
Useful for performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

206 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

2.9. menpo.transform 207

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(vector)
Update the state of this object from a vector form.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of this ob-
ject

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_identity(n_dims)
Creates an identity matrix Homogeneous transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Homogeneous) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

TypeHomogeneous

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

208 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

composes_inplace_with
Homogeneous can swallow composition with any other Homogeneous, subclasses will have to over-
ride and be more specific.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
True iff set_h_matrix() is permitted on this type of transform.

If this returns False calls to set_h_matrix() will raise a NotImplementedError.
Typebool

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
The length of the vector that this object produces.

Typeint

Affine

class menpo.transform.Affine(h_matrix, copy=True, skip_checks=False)
Bases: Homogeneous

Base class for all n-dimensional affine transformations. Provides methods to break the transform down into its
constituent scale/rotation/translation, to view the homogeneous matrix equivalent, and to chain this transform
with other affine transformations.

Parameters
•h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix
of the affine transformation.

•copy (bool, optional) – If False avoid copying h_matrix for performance.
•skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for
performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

2.9. menpo.transform 209

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

210 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

decompose()
Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.
Returns

transforms (list of DiscreteAffine) – Equivalent to this affine transform, such
that:

reduce(lambda x,y: x.chain(y), self.decompose()) == self

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Updates this Affine in-place from the new parameters. See from_vector for details of the parameter format

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

2.9. menpo.transform 211

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

classmethod init_identity(n_dims)
Creates an identity matrix Affine transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Affine) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

TypeHomogeneous

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

composes_inplace_with
Affine can swallow composition with any other Affine.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
True iff set_h_matrix() is permitted on this type of transform.

If this returns False calls to set_h_matrix() will raise a NotImplementedError.
Typebool

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

212 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
n_dims * (n_dims + 1) parameters - every element of the matrix but the homogeneous part.

Typeint

Examples
2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

Similarity

class menpo.transform.Similarity(h_matrix, copy=True, skip_checks=False)
Bases: Affine

Specialist version of an Affine that is guaranteed to be a Similarity transform.
Parameters

•h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix
of the affine transformation.

•copy (bool, optional) – If False avoid copying h_matrix for performance.
•skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for
performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

2.9. menpo.transform 213

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self

214 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnstransform (Transform or TransformChain) – If the composition was native,
a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

decompose()
Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.
Returns

transforms (list of DiscreteAffine) – Equivalent to this affine transform, such
that:

reduce(lambda x,y: x.chain(y), self.decompose()) == self

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Returns an instance of the transform from the given parameters, expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Similarity: 4 parameters:

[a, b, tx, ty]

Parametersp ((P,) ndarray) – The array of parameters.
RaisesDimensionalityError, NotImplementedError – Only 2D transforms are supported.

2.9. menpo.transform 215

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Similarity) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

TypeHomogeneous

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

composes_inplace_with
Affine can swallow composition with any other Affine.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

216 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Type(n_dims, n_dims) ndarray

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
2D Similarity: 4 parameters:

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported
Returnsn_parameters (int) – The transform parameters
RaisesDimensionalityError, NotImplementedError – Only 2D transforms are supported.

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

Rotation

class menpo.transform.Rotation(rotation_matrix, skip_checks=False)
Bases: DiscreteAffine, Similarity

Abstract n_dims rotation transform.
Parameters

•rotation_matrix ((n_dims, n_dims) ndarray) – A valid, square rotation
matrix

•skip_checks (bool, optional) – If True avoid sanity checks on
rotation_matrix for performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.

2.9. menpo.transform 217

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameters
•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

axis_and_angle_of_rotation()
Abstract method for computing the axis and angle of rotation.

Returns
•axis ((n_dims,) ndarray) – The unit vector representing the axis of rotation
•angle_of_rotation (float) – The angle in radians of the rotation about the axis.
The angle is signed in a right handed sense.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self

218 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnstransform (Transform or TransformChain) – If the composition was native,
a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Returns an instance of the transform from the given parameters, expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Rotation: 1 parameter:

[theta]

Parametersp ((1,) ndarray) – The array of parameters.
Returnstransform (Rotation) – The transform initialised to the given parameters.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_from_2d_ccw_angle(theta, degrees=True)
Convenience constructor for 2D CCW rotations about the origin.

Parameters

2.9. menpo.transform 219

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•theta (float) – The angle of rotation about the origin
•degrees (bool, optional) – If True theta is interpreted as a degree. If False,
theta is interpreted as radians.

Returnsrotation (Rotation) – A 2D rotation transform.

classmethod init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Rotation) – The identity matrix transform.

pseudoinverse()
The inverse rotation matrix.

TypeRotation

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

set_rotation_matrix(value, skip_checks=False)
Sets the rotation matrix.

Parameters
•value ((n_dims, n_dims) ndarray) – The new rotation matrix.
•skip_checks (bool, optional) – If True avoid sanity checks on value for
performance.

composes_inplace_with
Rotation can swallow composition with any other Rotation.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

220 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

rotation_matrix
The rotation matrix.

Type(n_dims, n_dims) ndarray

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

Translation

class menpo.transform.Translation(translation, skip_checks=False)
Bases: DiscreteAffine, Similarity

An n_dims-dimensional translation transform.
Parameters

•translation ((n_dims,) ndarray) – The translation in each axis.
•skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for
performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.

2.9. menpo.transform 221

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

222 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Updates the Translation inplace.

Parametersvector ((n_dims,) ndarray) – The array of parameters.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Translation) – The identity matrix transform.

pseudoinverse()
The inverse translation (negated).

TypeTranslation

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

2.9. menpo.transform 223

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

composes_inplace_with
Affine can swallow composition with any other Affine.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
The number of parameters: n_dims

Typeint

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

Scale

menpo.transform.Scale(scale_factor, n_dims=None)
Factory function for producing Scale transforms. Zero scale factors are not permitted.

A UniformScale will be produced if:
•A float scale_factor and a n_dims kwarg are provided
•A ndarray scale_factor with shape (n_dims,) is provided with all elements being the same

A NonUniformScale will be provided if:
•A ndarray scale_factorwith shape (n_dims,) is provided with at least two differing scale factors.

224 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameters
•scale_factor (float or (n_dims,) ndarray) – Scale for each axis.
•n_dims (int, optional) – The dimensionality of the output transform.

Returnsscale (UniformScale or NonUniformScale) – The correct type of scale
RaisesValueError – If any of the scale factors is zero

UniformScale

class menpo.transform.UniformScale(scale, n_dims, skip_checks=False)
Bases: DiscreteAffine, Similarity

An abstract similarity scale transform, with a single scale component applied to all dimensions. This is ab-
stracted out to remove unnecessary code duplication.

Parameters
•scale ((n_dims,) ndarray) – A scale for each axis.
•n_dims (int) – The number of dimensions
•skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for
performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

2.9. menpo.transform 225

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

226 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Returns an instance of the transform from the given parameters, expected to be in Fortran ordering.

Parametersp (float) – The parameter

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (UniformScale) – The identity matrix transform.

pseudoinverse()
The inverse scale.

TypeUniformScale

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

composes_inplace_with
UniformScale can swallow composition with any other UniformScale.

2.9. menpo.transform 227

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
The number of parameters: 1

Typeint

scale
The single scale value.

Typefloat

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

NonUniformScale

class menpo.transform.NonUniformScale(scale, skip_checks=False)
Bases: DiscreteAffine, Affine

An n_dims scale transform, with a scale component for each dimension.
Parameters

•scale ((n_dims,) ndarray) – A scale for each axis.
•skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for
performance.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

228 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

2.9. menpo.transform 229

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(vector)
Updates the NonUniformScale inplace.

Parametersvector ((n_dims,) ndarray) – The array of parameters.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

classmethod init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (NonUniformScale) – The identity matrix transform.

230 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

pseudoinverse()
The inverse scale matrix.

TypeNonUniformScale

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

composes_inplace_with
NonUniformScale can swallow composition with any other NonUniformScale and
UniformScale.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The dimensionality of the data the transform operates on.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

2.9. menpo.transform 231

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_parameters
The number of parameters: n_dims. They have the form [scale_x, scale_y,] represent-
ing the scale across each axis.

Typelist of int

scale
The scale vector.

Type(n_dims,) ndarray

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

2.9.2 Alignments

ThinPlateSplines

class menpo.transform.ThinPlateSplines(source, target, kernel=None,
min_singular_val=0.0001)

Bases: Alignment, Transform, Invertible

The thin plate splines (TPS) alignment between 2D source and target landmarks.

kernel can be used to specify an alternative kernel function. If None is supplied, the R2LogR2RBF kernel
will be used.

Parameters
•source ((N, 2) ndarray) – The source points to apply the tps from
•target ((N, 2) ndarray) – The target points to apply the tps to
•kernel (RadialBasisFunction, optional) – The kernel to apply.
•min_singular_val (float, optional) – If the target has points that are nearly coin-
cident, the coefficients matrix is rank deficient, and therefore not invertible. Therefore,
we only take the inverse on the full-rank matrix and drop any singular values that are
less than this value (close to zero).

RaisesValueError – TPS is only with on 2-dimensional data
aligned_source()

The result of applying self to source
TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

Typefloat

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

232 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

compose_after(transform)
Returns a TransformChain that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.
Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (TransformChain) – The resulting transform chain.

compose_before(transform)
Returns a TransformChain that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.
Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (TransformChain) – The resulting transform chain.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Typetype(self)

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

has_true_inverse
TypeFalse

n_dims
The number of dimensions of the target.

2.9. menpo.transform 233

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Typeint

n_dims_output
The output of the data from the transform.

None if the output of the transform is not dimension specific.
Typeint or None

n_points
The number of points on the target.

Typeint

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

PiecewiseAffine

menpo.transform.PiecewiseAffine
alias of CachedPWA

AlignmentAffine

class menpo.transform.AlignmentAffine(source, target)
Bases: HomogFamilyAlignment, Affine

Constructs an Affine by finding the optimal affine transform to align source to target.
Parameters

•source (PointCloud) – The source pointcloud instance used in the alignment
•target (PointCloud) – The target pointcloud instance used in the alignment

Notes
We want to find the optimal transform M which satisfies 𝑀𝑎 = 𝑏 where 𝑎 and 𝑏 are the source and target
homogeneous vectors respectively.

(M a)' = b'
a' M' = b'
a a' M' = a b'

a a’ is of shape (n_dim + 1, n_dim + 1) and so can be inverted to solve for M.

This approach is the analytical linear least squares solution to the problem at hand. It will have a solution as
long as (a a’) is non-singular, which generally means at least 2 corresponding points are required.

aligned_source()
The result of applying self to source

TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

234 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Typefloat

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_non_alignment()
Returns a copy of this Affine without its alignment nature.

Returnstransform (Affine) – A version of this affine with the same transform behavior
but without the alignment logic.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

2.9. menpo.transform 235

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this HomogFamilyAlignment.

Returnsnew_transform (type(self)) – A copy of this object

decompose()
Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.
Returns

transforms (list of DiscreteAffine) – Equivalent to this affine transform, such
that:

reduce(lambda x,y: x.chain(y), self.decompose()) == self

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

236 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Updates this Affine in-place from the new parameters. See from_vector for details of the parameter format

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

init_identity(n_dims)
Creates an identity matrix Affine transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Affine) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Returnstransform (type(self)) – The inverse of this transform.

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note: Updating the h_matrix on an AlignmentAffine triggers a sync of the target.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set
•copy (bool, optional) – If False do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

composes_inplace_with
Affine can swallow composition with any other Affine.

2.9. menpo.transform 237

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
True iff set_h_matrix() is permitted on this type of transform.

If this returns False calls to set_h_matrix() will raise a NotImplementedError.
Typebool

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The number of dimensions of the target.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
n_dims * (n_dims + 1) parameters - every element of the matrix but the homogeneous part.

Typeint

Examples
2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

n_points
The number of points on the target.

Typeint

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

238 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

AlignmentSimilarity

class menpo.transform.AlignmentSimilarity(source, target, rotation=True)
Bases: HomogFamilyAlignment, Similarity

Infers the similarity transform relating two vectors with the same dimensionality. This is simply the procrustes
alignment of the source to the target.

Parameters
•source (PointCloud) – The source pointcloud instance used in the alignment
•target (PointCloud) – The target pointcloud instance used in the alignment
•rotation (bool, optional) – If False, the rotation component of the similarity trans-
form is not inferred.

aligned_source()
The result of applying self to source

TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

Typefloat

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_non_alignment()
Returns a copy of this similarity without it’s alignment nature.

Returnstransform (Similarity) – A version of this similarity with the same transform
behavior but without the alignment logic.

2.9. menpo.transform 239

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.

240 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameterstransform (composes_inplace_with) – Transform to be applied after
self

RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this HomogFamilyAlignment.

Returnsnew_transform (type(self)) – A copy of this object

decompose()
Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.
Returns

transforms (list of DiscreteAffine) – Equivalent to this affine transform, such
that:

reduce(lambda x,y: x.chain(y), self.decompose()) == self

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Returns an instance of the transform from the given parameters, expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Similarity: 4 parameters:

[a, b, tx, ty]

Parametersp ((P,) ndarray) – The array of parameters.
RaisesDimensionalityError, NotImplementedError – Only 2D transforms are supported.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Similarity) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Returnstransform (type(self)) – The inverse of this transform.

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

2.9. menpo.transform 241

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

composes_inplace_with
Affine can swallow composition with any other Affine.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The number of dimensions of the target.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
2D Similarity: 4 parameters:

242 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported
Returnsn_parameters (int) – The transform parameters
RaisesDimensionalityError, NotImplementedError – Only 2D transforms are supported.

n_points
The number of points on the target.

Typeint

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

AlignmentRotation

class menpo.transform.AlignmentRotation(source, target)
Bases: HomogFamilyAlignment, Rotation

Constructs an Rotation by finding the optimal rotation transform to align source to target.
Parameters

•source (PointCloud) – The source pointcloud instance used in the alignment
•target (PointCloud) – The target pointcloud instance used in the alignment

aligned_source()
The result of applying self to source

TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

Typefloat

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

2.9. menpo.transform 243

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_non_alignment()
Returns a copy of this rotation without its alignment nature.

Returnstransform (Rotation) – A version of this rotation with the same transform behav-
ior but without the alignment logic.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

axis_and_angle_of_rotation()
Abstract method for computing the axis and angle of rotation.

Returns
•axis ((n_dims,) ndarray) – The unit vector representing the axis of rotation
•angle_of_rotation (float) – The angle in radians of the rotation about the axis.
The angle is signed in a right handed sense.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self

244 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this HomogFamilyAlignment.

Returnsnew_transform (type(self)) – A copy of this object

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Returns an instance of the transform from the given parameters, expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Rotation: 1 parameter:

[theta]

Parametersp ((1,) ndarray) – The array of parameters.
Returnstransform (Rotation) – The transform initialised to the given parameters.

2.9. menpo.transform 245

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

init_from_2d_ccw_angle(theta, degrees=True)
Convenience constructor for 2D CCW rotations about the origin.

Parameters
•theta (float) – The angle of rotation about the origin
•degrees (bool, optional) – If True theta is interpreted as a degree. If False,
theta is interpreted as radians.

Returnsrotation (Rotation) – A 2D rotation transform.

init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Rotation) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Returnstransform (type(self)) – The inverse of this transform.

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

set_rotation_matrix(value, skip_checks=False)
Sets the rotation matrix.

Parameters
•value ((n_dims, n_dims) ndarray) – The new rotation matrix.
•skip_checks (bool, optional) – If True avoid sanity checks on value for
performance.

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

246 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

composes_inplace_with
Rotation can swallow composition with any other Rotation.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The number of dimensions of the target.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_points
The number of points on the target.

Typeint

rotation_matrix
The rotation matrix.

Type(n_dims, n_dims) ndarray

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

AlignmentTranslation

class menpo.transform.AlignmentTranslation(source, target)
Bases: HomogFamilyAlignment, Translation

2.9. menpo.transform 247

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Constructs a Translation by finding the optimal translation transform to align source to target.
Parameters

•source (PointCloud) – The source pointcloud instance used in the alignment
•target (PointCloud) – The target pointcloud instance used in the alignment

aligned_source()
The result of applying self to source

TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

Typefloat

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_non_alignment()
Returns a copy of this translation without its alignment nature.

Returnstransform (Translation) – A version of this transform with the same transform
behavior but without the alignment logic.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

248 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this HomogFamilyAlignment.

Returnsnew_transform (type(self)) – A copy of this object

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

2.9. menpo.transform 249

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Updates the Translation inplace.

Parametersvector ((n_dims,) ndarray) – The array of parameters.

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (Translation) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Returnstransform (type(self)) – The inverse of this transform.

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

composes_inplace_with
Affine can swallow composition with any other Affine.

250 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The number of dimensions of the target.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
The number of parameters: n_dims

Typeint

n_points
The number of points on the target.

Typeint

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

AlignmentUniformScale

class menpo.transform.AlignmentUniformScale(source, target)
Bases: HomogFamilyAlignment, UniformScale

Constructs a UniformScale by finding the optimal scale transform to align source to target.
Parameters

•source (PointCloud) – The source pointcloud instance used in the alignment
•target (PointCloud) – The target pointcloud instance used in the alignment

2.9. menpo.transform 251

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

aligned_source()
The result of applying self to source

TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

Typefloat

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

as_non_alignment()
Returns a copy of this uniform scale without it’s alignment nature.

Returnstransform (UniformScale) – A version of this scale with the same transform
behavior but without the alignment logic.

as_vector(**kwargs)
Returns a flattened representation of the object as a single vector.

Returnsvector ((N,) ndarray) – The core representation of the object, flattened into a single
vector. Note that this is always a view back on to the original object, but is not writable.

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self

252 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnstransform (Transform or TransformChain) – If the composition was native,
a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this HomogFamilyAlignment.

Returnsnew_transform (type(self)) – A copy of this object

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

from_vector(vector)
Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a full object from it’s standardized flattened
state. This is the default implementation, which is a deepcopy of the object followed by a call to
from_vector_inplace(). This method can be overridden for a performance benefit if desired.

Parametersvector ((n_parameters,) ndarray) – Flattened representation of the ob-
ject.

2.9. menpo.transform 253

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returnstransform (Homogeneous) – An new instance of this class.

from_vector_inplace(p)
Returns an instance of the transform from the given parameters, expected to be in Fortran ordering.

Parametersp (float) – The parameter

has_nan_values()
Tests if the vectorized form of the object contains nan values or not. This is particularly useful for objects
with unknown values that have been mapped to nan values.

Returnshas_nan_values (bool) – If the vectorized object contains nan values.

init_identity(n_dims)
Creates an identity transform.

Parametersn_dims (int) – The number of dimensions.
Returnsidentity (UniformScale) – The identity matrix transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Returnstransform (type(self)) – The inverse of this transform.

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

set_h_matrix(value, copy=True, skip_checks=False)
Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the h_matrix through this method, specifically
if changing the h_matrix could change the nature of the transform. See h_matrix_is_mutable
for how you can discover if the h_matrix is allowed to be set for a given class.

Parameters
•value (ndarray) – The new homogeneous matrix to set.
•copy (bool, optional) – If False, do not copy the h_matrix. Useful for perfor-
mance.

•skip_checks (bool, optional) – If True, skip checking. Useful for perfor-
mance.

RaisesNotImplementedError – If h_matrix_is_mutable returns False.

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

composes_inplace_with
UniformScale can swallow composition with any other UniformScale.

composes_with
Any Homogeneous can compose with any other Homogeneous.

h_matrix
The homogeneous matrix defining this transform.

254 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Type(n_dims + 1, n_dims + 1) ndarray

h_matrix_is_mutable
h_matrix is not mutable.

TypeFalse

has_true_inverse
The pseudoinverse is an exact inverse.

TypeTrue

linear_component
The linear component of this affine transform.

Type(n_dims, n_dims) ndarray

n_dims
The number of dimensions of the target.

Typeint

n_dims_output
The output of the data from the transform.

Typeint

n_parameters
The number of parameters: 1

Typeint

n_points
The number of points on the target.

Typeint

scale
The single scale value.

Typefloat

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

translation_component
The translation component of this affine transform.

Type(n_dims,) ndarray

2.9.3 Group Alignments

GeneralizedProcrustesAnalysis

class menpo.transform.GeneralizedProcrustesAnalysis(sources, target=None)
Bases: MultipleAlignment

Class for aligning multiple source shapes between them.

2.9. menpo.transform 255

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

After construction, the AlignmentSimilarity transforms used to map each source optimally to the target
can be found at transforms.

Parameters
•sources (list of PointCloud) – List of pointclouds to be aligned.
•target (PointCloud, optional) – The target PointCloud to align each source
to. If None, then the mean of the sources is used.

RaisesValueError – Need at least two sources to align
mean_aligned_shape()

Returns the mean of the aligned shapes.
TypePointCloud

mean_alignment_error()
Returns the average error of the recursive procrustes alignment.

Typefloat

2.9.4 Composite Transforms

TransformChain

class menpo.transform.TransformChain(transforms)
Bases: ComposableTransform

A chain of transforms that can be efficiently applied one after the other.

This class is the natural product of composition. Note that objects may know how to compose themselves more
efficiently - such objects implement the ComposableTransform or VComposable interfaces.

Parameterstransforms (list of Transform) – The list of transforms to be applied. Note that
the first transform will be applied first - the result of which is fed into the second transform
and so on until the chain is exhausted.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

256 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

2.9. menpo.transform 257

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

composes_inplace_with
The Transform s that this transform composes inplace with natively (i.e. no TransformChain will
be produced).

An attempt to compose inplace against any type that is not an instance of this property on this class will
result in an Exception.

TypeTransform or tuple of Transform s

composes_with
The Transform s that this transform composes with natively (i.e. no TransformChain will be
produced).

If native composition is not possible, falls back to producing a TransformChain.

By default, this is the same list as composes_inplace_with.
TypeTransform or tuple of Transform s

n_dims
The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.
Typeint or None

n_dims_output
The output of the data from the transform.

None if the output of the transform is not dimension specific.
Typeint or None

2.9.5 Radial Basis Functions

R2LogR2RBF

class menpo.transform.R2LogR2RBF(c)
Bases: RadialBasisFunction

The 𝑟2 log 𝑟2 basis function.

The derivative of this function is 2𝑟(log 𝑟2 + 1).

Note: 𝑟 = ‖𝑥− 𝑐‖

Parametersc ((n_centres, n_dims) ndarray) – The set of centers that make the basis. Usu-
ally represents a set of source landmarks.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

258 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

compose_after(transform)
Returns a TransformChain that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.
Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (TransformChain) – The resulting transform chain.

compose_before(transform)
Returns a TransformChain that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.
Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (TransformChain) – The resulting transform chain.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

n_centres
The number of centres.

Typeint

n_dims
The RBF can only be applied on points with the same dimensionality as the centres.

2.9. menpo.transform 259

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Typeint

n_dims_output
The result of the transform has a dimension (weight) for every centre.

Typeint

R2LogRRBF

class menpo.transform.R2LogRRBF(c)
Bases: RadialBasisFunction

Calculates the 𝑟2 log 𝑟 basis function.

The derivative of this function is 𝑟(1 + 2 log 𝑟).

Note: 𝑟 = ‖𝑥− 𝑐‖

Parametersc ((n_centres, n_dims) ndarray) – The set of centers that make the basis. Usu-
ally represents a set of source landmarks.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

compose_after(transform)
Returns a TransformChain that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.
Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (TransformChain) – The resulting transform chain.

260 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

compose_before(transform)
Returns a TransformChain that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.
Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (TransformChain) – The resulting transform chain.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

n_centres
The number of centres.

Typeint

n_dims
The RBF can only be applied on points with the same dimensionality as the centres.

Typeint

n_dims_output
The result of the transform has a dimension (weight) for every centre.

Typeint

2.9.6 Abstract Bases

Transform

class menpo.transform.Transform
Bases: Copyable

Abstract representation of any spatial transform.

Provides a unified interface to apply the transform with apply_inplace() and apply().

All Transforms support basic composition to form a TransformChain.

There are two useful forms of composition. Firstly, the mathematical composition symbol o has the following
definition:

Let a(x) and b(x) be two transforms on x.
(a o b)(x) == a(b(x))

This functionality is provided by the compose_after() family of methods:

(a.compose_after(b)).apply(x) == a.apply(b.apply(x))

Equally useful is an inversion the order of composition - so that over time a large chain of transforms can be
built to do a useful job, and composing on this chain adds another transform to the end (after all other preceding
transforms have been performed).

2.9. menpo.transform 261

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

For instance, let’s say we want to rescale a PointCloud p around its mean, and then translate it some place
else. It would be nice to be able to do something like:

t = Translation(-p.centre) # translate to centre
s = Scale(2.0) # rescale
move = Translate([10, 0 ,0]) # budge along the x axis
t.compose(s).compose(-t).compose(move)

In Menpo, this functionality is provided by the compose_before() family of methods:

(a.compose_before(b)).apply(x) == b.apply(a.apply(x))

For native composition, see the ComposableTransform subclass and the VComposable mix-in.

For inversion, see the Invertible and VInvertible mix-ins.

For alignment, see the Alignment mix-in.

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

compose_after(transform)
Returns a TransformChain that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.
Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (TransformChain) – The resulting transform chain.

compose_before(transform)
Returns a TransformChain that represents this transform composed before the given transform:

262 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.
Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (TransformChain) – The resulting transform chain.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

n_dims
The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.
Typeint or None

n_dims_output
The output of the data from the transform.

None if the output of the transform is not dimension specific.
Typeint or None

Transformable

class menpo.transform.base.Transformable
Bases: Copyable

Interface for objects that know how to be transformed by the Transform interface.

When Transform.apply_inplace is called on an object, the _transform_inplace() method is
called, passing in the transforms’ _apply() function.

This allows for the object to define how it should transform itself.

_transform_inplace(transform)
Apply the given transform function to self inplace.

Parameterstransform (function) – Function that applies a transformation to the trans-
formable object.

Returnstransformed (type(self)) – The transformed object, having been transformed
in place.

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

2.9. menpo.transform 263

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

ComposableTransform

class menpo.transform.base.composable.ComposableTransform
Bases: Transform

Transform subclass that enables native composition, such that the behavior of multiple Transform s is
composed together in a natural way.

_compose_after_inplace(transform)
Specialised inplace composition. This should be overridden to provide specific cases of composition as
defined in composes_inplace_with.

Parameterstransform (composes_inplace_with) – Transform to be applied before
self

_compose_before_inplace(transform)
Specialised inplace composition. This should be overridden to provide specific cases of composition as
defined in composes_inplace_with.

Parameterstransform (composes_inplace_with) – Transform to be applied after
self

apply(x, batch_size=None, **kwargs)
Applies this transform to x.

If x is Transformable, x will be handed this transform object to transform itself non-destructively (a
transformed copy of the object will be returned).

If not, x is assumed to be an ndarray. The transformation will be non-destructive, returning the trans-
formed version.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable or (n_points, n_dims) ndarray) – The array or
object to be transformed.

•batch_size (int, optional) – If not None, this determines how many items
from the numpy array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices to be computed.

•kwargs (dict) – Passed through to _apply().
Returnstransformed (type(x)) – The transformed object or array

apply_inplace(x, **kwargs)
Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply() method.
Parameters

•x (Transformable) – The Transformable object to be transformed.
•kwargs (dict) – Passed through to _apply().

Returnstransformed (type(x)) – The transformed object

compose_after(transform)
A Transform that represents this transform composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose operator, o.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

264 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Parameterstransform (Transform) – Transform to be applied before self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_after_inplace(transform)
Update self so that it represents this transform composed after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied before

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

compose_before(transform)
A Transform that represents this transform composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back to a TransformChain as a last
resort. See composes_with for a description of how the mode of composition is decided.

Parameterstransform (Transform) – Transform to be applied after self
Returnstransform (Transform or TransformChain) – If the composition was native,

a single new Transform will be returned. If not, a TransformChain is returned
instead.

compose_before_inplace(transform)
Update self so that it represents this transform composed before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition. b is left unchanged.
Parameterstransform (composes_inplace_with) – Transform to be applied after

self
RaisesValueError – If transform isn’t an instance of composes_inplace_with

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

composes_inplace_with
The Transform s that this transform composes inplace with natively (i.e. no TransformChain will
be produced).

2.9. menpo.transform 265

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

An attempt to compose inplace against any type that is not an instance of this property on this class will
result in an Exception.

TypeTransform or tuple of Transform s

composes_with
The Transform s that this transform composes with natively (i.e. no TransformChain will be
produced).

If native composition is not possible, falls back to producing a TransformChain.

By default, this is the same list as composes_inplace_with.
TypeTransform or tuple of Transform s

n_dims
The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.
Typeint or None

n_dims_output
The output of the data from the transform.

None if the output of the transform is not dimension specific.
Typeint or None

Invertible

class menpo.transform.base.invertible.Invertible
Bases: object

Mix-in for invertible transforms. Provides an interface for taking the pseudo or true inverse of a transform.

Has to be implemented in conjunction with Transform.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Typetype(self)

has_true_inverse
True if the pseudoinverse is an exact inverse.

Typebool

Alignment

class menpo.transform.base.alignment.Alignment(source, target)
Bases: Targetable, Viewable

Mix-in for Transform that have been constructed from an optimisation aligning a source PointCloud to a
target PointCloud.

This is naturally an extension of the Targetable interface - we just augment Targetable with the concept
of a source, and related methods to construct alignments between a source and a target.

Note that to inherit from Alignment, you have to be a Transform subclass first.
Parameters

•source (PointCloud) – A PointCloud that the alignment will be based from
•target (PointCloud) – A PointCloud that the alignment is targeted towards

266 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

aligned_source()
The result of applying self to source

TypePointCloud

alignment_error()
The Frobenius Norm of the difference between the target and the aligned source.

Typefloat

copy()
Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self will be deeply copied. Dictionaries and
sets will be shallow copied, and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types should overwrite this method to
ensure all state is copied.

Returnstype(self) – A copy of this object

set_target(new_target)
Update this object so that it attempts to recreate the new_target.

Parametersnew_target (PointCloud) – The new target that this object should try and
regenerate.

n_dims
The number of dimensions of the target.

Typeint

n_points
The number of points on the target.

Typeint

source
The source PointCloud that is used in the alignment.

The source is not mutable.
TypePointCloud

target
The current PointCloud that this object produces.

To change the target, use set_target().
TypePointCloud

MultipleAlignment

class menpo.transform.groupalign.base.MultipleAlignment(sources, target=None)
Bases: object

Abstract base class for aligning multiple source shapes to a target shape.
Parameters

•sources (list of PointCloud) – List of pointclouds to be aligned.
•target (PointCloud, optional) – The target PointCloud to align each source
to. If None, then the mean of the sources is used.

RaisesValueError – Need at least two sources to align

DiscreteAffine

class menpo.transform.homogeneous.affine.DiscreteAffine
Bases: object

2.9. menpo.transform 267

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

A discrete Affine transform operation (such as a Scale(), Translation or Rotation()). Has to be
invertable. Make sure you inherit from DiscreteAffine first, for optimal decompose() behavior.

decompose()
A DiscreteAffine is already maximally decomposed - return a copy of self in a list.

Returnstransform (DiscreteAffine) – Deep copy of self.

2.9.7 Performance Specializations

Mix-ins that provide fast vectorized variants of methods.

VComposable

class menpo.transform.base.composable.VComposable
Bases: object

Mix-in for Vectorizable ComposableTransform s.

Use this mix-in with ComposableTransform if the ComposableTransform in question is
Vectorizable as this adds from_vector() variants to the ComposableTransform interface.

These can be tuned for performance.

compose_after_from_vector_inplace(vector)
Specialised inplace composition with a vector. This should be overridden to provide specific cases of
composition whereby the current state of the transform can be derived purely from the provided vector.

Parametersvector ((n_parameters,) ndarray) – Vector to update the transform state
with.

VInvertible

class menpo.transform.base.invertible.VInvertible
Bases: Invertible

Mix-in for Vectorizable Invertible Transform s.

Prefer this mix-in over Invertible if the Transform in question is Vectorizable as this adds
from_vector() variants to the Invertible interface. These can be tuned for performance, and are,
for instance, needed by some of the machinery of fit.

pseudoinverse()
The pseudoinverse of the transform - that is, the transform that results from swapping source and target,
or more formally, negating the transforms parameters. If the transform has a true inverse this is returned
instead.

Typetype(self)

pseudoinverse_vector(vector)
The vectorized pseudoinverse of a provided vector instance. Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be entirely avoided in some cases.
Parametersvector ((n_parameters,) ndarray) – A vectorized version of self
Returnspseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the

vector provided

268 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

has_true_inverse
True if the pseudoinverse is an exact inverse.

Typebool

2.10 menpo.visualize

2.10.1 Abstract Classes

Renderer

class menpo.visualize.Renderer(figure_id, new_figure)
Bases: object

Abstract class for rendering visualizations. Framework specific implementations of these classes are made in
order to separate implementation cleanly from the rest of the code.

It is assumed that the renderers follow some form of stateful pattern for rendering to Figures. Therefore, the
major interface for rendering involves providing a figure_id or a bool about whether a new figure should be used.
If neither are provided then the default state of the rendering engine is assumed to be maintained.

Providing both a figure_id and new_figure == True is not a valid state.
Parameters

•figure_id (object) – A figure id. Could be any valid object that identifies a figure
in a given framework (str, int, float, etc.).

•new_figure (bool) – Whether the rendering engine should create a new figure.
RaisesValueError – It is not valid to provide a figure id AND request a new figure to be rendered

on.
get_figure()

Abstract method for getting the correct figure to render on. Should also set the correct figure_id for the
figure.

Returnsfigure (object) – The figure object that the renderer will render on.

render(**kwargs)
Abstract method to be overridden by the renderer. This will implement the actual rendering code for a
given object class.

Parameterskwargs (dict) – Passed through to specific rendering engine.
Returnsviewer (Renderer) – Pointer to self.

save_figure(**kwargs)
Abstract method for saving the figure of the current figure_id to file. It will implement the actual saving
code for a given object class.

Parameterskwargs (dict) – Options to be set when saving the figure to file.

Viewable

class menpo.visualize.Viewable
Bases: object

Abstract interface for objects that can visualize themselves. This assumes that the class has dimensionality as
the view method checks the n_dims property to wire up the correct view method.

2.10. menpo.visualize 269

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

LandmarkableViewable

class menpo.visualize.LandmarkableViewable
Bases: object

Mixin for Landmarkable and Viewable objects. Provides a single helper method for viewing Landmarks
and self on the same figure.

MatplotlibRenderer

class menpo.visualize.MatplotlibRenderer(figure_id, new_figure)
Bases: Renderer

Abstract class for rendering visualizations using Matplotlib.
Parameters

•figure_id (int or None) – A figure id or None. None assumes we maintain the
Matplotlib state machine and use plt.gcf().

•new_figure (bool) – If True, it creates a new figure to render on.
get_figure()

Gets the figure specified by the combination of self.figure_id and self.new_figure. If
self.figure_id == None then plt.gcf() is used. self.figure_id is also set to the correct
id of the figure if a new figure is created.

Returnsfigure (Matplotlib figure object) – The figure we will be rendering on.

render(**kwargs)
Abstract method to be overridden by the renderer. This will implement the actual rendering code for a
given object class.

Parameterskwargs (dict) – Passed through to specific rendering engine.
Returnsviewer (Renderer) – Pointer to self.

save_figure(filename, format=’png’, dpi=None, face_colour=’w’, edge_colour=’w’, orien-
tation=’portrait’, paper_type=’letter’, transparent=False, pad_inches=0.1, over-
write=False)

Method for saving the figure of the current figure_id to file.
Parameters

•filename (str or file-like object) – The string path or file-like object to save
the figure at/into.

•format (str) – The format to use. This must match the file path if the file path
is a str.

•dpi (int > 0 or None, optional) – The resolution in dots per inch.
•face_colour (See Below, optional) – The face colour of the figure rectangle.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of len 3

•edge_colour (See Below, optional) – The edge colour of the figure rectangle.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of len 3

270 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•orientation ({portrait, landscape}, optional) – The page orienta-
tion.

•paper_type (See Below, optional) – The type of the paper. Example options

{``letter``, ``legal``, ``executive``, ``ledger``,
``a0`` through ``a10``, ``b0` through ``b10``}

•transparent (bool, optional) – If True, the axes patches will all be trans-
parent; the figure patch will also be transparent unless face_colour and/or
edge_colour are specified. This is useful, for example, for displaying a plot on
top of a coloured background on a web page. The transparency of these patches
will be restored to their original values upon exit of this function.

•pad_inches (float, optional) – Amount of padding around the figure.
•overwrite (bool, optional) – If True, the file will be overwritten if it already
exists.

save_figure_widget()
Method for saving the figure of the current figure_id to file using
menpo.visualize.widgets.base.save_matplotlib_figure() widget.

2.10.2 Widgets

visualize_images

menpo.visualize.visualize_images(images, figure_size=(10, 8), style=’coloured’,
browser_style=’buttons’)

Widget that allows browsing through a list of Image (or subclass) objects.

The images can have a combination of different attributes, e.g. masked or not, landmarked or not, without
multiple landmark groups and labels etc. The widget has options tabs regarding the visualized channels, the
landmarks, the renderer (lines, markers, numbering, legend, figure, axes) and saving the figure to file.

Parameters
•images (list of Image or subclass) – The list of images to be visualized.
•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and
white colours.

•browser_style ({’buttons’, ’slider’}, optional) – It defines whether the
selector of the objects will have the form of plus/minus buttons or a slider.

visualize_landmarks

menpo.visualize.visualize_landmarks(landmarks, figure_size=(10, 8), style=’coloured’,
browser_style=’buttons’)

Widget that allows browsing through a list of LandmarkManager (or subclass) objects.

The landmark managers can have a combination of different attributes, e.g. landmark groups and labels etc. The
widget has options tabs regarding the landmarks, the renderer (lines, markers, numbering, legend, figure, axes)
and saving the figure to file.

Parameters
•landmarks (list of LandmarkManager or subclass) – The list of landmark man-
agers to be visualized.

•figure_size ((int, int), optional) – The initial size of the rendered figure.

2.10. menpo.visualize 271

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and
white colours.

•browser_style ({’buttons’, ’slider’}, optional) – It defines whether the
selector of the objects will have the form of plus/minus buttons or a slider.

visualize_landmarkgroups

menpo.visualize.visualize_landmarkgroups(landmarkgroups, figure_size=(10, 8),
style=’coloured’, browser_style=’buttons’)

Widget that allows browsing through a list of LandmarkGroup (or subclass) objects.

The landmark groups can have a combination of different attributes, e.g. different labels, number of points etc.
The widget has options tabs regarding the landmarks, the renderer (lines, markers, numbering, legend, figure,
axes) and saving the figure to file.

Parameters
•landmarkgroups (list of LandmarkGroup or subclass) – The list of landmark
groups to be visualized.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and
white colours.

•browser_style ({’buttons’, ’slider’}, optional) – It defines whether the
selector of the objects will have the form of plus/minus buttons or a slider.

visualize_pointclouds

menpo.visualize.visualize_pointclouds(pointclouds, figure_size=(10, 8), style=’coloured’,
browser_style=’buttons’)

Widget that allows browsing through a list of PointCloud, PointUndirectedGraph,
PointDirectedGraph, PointTree, TriMesh or subclasses. All the above can be combined in
the list.

The widget has options tabs regarding the renderer (lines, markers, figure, axes) and saving the figure to file.
Parameters

•pointclouds (list) – The list of objects to be visualized. It can contain a combi-
nation of PointCloud, PointUndirectedGraph, PointDirectedGraph,
PointTree, TriMesh or subclasses of those.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and
white colours.

•browser_style ({’buttons’, ’slider’}, optional) – It defines whether the
selector of the objects will have the form of plus/minus buttons or a slider.

features_selection

menpo.visualize.features_selection(style=’coloured’)
Widget that allows selecting a features function and its options. The widget supports all features from
menpo.feature and has a preview tab. It returns a list of length 1 with the selected features function closure.

Parametersstyle ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and white
colours.

272 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Returns

features_function (list of length 1) – The function closure of the features function using
functools.partial. So the function can be called as:

features_image = features_function[0](image)

save_matplotlib_figure

menpo.visualize.save_matplotlib_figure(renderer, style=’coloured’)
Widget that allows to save a figure, which was generated with Matplotlib, to file.

Parameters
•renderer (MatplotlibRenderer) – The Matplotlib renderer object.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and
white colours.

plot_graph

menpo.visualize.plot_graph(x_axis, y_axis, legend_entries=None, title=None, x_label=None,
y_label=None, x_axis_limits=None, y_axis_limits=None, fig-
ure_size=(10, 6), style=’coloured’)

Widget that allows plotting various curves in a graph using GraphPlotter.

The widget has options tabs regarding the graph and the renderer (lines, markers, legend, figure, axes, grid) and
saving the figure to file.

Parameters
•x_axis (list of float) – The values of the horizontal axis. Note that these values are
common for all the curves.

•y_axis (list of lists of float) – A list that stores a list of values to be plotted for each
curve.

•legend_entries (list or str or None, optional) – The list of names that will
appear on the legend for each curve. If None, then the names format is curve
{}.format(i).

•title (str or None, optional) – The title of the graph.
•x_label (str or None, optional) – The label on the horizontal axis of the graph.
•y_label (str or None, optional) – The label on the vertical axis of the graph.
•x_axis_limits ((float, float) or None, optional) – The limits of the horizontal axis.
If None, the limits are set based on the min and max values of x_axis.

•y_axis_limits ((float, float), optional) – The limits of the vertical axis. If None,
the limits are set based on the min and max values of y_axis.

•figure_size ((int, int), optional) – The initial size of the rendered figure.
•style ({’coloured’, ’minimal’}, optional) – If ’coloured’, then the style
of the widget will be coloured. If minimal, then the style is simple using black and
white colours.

2.10.3 Print Utilities

print_progress

menpo.visualize.print_progress(iterable, prefix=’‘, n_items=None, offset=0)
Print the remaining time needed to compute over an iterable.

2.10. menpo.visualize 273

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

To use, wrap an existing iterable with this function before processing in a for loop (see example).

The estimate of the remaining time is based on a moving average of the last 100 items completed in the loop.
Parameters

•iterable (iterable) – An iterable that will be processed. The iterable is passed
through by this function, with the time taken for each complete iteration logged.

•prefix (str, optional) – If provided a string that will be prepended to the progress
report at each level.

•n_items (int, optional) – Allows for iterator to be a generator whose length will
be assumed to be n_items. If not provided, then iterator needs to be Sizable.

•offset (int, optional) – Useful in combination with n_items - report back the
progress as if offset items have already been handled. n_itemswill be left unchanged.

RaisesValueError – offset provided without n_items

Examples
This for loop:

from time import sleep
for i in print_progress(range(100)):

sleep(1)

prints a progress report of the form:

[=============] 70% (7/10) 00:00:03 remaining

print_dynamic

menpo.visualize.print_dynamic(str_to_print)
Prints dynamically the provided str, i.e. the str is printed and then the buffer gets flushed.

Parametersstr_to_print (str) – The string to print.

progress_bar_str

menpo.visualize.progress_bar_str(percentage, bar_length=20, bar_marker=’=’,
show_bar=True)

Returns an str of the specified progress percentage. The percentage is represented either in the form of a progress
bar or in the form of a percentage number. It can be combined with the print_dynamic() function.

Parameters
•percentage (float) – The progress percentage to be printed. It must be in the range
[0, 1].

•bar_length (int, optional) – Defines the length of the bar in characters.
•bar_marker (str, optional) – Defines the marker character that will be used to fill
the bar.

•show_bar (bool, optional) – If True, the str includes the bar followed by the per-
centage, e.g. ’[=====] 50%’

If False, the str includes only the percentage, e.g. ’50%’
Returnsprogress_str (str) – The progress percentage string that can be printed.
Raises

•ValueError – percentage is not in the range [0, 1]
•ValueError – bar_length must be an integer >= 1
•ValueError – bar_marker must be a string of length 1

274 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Examples
This for loop:

n_iters = 2000
for k in range(n_iters):

print_dynamic(progress_bar_str(float(k) / (n_iters-1)))

prints a progress bar of the form:

[=============] 68%

bytes_str

menpo.visualize.bytes_str(num)
Converts bytes to a human readable format. For example:

print_bytes(12345) returns '12.06 KB'
print_bytes(123456789) returns '117.74 MB'

Parametersnum (int) – The size in bytes.
RaisesValueError – num must be int >= 0

2.10.4 Create Custom Widgets

Collection of widgets that can be used as the main ingredients for creating other custom widgets.

AnimationOptionsWidget

class menpo.visualize.widgets.AnimationOptionsWidget(index, render_function=None,
update_function=None, in-
dex_style=’buttons’, inter-
val=0.5, description=’Index:
‘, minus_description=’-
‘, plus_description=’+’,
loop_enabled=True,
text_editable=True,
style=’minimal’)

Bases: FlexBox

Creates a widget for animating through a list of objects. The widget consists of the following parts from
IPython.html.widgets and menpo.visualize.widgets.tools:

2.10. menpo.visualize 275

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

No Object Variable (self.) Description
1 ToggleButton play_stop_toggle The play/stop button
2 ToggleButton play_options_toggle Button that toggles

the options menu
3 Checkbox loop_checkbox Repeat mode
4 FloatText interval_text Interval (secs)
5 VBox loop_interval_box Contains 3, 4
6 VBox play_options_box Contains 2, 5
7 HBox animation_box Contains 1, 6
8 IndexButtonsWidget

IndexSliderWidget
index_wid The index selector

widget

Note that:
•The selected values are stored in the self.selected_values dict.
•To set the styling please refer to the style() and predefined_style() methods.
•To update the state of the widget, please refer to the set_widget_state() method.
•To update the callback function please refer to the replace_render_function() and
replace_update_function() methods.

Parameters
•index (dict) – The dictionary with the initial options. For example

index = {'min': 0,
'max': 100,
'step': 1,
'index': 10}

•render_function (function or None, optional) – The render function that is exe-
cuted when a widgets’ value changes. If None, then nothing is assigned.

•update_function (function or None, optional) – The update function that is exe-
cuted when the index value changes. If None, then nothing is assigned.

•index_style ({’buttons’, ’slider’}, optional) – If ’buttons’, then In-
dexButtonsWidget() class is called. If ’slider’, then ‘IndexSliderWidget()’ class is
called.

•interval (float, optional) – The interval between the animation progress.
•description (str, optional) – The title of the widget.
•minus_description (str, optional) – The title of the button that decreases the
index.

•plus_description (str, optional) – The title of the button that increases the index.
•loop_enabled (bool, optional) – If True, then after reach the minimum (maxi-
mum) index values, the counting will continue from the end (beginning). If False,
the counting will stop at the minimum (maximum) value.

•text_editable (bool, optional) – Flag that determines whether the index text will
be editable.

•style (See Below, optional) – Sets a predefined style at the widget. Possible options
are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

Example

276 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Let’s create an animation widget and then update its state. Firstly, we need to import it:

>>> from menpo.visualize.widgets import AnimationOptionsWidget
>>> from IPython.display import display

Now let’s define a render function that will get called on every widget change and will dynamically print the
selected index:

>>> from menpo.visualize import print_dynamic
>>> def render_function(name, value):
>>> s = "Selected index: {}".format(wid.selected_values['index'])
>>> print_dynamic(s)

Create the widget with some initial options and display it:

>>> index = {'min': 0, 'max': 100, 'step': 1, 'index': 10}
>>> wid = AnimationOptionsWidget(index, index_style='buttons',
>>> render_function=render_function,
>>> style='info')
>>> display(wid)

By pressing the buttons (or simply pressing the Play button), the printed message gets updated. Finally, let’s
change the widget status with a new dictionary of options:

>>> new_options = {'min': 0, 'max': 20, 'step': 2, 'index': 16}
>>> wid.set_widget_state(new_options, allow_callback=False)

add_render_function(render_function)
Method that adds a render_function() to the widget. The signature of the given function is also stored in
self._render_function.

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is added.

add_update_function(update_function)
Method that adds an update_function() to the widget. The signature of the given function is also stored in
self._update_function.

Parametersupdate_function (function or None, optional) – The update function that
behaves as a callback. If None, then nothing is added.

predefined_style(style)
Function that sets a predefined style on the widget.

Parametersstyle (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

remove_render_function()
Method that removes the current self._render_function() from the widget and sets
self._render_function = None.

2.10. menpo.visualize 277

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

remove_update_function()
Method that removes the current self._update_function() from the widget and sets
self._update_function = None.

replace_render_function(render_function)
Method that replaces the current self._render_function() of the widget with the given render_function().

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is happening.

replace_update_function(update_function)
Method that replaces the current self._update_function() of the widget with the given update_function().

Parametersupdate_function (function or None, optional) – The update function that
behaves as a callback. If None, then nothing is happening.

set_widget_state(index, allow_callback=True)
Method that updates the state of the widget with a new set of values.

Parameters
•index (dict) – The dictionary with the new options to be used. For example

index = {'min': 0,
'max': 100,
'step': 1,
'index': 10}

•allow_callback (bool, optional) – If True, it allows triggering of any call-
back functions.

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=0, margin=0, font_family=’‘, font_size=None,
font_style=’‘, font_weight=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•border_visible (bool, optional) – Defines whether to draw the border line
around the widget.

•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.
•margin (float, optional) – The margin around the widget.
•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.

278 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

ChannelOptionsWidget

class menpo.visualize.widgets.ChannelOptionsWidget(channel_options, ren-
der_function=None,
style=’minimal’)

Bases: FlexBox

Creates a widget for selecting channel options when rendering an image. The widget consists of the following
parts from IPython.html.widgets:

No Object Variable (self.) Description
1 RadioButtons mode_radiobuttons The mode selector

‘Single’ or ‘Multiple’
2 Checkbox masked_checkbox Controls masked mode
3 IntSlider single_slider Single channel selector
4 IntRangeSlider multiple_slider Channels range selector
5 Checkbox rgb_checkbox View as RGB
6 Checkbox sum_checkbox View sum of channels
7 Checkbox glyph_checkbox View glyph
8 BoundedIntText glyph_block_size_text Glyph block size
9 Checkbox glyph_use_negative_checkbox Use negative values
10 VBox glyph_options_box Contains 8, 9
11 VBox glyph_box Contains 7, 10
12 HBox multiple_options_box Contains 6, 11, 5
13 Box sliders_box Contains 3, 4
14 Box sliders_and_multiple_options_box Contains 13, 12
15 VBox mode_and_masked_box Contains 1, 2

Note that:
•The selected values are stored in the self.selected_values dict.
•To set the styling please refer to the style() and predefined_style() methods.
•To update the state of the widget, please refer to the set_widget_state() method.
•To update the callback function please refer to the replace_render_function() method.

Parameters
•channel_options (dict) – The dictionary with the initial options. For example

channel_options = {'n_channels': 10,
'image_is_masked': True,
'channels': 0,
'glyph_enabled': False,
'glyph_block_size': 3,
'glyph_use_negative': False,
'sum_enabled': False,
'masked_enabled': True}

•render_function (function or None, optional) – The render function that is exe-
cuted when a widgets’ value changes. If None, then nothing is assigned.

2.10. menpo.visualize 279

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•style (See Below, optional) – Sets a predefined style at the widget. Possible options
are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

Example
Let’s create a channels widget and then update its state. Firstly, we need to import it:

>>> from menpo.visualize.widgets import ChannelOptionsWidget
>>> from IPython.display import display

Now let’s define a render function that will get called on every widget change and will dynamically print the
selected channels and masked flag:

>>> from menpo.visualize import print_dynamic
>>> def render_function(name, value):
>>> s = "Channels: {}, Masked: {}".format(
>>> wid.selected_values['channels'],
>>> wid.selected_values['masked_enabled'])
>>> print_dynamic(s)

Create the widget with some initial options and display it:

>>> channel_options = {'n_channels': 30,
>>> 'image_is_masked': True,
>>> 'channels': [0, 10],
>>> 'glyph_enabled': False,
>>> 'glyph_block_size': 3,
>>> 'glyph_use_negative': False,
>>> 'sum_enabled': True,
>>> 'masked_enabled': True}
>>> wid = ChannelOptionsWidget(channel_options,
>>> render_function=render_function,
>>> style='warning')
>>> display(wid)

By playing around with the widget, printed message gets updated. Finally, let’s change the widget status with a
new dictionary of options:

>>> new_options = {'n_channels': 10,
>>> 'image_is_masked': True,
>>> 'channels': [7, 8, 9],
>>> 'glyph_enabled': True,
>>> 'glyph_block_size': 3,
>>> 'glyph_use_negative': True,
>>> 'sum_enabled': False,
>>> 'masked_enabled': False}
>>> wid.set_widget_state(new_options, allow_callback=False)

280 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

add_render_function(render_function)
Method that adds a render_function() to the widget. The signature of the given function is also stored in
self._render_function.

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is added.

predefined_style(style)
Function that sets a predefined style on the widget.

Parametersstyle (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

remove_render_function()
Method that removes the current self._render_function() from the widget and sets
self._render_function = None.

replace_render_function(render_function)
Method that replaces the current self._render_function() of the widget with the given render_function().

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is happening.

set_widget_state(channel_options, allow_callback=True)
Method that updates the state of the widget with a new set of values.

Parameters
•channel_options (dict) – The dictionary with the new options to be used.
For example

channel_options = {'n_channels': 10,
'image_is_masked': True,
'channels': 0,
'glyph_enabled': False,
'glyph_block_size': 3,
'glyph_use_negative': False,
'sum_enabled': False,
'masked_enabled': True}

•allow_callback (bool, optional) – If True, it allows triggering of any call-
back functions.

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=0, margin=0, font_family=’‘, font_size=None,
font_style=’‘, font_weight=’‘, slider_width=’‘, slider_colour=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

2.10. menpo.visualize 281

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•border_visible (bool, optional) – Defines whether to draw the border line
around the widget.

•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.
•margin (float, optional) – The margin around the widget.
•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.
•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

•slider_width (str, optional) – The width of the slider.
•slider_colour (str, optional) – The colour of the sliders.

LandmarkOptionsWidget

class menpo.visualize.widgets.LandmarkOptionsWidget(landmark_options, ren-
der_function=None, up-
date_function=None,
style=’minimal’)

Bases: FlexBox

Creates a widget for animating through a list of objects. The widget consists of the following parts from
IPython.html.widgets:

No Object Variable (self.) Description
1 Latex no_landmarks_msg Message in case there are

no landmarks available.
2 Checkbox render_landmarks_checkbox Render landmarks
3 Box land-

marks_checkbox_and_msg_box
Contains 2, 1

4 Dropdown group_dropdown Landmark group selector
5 ToggleBut-

tons
labels_toggles list of lists with

the labels per group
6 Latex labels_text Labels title text
7 HBox labels_box Contains all 5
8 HBox labels_and_text_box Contains 6, 7
9 VBox group_and_labels_and_text_box Contains 4, 8

Note that:
•The selected values are stored in the self.selected_values dict.
•To set the styling please refer to the style() and predefined_style() methods.
•To update the state of the widget, please refer to the set_widget_state() method.

282 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•To update the callback function please refer to the replace_render_function() and
replace_update_function() methods.

Parameters
•landmark_options (dict) – The dictionary with the initial options. For example

landmark_options = {'has_landmarks': True,
'render_landmarks': True,
'group_keys': ['PTS', 'ibug_face_68'],
'labels_keys': [['all'], ['jaw', 'eye']],
'group': 'PTS',
'with_labels': ['all']}

•render_function (function or None, optional) – The render function that is exe-
cuted when a widgets’ value changes. If None, then nothing is assigned.

•update_function (function or None, optional) – The update function that is exe-
cuted when the index value changes. If None, then nothing is assigned.

•style (str (see below)) – Sets a predefined style at the widget. Possible options are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

Example
Let’s create a landmarks widget and then update its state. Firstly, we need to import it:

>>> from from menpo.visualize.widgets import LandmarkOptionsWidget
>>> from IPython.display import display

Now let’s define a render function that will get called on every widget change and will dynamically print the
selected index:

>>> from menpo.visualize import print_dynamic
>>> def render_function(name, value):
>>> s = "Group: {}, Labels: {}".format(
>>> wid.selected_values['group'],
>>> wid.selected_values['with_labels'])
>>> print_dynamic(s)

Create the widget with some initial options and display it:

>>> landmark_options = {'has_landmarks': True,
>>> 'render_landmarks': True,
>>> 'group_keys': ['PTS', 'ibug_face_68'],
>>> 'labels_keys': [['all'], ['jaw', 'eye', 'mouth']],
>>> 'group': 'ibug_face_68',
>>> 'with_labels': ['eye', 'jaw', 'mouth']}
>>> wid = LandmarkOptionsWidget(landmark_options,
>>> render_function=render_function,
>>> style='danger')
>>> display(wid)

2.10. menpo.visualize 283

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

By playing around with the widget, the printed message gets updated. Finally, let’s change the widget status
with a new dictionary of options:

>>> new_options = {'has_landmarks': True,
>>> 'render_landmarks': True,
>>> 'group_keys': ['new_group'],
>>> 'labels_keys': [['1', '2', '3']],
>>> 'group': 'new_group',
>>> 'with_labels': None}
>>> wid.set_widget_state(new_options, allow_callback=False)

add_render_function(render_function)
Method that adds a render_function() to the widget. The signature of the given function is also stored in
self._render_function.

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is added.

add_update_function(update_function)
Method that adds an update_function() to the widget. The signature of the given function is also stored in
self._update_function.

Parametersupdate_function (function or None, optional) – The update function that
behaves as a callback. If None, then nothing is added.

predefined_style(style)
Function that sets a predefined style on the widget.

Parametersstyle (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

remove_render_function()
Method that removes the current self._render_function() from the widget and sets
self._render_function = None.

remove_update_function()
Method that removes the current self._update_function() from the widget and sets
self._update_function = None.

replace_render_function(render_function)
Method that replaces the current self._render_function() of the widget with the given render_function().

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is happening.

replace_update_function(update_function)
Method that replaces the current self._update_function() of the widget with the given update_function().

Parametersupdate_function (function or None, optional) – The update function that
behaves as a callback. If None, then nothing is happening.

set_widget_state(landmark_options, allow_callback=True)
Method that updates the state of the widget with a new set of values.

Parameters
•landmark_options (dict) – The dictionary with the new options to be used.
For example

284 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

landmark_options = {'has_landmarks': True,
'render_landmarks': True,
'group_keys': ['PTS', 'ibug_face_68'],
'labels_keys': [['all'], ['jaw', 'eye']],
'group': 'PTS',
'with_labels': ['all']}

•allow_callback (bool, optional) – If True, it allows triggering of any call-
back functions.

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=0, margin=0, font_family=’‘, font_size=None,
font_style=’‘, font_weight=’‘, labels_buttons_style=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•border_visible (bool, optional) – Defines whether to draw the border line
around the widget.

•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.
•margin (float, optional) – The margin around the widget.
•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.
•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

•labels_buttons_style (See Below, optional) – Style options

2.10. menpo.visualize 285

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Style Description
‘primary’ Blue-based style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

RendererOptionsWidget

class menpo.visualize.widgets.RendererOptionsWidget(renderer_options, options_tabs,
objects_names=None, la-
bels_per_object=None,
selected_object=0, ob-
ject_selection_dropdown_visible=True,
render_function=None,
style=’minimal’,
tabs_style=’minimal’)

Bases: FlexBox

Creates a widget for selecting rendering options. The widget consists of the following parts from
IPython.html.widgets and menpo.visualize.widgets.tools:

No Object Variable
(self.)

Description

1 Dropdown ob-
ject_selection_dropdown

The object selector

2 LineOptionsWidget
MarkerOptionsWidget
ImageOptionsWidget
NumberingOptionsWidget
FigureOptionsWidget
LegendOptionsWidget
GridOptionsWidget

op-
tions_widgets

list with the
various rendering
sub-options widgets

3 Tab subop-
tions_tab

Contains all 2

Note that:
•The selected values are stored in the self.selected_values dict.
•To set the styling please refer to the style() and predefined_style() methods.
•To update the state of the widget, please refer to the set_widget_state() method.
•To update the callback function please refer to the replace_render_function() methods.

Parameters
•renderer_options (list of dict) – The initial rendering options per object. The
list must have length n_objects and contain a dict of rendering options per object. For
example, in case we had two objects to render

lines_options = {'render_lines': True,
'line_width': 1,
'line_colour': ['b', 'r'],
'line_style': '-'}

markers_options = {'render_markers': True,
'marker_size': 20,

286 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

'marker_face_colour': ['w', 'w'],
'marker_edge_colour': ['b', 'r'],
'marker_style': 'o',
'marker_edge_width': 1}

numbering_options = {'render_numbering': True,
'numbers_font_name': 'serif',
'numbers_font_size': 10,
'numbers_font_style': 'normal',
'numbers_font_weight': 'normal',
'numbers_font_colour': ['k'],
'numbers_horizontal_align': 'center',
'numbers_vertical_align': 'bottom'}

legend_options = {'render_legend': True,
'legend_title': '',
'legend_font_name': 'serif',
'legend_font_style': 'normal',
'legend_font_size': 10,
'legend_font_weight': 'normal',
'legend_marker_scale': 1.,
'legend_location': 2,
'legend_bbox_to_anchor': (1.05, 1.),
'legend_border_axes_pad': 1.,
'legend_n_columns': 1,
'legend_horizontal_spacing': 1.,
'legend_vertical_spacing': 1.,
'legend_border': True,
'legend_border_padding': 0.5,
'legend_shadow': False,
'legend_rounded_corners': True}

figure_options = {'x_scale': 1.,
'y_scale': 1.,
'render_axes': True,
'axes_font_name': 'serif',
'axes_font_size': 10,
'axes_font_style': 'normal',
'axes_font_weight': 'normal',
'axes_x_limits': None,
'axes_y_limits': None}

grid_options = {'render_grid': True,
'grid_line_style': '--',
'grid_line_width': 0.5}

image_options = {'alpha': 1.,
'interpolation': 'bilinear',
'cmap_name': 'gray'}

rendering_dict = {'lines': lines_options,
'markers': markers_options,
'numbering': numbering_options,
'legend': legend_options,
'figure': figure_options,
'grid': grid_options,
'image': image_options}

renderer_options = [rendering_dict, rendering_dict]

•options_tabs (list of str) – List that defines the ordering of the options tabs. Pos-
sible values are

2.10. menpo.visualize 287

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Value Returned class
‘lines’ LineOptionsWidget
‘markers’ MarkerOptionsWidget
‘numbering’ NumberingOptionsWidget
‘figure_one’ FigureOptionsOneScaleWidget
‘figure_two’ FigureOptionsTwoScalesWidget
‘legend’ LegendOptionsWidget
‘grid’ GridOptionsWidget
‘image’ ImageOptionsWidget

•objects_names (list of str or None, optional) – A list with the names of the objects
that will be used in the selection dropdown menu. If None, then the names will have
the format %d.

•labels_per_object (list of list or None, optional) – A list that contains a list
of labels for each object. Those labels are employed by the ColourSelectionWidget.
An example for which this option is useful is in the case we wish to create rendering
options for multiple LandmarkGroup objects and each one of them has a different
set of labels. If None, then labels_per_object is a list of length n_objects with None.

•selected_object (int, optional) – The object for which to show the rendering
options in the beginning, when the widget is created.

•object_selection_dropdown_visible (bool, optional) – Controls the visi-
bility of the object selection dropdown (self.object_selection_dropdown).

•render_function (function or None, optional) – The render function that is exe-
cuted when a widgets’ value changes. If None, then nothing is assigned.

•style (See Below, optional) – Sets a predefined style at the widget. Possible options
are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

•tabs_style (See Below, optional) – Sets a predefined style at the tabs of the widget.
Possible options are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

Example
Let’s create a rendering options widget and then update its state. Firstly, we need to import it:

>>> from menpo.visualize.widgets import RendererOptionsWidget
>>> from IPython.display import display

Let’s set some initial options:

>>> options_tabs = ['markers', 'lines', 'grid']
>>> objects_names = ['james', 'patrick']
>>> labels_per_object = [['jaw', 'eyes'], None]

288 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

>>> selected_object = 1
>>> object_selection_dropdown_visible = True

Now let’s define a render function that will get called on every widget change and will dynamically print the
selected marker face colour for both objects:

>>> from menpo.visualize import print_dynamic
>>> def render_function(name, value):
>>> s = "{}: {}, {}: {}".format(
>>> wid.objects_names[0],
>>> wid.selected_values[0]['markers']['marker_face_colour'],
>>> wid.objects_names[1],
>>> wid.selected_values[1]['markers']['marker_face_colour'])
>>> print_dynamic(s)

Create the widget with some initial options and display it:

>>> # 1st dictionary
>>> markers_options = {'render_markers': True, 'marker_size': 20,
>>> 'marker_face_colour': ['w', 'w'],
>>> 'marker_edge_colour': ['b', 'r'],
>>> 'marker_style': 'o', 'marker_edge_width': 1}
>>> lines_options = {'render_lines': True, 'line_width': 1,
>>> 'line_colour': ['b', 'r'], 'line_style': '-'}
>>> grid_options = {'render_grid': True, 'grid_line_style': '--',
>>> 'grid_line_width': 0.5}
>>> rendering_dict_1 = {'lines': lines_options, 'grid': grid_options,
>>> 'markers': markers_options}
>>>
>>> # 2nd dictionary
>>> markers_options = {'render_markers': True, 'marker_size': 200,
>>> 'marker_face_colour': [[0.1, 0.2, 0.3]],
>>> 'marker_edge_colour': ['m'], 'marker_style': 'x',
>>> 'marker_edge_width': 1}
>>> lines_options = {'render_lines': True, 'line_width': 100,
>>> 'line_colour': [[0.1, 0.2, 0.3]], 'line_style': '-'}
>>> grid_options = {'render_grid': False, 'grid_line_style': '--',
>>> 'grid_line_width': 0.5}
>>> rendering_dict_2 = {'lines': lines_options, 'grid': grid_options,
>>> 'markers': markers_options}
>>>
>>> # Final list
>>> rendering_options = [rendering_dict_1, rendering_dict_2]
>>>
>>> # Create and display widget
>>> wid = AnimationOptionsWidget(index, index_style='buttons',
>>> render_function=render_function,
>>> style='info')
>>> display(wid)

By playing around, the printed message gets updated. The style of the widget can be changed as:

>>> wid.predefined_style('minimal', 'info')

Finally, let’s change the widget status with a new dictionary of options:

2.10. menpo.visualize 289

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

>>> # 1st dictionary
>>> markers_options = {'render_markers': False, 'marker_size': 20,
>>> 'marker_face_colour': ['k'],
>>> 'marker_edge_colour': ['c'],
>>> 'marker_style': 'o', 'marker_edge_width': 1}
>>> lines_options = {'render_lines': False, 'line_width': 1,
>>> 'line_colour': ['r'], 'line_style': '-'}
>>> grid_options = {'render_grid': True, 'grid_line_style': '--',
>>> 'grid_line_width': 0.5}
>>> rendering_dict_1 = {'lines': lines_options, 'grid': grid_options,
>>> 'markers': markers_options}
>>>
>>> # 2nd dictionary
>>> markers_options = {'render_markers': True, 'marker_size': 200,
>>> 'marker_face_colour': [[0.123, 0.234, 0.345], 'r'],
>>> 'marker_edge_colour': ['m', 'm'],
>>> 'marker_style': 'x', 'marker_edge_width': 1}
>>> lines_options = {'render_lines': True, 'line_width': 100,
>>> 'line_colour': [[0.1, 0.2, 0.3], 'b'], 'line_style': '-'}
>>> grid_options = {'render_grid': False, 'grid_line_style': '--',
>>> 'grid_line_width': 0.5}
>>> rendering_dict_2 = {'lines': lines_options, 'grid': grid_options,
>>> 'markers': markers_options}
>>>
>>> # Final list
>>> new_options = [rendering_dict_1, rendering_dict_2]
>>>
>>> # Set new labels per object
>>> labels_per_object = [['1'], ['jaw', 'eyes']]
>>>
>>> # Update widget state
>>> wid.set_widget_state(new_options, labels_per_object,
>>> allow_callback=True)

add_render_function(render_function)
Method that adds a render_function() to the widget. The signature of the given function is also stored in
self._render_function.

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is added.

predefined_style(style, tabs_style=’minimal’)
Function that sets a predefined style on the widget.

Parameters
•style (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

•tabs_style (str (see below), optional) – Style options

290 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

remove_render_function()
Method that removes the current self._render_function() from the widget and sets
self._render_function = None.

replace_render_function(render_function)
Method that replaces the current self._render_function() of the widget with the given render_function().

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is happening.

set_widget_state(renderer_options, labels_per_object, selected_object=None, ob-
ject_selection_dropdown_visible=None, allow_callback=True)

Method that updates the state of the widget with a new set of values. Note that the number of objects
should not change.

Parameters
•renderer_options (list of dict) – The selected rendering options per object.
The list must have length n_objects and contain a dict of rendering options per
object. For example, in case we had two objects to render

lines_options = {'render_lines': True,
'line_width': 1,
'line_colour': ['b', 'r'],
'line_style': '-'}

markers_options = {'render_markers': True,
'marker_size': 20,
'marker_face_colour': ['w', 'w'],
'marker_edge_colour': ['b', 'r'],
'marker_style': 'o',
'marker_edge_width': 1}

numbering_options = {'render_numbering': True,
'numbers_font_name': 'serif',
'numbers_font_size': 10,
'numbers_font_style': 'normal',
'numbers_font_weight': 'normal',
'numbers_font_colour': ['k'],
'numbers_horizontal_align': 'center',
'numbers_vertical_align': 'bottom'}

legend_options = {'render_legend': True,
'legend_title': '',
'legend_font_name': 'serif',
'legend_font_style': 'normal',
'legend_font_size': 10,
'legend_font_weight': 'normal',
'legend_marker_scale': 1.,
'legend_location': 2,
'legend_bbox_to_anchor': (1.05, 1.),
'legend_border_axes_pad': 1.,
'legend_n_columns': 1,
'legend_horizontal_spacing': 1.,
'legend_vertical_spacing': 1.,
'legend_border': True,

2.10. menpo.visualize 291

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

'legend_border_padding': 0.5,
'legend_shadow': False,
'legend_rounded_corners': True}

figure_options = {'x_scale': 1.,
'y_scale': 1.,
'render_axes': True,
'axes_font_name': 'serif',
'axes_font_size': 10,
'axes_font_style': 'normal',
'axes_font_weight': 'normal',
'axes_x_limits': None,
'axes_y_limits': None}

grid_options = {'render_grid': True,
'grid_line_style': '--',
'grid_line_width': 0.5}

image_options = {'alpha': 1.,
'interpolation': 'bilinear',
'cmap_name': 'gray'}

rendering_dict = {'lines': lines_options,
'markers': markers_options,
'numbering': numbering_options,
'legend': legend_options,
'figure': figure_options,
'grid': grid_options
'image': image_options}

renderer_options = [rendering_dict, rendering_dict]

•labels_per_object (list of list or None, optional) – A list that contains
a list of labels for each object. Those labels are employed by the ColourSelec-
tionWidget. An example for which this option is useful is in the case we wish to
create rendering options for multiple LandmarkGroup objects and each one
of them has a different set of labels. If None, then labels_per_object is a list of
lenth n_objects with None.

•selected_object (int, optional) – The object for which to show the render-
ing options in the beginning, when the widget is created.

•object_selection_dropdown_visible (bool, optional) – Controls the
visibility of the object selection dropdown (self.object_selection_dropdown).

•allow_callback (bool, optional) – If True, it allows triggering of any call-
back functions.

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=‘0.2cm’, margin=0, tabs_box_style=None,
tabs_border_visible=True, tabs_border_color=’black’, tabs_border_style=’solid’,
tabs_border_width=1, tabs_border_radius=1, tabs_padding=0, tabs_margin=0,
font_family=’‘, font_size=None, font_style=’‘, font_weight=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•border_visible (bool, optional) – Defines whether to draw the border line

292 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

around the widget.
•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.
•margin (float, optional) – The margin around the widget.
•tabs_box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•tabs_border_visible (bool, optional) – Defines whether to draw the bor-
der line around the tab widgets.

•tabs_border_color (str, optional) – The color of the border around the tab
widgets.

•tabs_border_style (str, optional) – The line style of the border around the
tab widgets.

•tabs_border_width (float, optional) – The line width of the border around
the tab widgets.

•tabs_border_radius (float, optional) – The radius of the corners of the
box of the tab widgets.

•tabs_padding (float, optional) – The padding around the tab widgets.
•tabs_margin (float, optional) – The margin around the tab widgets.
•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.
•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

update_object_names(objects_names)
Method that updates the options in the dropdown menu for selecting an object. Note that the number of
objects should not change.

Parametersobjects_names (list of str) – A list with the names of the objects that will be
used in the selection dropdown menu.

2.10. menpo.visualize 293

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

GraphOptionsWidget

class menpo.visualize.widgets.GraphOptionsWidget(graph_options, x_slider_options,
y_slider_options, ren-
der_function=None, style=’minimal’,
tabs_style=’minimal’, ren-
derer_tabs_style=’minimal’)

Bases: FlexBox

Creates a widget for selecting options for rendering various curves in a graph. The widget consists of the
following parts from IPython.html.widgets and menpo.visualize.widgets.tools:

No Object Variable (self.) Description
1 RendererOptionsWidget renderer_widget The rendering widget
2 FloatRangeSlider x_limit Sets the x limit
3 FloatRangeSlider y_limit Sets the y limit
4 Text x_label Sets the x label
5 Text y_label Sets the y label
6 Text title Sets the title
7 Textarea legend_entries Sets the legend entries
8 VBox graph_related_options Contains 2 - 7
9 Tab options_tab Contains 8, 1

Note that:
•The selected values are stored in the self.selected_values dict.
•To set the styling please refer to the style() and predefined_style() methods.
•To update the state of the widget, please refer to the set_widget_state() method.
•To update the callback function please refer to the replace_render_function() methods.

Parameters
•graph_options (list of str) – The initial options. For example, in case we had two
curves to render

graph_options = {'legend_entries': ['Nontas', 'Leda'],
'x_label': 'X',
'y_label': 'Y',
'title': 'TITLE',
'x_axis_limits': (2, 7),
'y_axis_limits': (-0.2, 0.2),
'render_lines': [True, True],
'line_colour': ['r', 'b'],
'line_style': ['--', '-'],
'line_width': [1, 3],
'render_markers': [True, False],
'marker_style': ['o', 's'],
'marker_size': [6, 12],
'marker_face_colour': ['k', 'm'],
'marker_edge_colour': ['w', 'c'],
'marker_edge_width': [1, 4],
'render_legend': True,
'legend_title': '',
'legend_font_name': 'sans-serif',
'legend_font_style': 'normal',
'legend_font_size': 10,
'legend_font_weight': 'normal',
'legend_marker_scale': 1.,
'legend_location': 2,

294 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

'legend_bbox_to_anchor': (1.05, 1.),
'legend_border_axes_pad': 0.,
'legend_n_columns': 1,
'legend_horizontal_spacing': 0,
'legend_vertical_spacing': 0,
'legend_border': True,
'legend_border_padding': 0,
'legend_shadow': False,
'legend_rounded_corners': False,
'render_axes': True,
'axes_font_name': 'sans-serif',
'axes_font_size': 10,
'axes_font_style': 'normal',
'axes_font_weight': 'normal',
'figure_size': (10, 8),
'render_grid': True,
'grid_line_style': '--',
'grid_line_width': 1}

•x_slider_options ((float, float, float)) – The attributes of the x limit slider in the
form (min, max, step).

•y_slider_options ((float, float, float)) – The attributes of the y limit slider in the
form (min, max, step).

•render_function (function or None, optional) – The render function that is exe-
cuted when a widgets’ value changes. If None, then nothing is assigned.

•style (See Below, optional) – Sets a predefined style at the widget. Possible options
are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

•tabs_style (See Below, optional) – Sets a predefined style at the tabs of the widget.
Possible options are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

•renderer_tabs_style (See Below, optional) – Sets a predefined style at the tabs
of the renderer widget. Possible options are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

add_render_function(render_function)
Method that adds a render_function() to the widget. The signature of the given function is also stored in

2.10. menpo.visualize 295

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

self._render_function.
Parametersrender_function (function or None, optional) – The render function that

behaves as a callback. If None, then nothing is added.

predefined_style(style, tabs_style=’minimal’, renderer_tabs_style=’mininal’)
Function that sets a predefined style on the widget.

Parameters
•style (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

•tabs_style (str (see below), optional) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

•renderer_tabs_style (str (see below), optional) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

remove_render_function()
Method that removes the current self._render_function() from the widget and sets
self._render_function = None.

replace_render_function(render_function)
Method that replaces the current self._render_function() of the widget with the given render_function().

Parametersrender_function (function or None, optional) – The render function that
behaves as a callback. If None, then nothing is happening.

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=‘0.2cm’, margin=0, tabs_box_style=None,
tabs_border_visible=True, tabs_border_color=’black’, tabs_border_style=’solid’,
tabs_border_width=1, tabs_border_radius=1, tabs_padding=0, tabs_margin=0,
renderer_tabs_box_style=None, renderer_tabs_border_visible=True, ren-
derer_tabs_border_color=’black’, renderer_tabs_border_style=’solid’, ren-
derer_tabs_border_width=1, renderer_tabs_border_radius=1, renderer_tabs_padding=0,
renderer_tabs_margin=0, font_family=’‘, font_size=None, font_style=’‘, font_weight=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

296 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•border_visible (bool, optional) – Defines whether to draw the border line
around the widget.

•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.
•margin (float, optional) – The margin around the widget.
•tabs_box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•tabs_border_visible (bool, optional) – Defines whether to draw the bor-
der line around the tab widgets.

•tabs_border_color (str, optional) – The color of the border around the tab
widgets.

•tabs_border_style (str, optional) – The line style of the border around the
tab widgets.

•tabs_border_width (float, optional) – The line width of the border around
the tab widgets.

•tabs_border_radius (float, optional) – The radius of the corners of the
box of the tab widgets.

•tabs_padding (float, optional) – The padding around the tab widgets.
•tabs_margin (float, optional) – The margin around the tab widgets.
•renderer_tabs_box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•renderer_tabs_border_visible (bool, optional) – Defines whether to
draw the border line around the tab widgets of the renderer widget.

•renderer_tabs_border_color (str, optional) – The color of the border
around the tab widgets of the renderer widget.

•renderer_tabs_border_style (str, optional) – The line style of the bor-
der around the tab widgets of the renderer widget.

•renderer_tabs_border_width (float, optional) – The line width of the
border around the tab widgets of the renderer widget.

2.10. menpo.visualize 297

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•renderer_tabs_border_radius (float, optional) – The radius of the cor-
ners of the box of the tab widgets of the renderer widget.

•renderer_tabs_padding (float, optional) – The padding around the tab
widgets of the renderer widget.

•renderer_tabs_margin (float, optional) – The margin around the tab wid-
gets of the renderer widget.

•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.
•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

SaveFigureOptionsWidget

class menpo.visualize.widgets.SaveFigureOptionsWidget(renderer, file_format=’png’,
dpi=None, orienta-
tion=’portrait’, paper-
type=’letter’, trans-
parent=False, face-
colour=’w’, edgecolour=’w’,
pad_inches=0.0, over-
write=False, style=’minimal’)

Bases: FlexBox

Creates a widget for saving a figure to file. The widget consists of the following parts from IPython.html.widgets
and menpo.visualize.widgets.tools:

No Object Variable (self.) Description
1 Select file_format_select Image format selector
2 FloatText dpi_text DPI selector
3 Dropdown orientation_dropdown Paper orientation selector
4 Select papertype_select Paper type selector
5 Checkbox transparent_checkbox Transparency setter
6 ColourSelectionWidget facecolour_widget Face colour selector
7 ColourSelectionWidget edgecolour_widget Edge colour selector
8 FloatText pad_inches_text Padding in inches setter
9 Text filename_text Path and filename
10 Checkbox overwrite_checkbox Overwrite flag
11 Latex error_latex Error message area
12 Button save_button Save button
13 VBox path_box Contains 9, 1, 10, 4
14 VBox page_box Contains 3, 2, 8
15 VBox colour_box Contains 6, 7, 5
16 Tab options_tabs Contains 13, 14, 15
17 HBox save_box Contains 12, 11
18 VBox options_box Contains 16, 17

298 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

To set the styling please refer to the style() and predefined_style() methods.
Parameters

•renderer (Renderer class or subclass) – The renderer object that was used to
render the figure.

•file_format (str, optional) – The initial value of the file format.
•dpi (float or None, optional) – The initial value of the dpi. If None, then dpi is set to
0.

•orientation ({’portrait’, ’landscape’}, optional) – The initial value of
the orientation.

•papertype (str, optional) – The initial value of the paper type. Possible options are

{'letter', 'legal', 'executive', 'ledger', 'a0', 'a1', 'a2', 'a3',
'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'b0', 'b1', 'b2', 'b3',
'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'b10'}

•transparent (bool, optional) – The initial value of the transparency flag.
•facecolour (str or list of float, optional) – The initial value of the face colour.
•edgecolour (str or list of float, optional) – The initial value of the edge colour.
•pad_inches (float, optional) – The initial value of the figure padding in inches.
•overwrite (bool, optional) – The initial value of the overwrite flag.
•style (See Below, optional) – Sets a predefined style at the widget. Possible options
are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

predefined_style(style)
Function that sets a predefined style on the widget.

Parametersstyle (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=0, margin=0, font_family=’‘, font_size=None,
font_style=’‘, font_weight=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

2.10. menpo.visualize 299

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•border_visible (bool, optional) – Defines whether to draw the border line
around the widget.

•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.
•margin (float, optional) – The margin around the widget.
•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.
•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

TextPrintWidget

class menpo.visualize.widgets.TextPrintWidget(n_lines, text_per_line, style=’minimal’)
Bases: FlexBox

Creates a widget for printing text. Specifically, it consists of a list of IPython.html.widgets.Latex objects, i.e.
one per text line.

Note that:
•To set the styling please refer to the style() and predefined_style() methods.
•To update the state of the widget, please refer to the set_widget_state() method.

Parameters
•n_lines (int) – The number of lines of the text to be printed.
•text_per_line (list of length n_lines) – The text to be printed per line.
•style (See Below, optional) – Sets a predefined style at the widget. Possible options
are

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

Example
Let’s create an text widget and then update its state. Firstly, we need to import it:

>>> from menpo.visualize.widgets import TextPrintWidget
>>> from IPython.display import display

300 Chapter 2. The Menpo API

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

Create the widget with some initial options and display it:

>>> n_lines = 3
>>> text_per_line = ['> The', '> Menpo', '> Team']
>>> wid = TextPrintWidget(n_lines, text_per_line, style='success')
>>> display(wid)

The style of the widget can be changed as:

>>> wid.predefined_style('danger')

Update the widget state as:

>>> wid.set_widget_state(5, ['M', 'E', 'N', 'P', 'O'])

predefined_style(style)
Function that sets a predefined style on the widget.

Parametersstyle (str (see below)) – Style options

Style Description
‘minimal’ Simple black and white style
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ No style

set_widget_state(n_lines, text_per_line)
Method that updates the state of the widget with a new set of values.

Parameters
•n_lines (int) – The number of lines of the text to be printed.
•text_per_line (list of length n_lines) – The text to be printed per line.

style(box_style=None, border_visible=False, border_color=’black’, border_style=’solid’, bor-
der_width=1, border_radius=0, padding=0, margin=0, font_family=’‘, font_size=None,
font_style=’‘, font_weight=’‘)

Function that defines the styling of the widget.
Parameters

•box_style (See Below, optional) – Style options

Style Description
‘success’ Green-based style
‘info’ Blue-based style
‘warning’ Yellow-based style
‘danger’ Red-based style
‘’ Default style
None No style

•border_visible (bool, optional) – Defines whether to draw the border line
around the widget.

•border_color (str, optional) – The color of the border around the widget.
•border_style (str, optional) – The line style of the border around the widget.
•border_width (float, optional) – The line width of the border around the
widget.

•border_radius (float, optional) – The radius of the corners of the box.
•padding (float, optional) – The padding around the widget.

2.10. menpo.visualize 301

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

•margin (float, optional) – The margin around the widget.
•font_family (See Below, optional) – The font family to be used. Example
options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace',
'helvetica'}

•font_size (int, optional) – The font size.
•font_style ({’normal’, ’italic’, ’oblique’}, optional) – The font
style.

•font_weight (See Below, optional) – The font weight. Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'}

302 Chapter 2. The Menpo API

Index

Symbols
_compose_after_inplace()

(menpo.transform.base.composable.ComposableTransform
method), 264

_compose_before_inplace()
(menpo.transform.base.composable.ComposableTransform
method), 264

_transform_inplace() (menpo.transform.base.Transformable
method), 263

_view_2d() (menpo.image.Image method), 27
_view_2d() (menpo.image.MaskedImage method), 55
_view_2d() (menpo.shape.ColouredTriMesh method),

188
_view_2d() (menpo.shape.PointCloud method), 118
_view_2d() (menpo.shape.PointDirectedGraph method),

155
_view_2d() (menpo.shape.PointTree method), 167
_view_2d() (menpo.shape.PointUndirectedGraph

method), 143
_view_2d() (menpo.shape.TexturedTriMesh method),

196
_view_2d() (menpo.shape.TriMesh method), 179
_view_landmarks_2d() (menpo.image.Image method), 28
_view_landmarks_2d() (menpo.image.MaskedImage

method), 55
_view_landmarks_2d() (menpo.shape.ColouredTriMesh

method), 189
_view_landmarks_2d() (menpo.shape.PointCloud

method), 119
_view_landmarks_2d() (menpo.shape.PointDirectedGraph

method), 156
_view_landmarks_2d() (menpo.shape.PointTree method),

168
_view_landmarks_2d() (menpo.shape.PointUndirectedGraph

method), 144
_view_landmarks_2d() (menpo.shape.TexturedTriMesh

method), 197
_view_landmarks_2d() (menpo.shape.TriMesh method),

180

A
add_render_function() (menpo.visualize.widgets.AnimationOptionsWidget

method), 277
add_render_function() (menpo.visualize.widgets.ChannelOptionsWidget

method), 280
add_render_function() (menpo.visualize.widgets.GraphOptionsWidget

method), 295
add_render_function() (menpo.visualize.widgets.LandmarkOptionsWidget

method), 284
add_render_function() (menpo.visualize.widgets.RendererOptionsWidget

method), 290
add_update_function() (menpo.visualize.widgets.AnimationOptionsWidget

method), 277
add_update_function() (menpo.visualize.widgets.LandmarkOptionsWidget

method), 284
Affine (class in menpo.transform), 209
aligned_source() (menpo.transform.AlignmentAffine

method), 234
aligned_source() (menpo.transform.AlignmentRotation

method), 243
aligned_source() (menpo.transform.AlignmentSimilarity

method), 239
aligned_source() (menpo.transform.AlignmentTranslation

method), 248
aligned_source() (menpo.transform.AlignmentUniformScale

method), 252
aligned_source() (menpo.transform.base.alignment.Alignment

method), 267
aligned_source() (menpo.transform.ThinPlateSplines

method), 232
Alignment (class in menpo.transform.base.alignment),

266
alignment_error() (menpo.transform.AlignmentAffine

method), 234
alignment_error() (menpo.transform.AlignmentRotation

method), 243
alignment_error() (menpo.transform.AlignmentSimilarity

method), 239
alignment_error() (menpo.transform.AlignmentTranslation

method), 248

303

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

alignment_error() (menpo.transform.AlignmentUniformScale
method), 252

alignment_error() (menpo.transform.base.alignment.Alignment
method), 267

alignment_error() (menpo.transform.ThinPlateSplines
method), 232

AlignmentAffine (class in menpo.transform), 234
AlignmentRotation (class in menpo.transform), 243
AlignmentSimilarity (class in menpo.transform), 239
AlignmentTranslation (class in menpo.transform), 247
AlignmentUniformScale (class in menpo.transform), 251
all_true() (menpo.image.BooleanImage method), 42
AnimationOptionsWidget (class in

menpo.visualize.widgets), 275
apply() (menpo.transform.Affine method), 209
apply() (menpo.transform.AlignmentAffine method), 235
apply() (menpo.transform.AlignmentRotation method),

243
apply() (menpo.transform.AlignmentSimilarity method),

239
apply() (menpo.transform.AlignmentTranslation

method), 248
apply() (menpo.transform.AlignmentUniformScale

method), 252
apply() (menpo.transform.base.composable.ComposableTransform

method), 264
apply() (menpo.transform.Homogeneous method), 206
apply() (menpo.transform.NonUniformScale method),

228
apply() (menpo.transform.R2LogR2RBF method), 258
apply() (menpo.transform.R2LogRRBF method), 260
apply() (menpo.transform.Rotation method), 217
apply() (menpo.transform.Similarity method), 213
apply() (menpo.transform.ThinPlateSplines method), 232
apply() (menpo.transform.Transform method), 262
apply() (menpo.transform.TransformChain method), 256
apply() (menpo.transform.Translation method), 221
apply() (menpo.transform.UniformScale method), 225
apply_inplace() (menpo.transform.Affine method), 210
apply_inplace() (menpo.transform.AlignmentAffine

method), 235
apply_inplace() (menpo.transform.AlignmentRotation

method), 244
apply_inplace() (menpo.transform.AlignmentSimilarity

method), 239
apply_inplace() (menpo.transform.AlignmentTranslation

method), 248
apply_inplace() (menpo.transform.AlignmentUniformScale

method), 252
apply_inplace() (menpo.transform.base.composable.ComposableTransform

method), 264
apply_inplace() (menpo.transform.Homogeneous

method), 206

apply_inplace() (menpo.transform.NonUniformScale
method), 229

apply_inplace() (menpo.transform.R2LogR2RBF
method), 259

apply_inplace() (menpo.transform.R2LogRRBF
method), 260

apply_inplace() (menpo.transform.Rotation method), 217
apply_inplace() (menpo.transform.Similarity method),

214
apply_inplace() (menpo.transform.ThinPlateSplines

method), 233
apply_inplace() (menpo.transform.Transform method),

262
apply_inplace() (menpo.transform.TransformChain

method), 256
apply_inplace() (menpo.transform.Translation method),

221
apply_inplace() (menpo.transform.UniformScale

method), 225
as_greyscale() (menpo.image.BooleanImage method), 42
as_greyscale() (menpo.image.Image method), 31
as_greyscale() (menpo.image.MaskedImage method), 59
as_histogram() (menpo.image.BooleanImage method),

42
as_histogram() (menpo.image.Image method), 31
as_histogram() (menpo.image.MaskedImage method), 59
as_masked() (menpo.image.BooleanImage method), 43
as_masked() (menpo.image.Image method), 32
as_masked() (menpo.image.MaskedImage method), 60
as_matrix() (in module menpo.math), 96
as_non_alignment() (menpo.transform.AlignmentAffine

method), 235
as_non_alignment() (menpo.transform.AlignmentRotation

method), 244
as_non_alignment() (menpo.transform.AlignmentSimilarity

method), 239
as_non_alignment() (menpo.transform.AlignmentTranslation

method), 248
as_non_alignment() (menpo.transform.AlignmentUniformScale

method), 252
as_PILImage() (menpo.image.BooleanImage method),

42
as_PILImage() (menpo.image.Image method), 31
as_PILImage() (menpo.image.MaskedImage method), 59
as_pointgraph() (menpo.shape.ColouredTriMesh

method), 192
as_pointgraph() (menpo.shape.TexturedTriMesh

method), 200
as_pointgraph() (menpo.shape.TriMesh method), 183
as_unmasked() (menpo.image.MaskedImage method), 60
as_vector() (menpo.base.Vectorizable method), 19
as_vector() (menpo.image.BooleanImage method), 43
as_vector() (menpo.image.Image method), 32
as_vector() (menpo.image.MaskedImage method), 60

304 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

as_vector() (menpo.shape.base.Shape method), 117
as_vector() (menpo.shape.ColouredTriMesh method),

192
as_vector() (menpo.shape.PointCloud method), 122
as_vector() (menpo.shape.PointDirectedGraph method),

159
as_vector() (menpo.shape.PointTree method), 171
as_vector() (menpo.shape.PointUndirectedGraph

method), 147
as_vector() (menpo.shape.TexturedTriMesh method), 201
as_vector() (menpo.shape.TriMesh method), 183
as_vector() (menpo.transform.Affine method), 210
as_vector() (menpo.transform.AlignmentAffine method),

235
as_vector() (menpo.transform.AlignmentRotation

method), 244
as_vector() (menpo.transform.AlignmentSimilarity

method), 239
as_vector() (menpo.transform.AlignmentTranslation

method), 248
as_vector() (menpo.transform.AlignmentUniformScale

method), 252
as_vector() (menpo.transform.Homogeneous method),

206
as_vector() (menpo.transform.NonUniformScale

method), 229
as_vector() (menpo.transform.Rotation method), 218
as_vector() (menpo.transform.Similarity method), 214
as_vector() (menpo.transform.Translation method), 222
as_vector() (menpo.transform.UniformScale method),

225
axis_and_angle_of_rotation()

(menpo.transform.AlignmentRotation method),
244

axis_and_angle_of_rotation() (menpo.transform.Rotation
method), 218

B
BooleanImage (class in menpo.image), 42
boundary_tri_index() (menpo.shape.ColouredTriMesh

method), 192
boundary_tri_index() (menpo.shape.TexturedTriMesh

method), 201
boundary_tri_index() (menpo.shape.TriMesh method),

183
bounding_box() (menpo.shape.ColouredTriMesh

method), 192
bounding_box() (menpo.shape.PointCloud method), 122
bounding_box() (menpo.shape.PointDirectedGraph

method), 159
bounding_box() (menpo.shape.PointTree method), 172
bounding_box() (menpo.shape.PointUndirectedGraph

method), 147

bounding_box() (menpo.shape.TexturedTriMesh
method), 201

bounding_box() (menpo.shape.TriMesh method), 183
bounds() (menpo.shape.ColouredTriMesh method), 192
bounds() (menpo.shape.PointCloud method), 122
bounds() (menpo.shape.PointDirectedGraph method),

159
bounds() (menpo.shape.PointTree method), 172
bounds() (menpo.shape.PointUndirectedGraph method),

147
bounds() (menpo.shape.TexturedTriMesh method), 201
bounds() (menpo.shape.TriMesh method), 184
bounds_false() (menpo.image.BooleanImage method), 43
bounds_true() (menpo.image.BooleanImage method), 43
bu3dfe_83() (in module menpo.landmark), 87
build_mask_around_landmarks()

(menpo.image.MaskedImage method), 60
bytes_str() (in module menpo.visualize), 275

C
centre() (menpo.image.BooleanImage method), 44
centre() (menpo.image.Image method), 32
centre() (menpo.image.MaskedImage method), 61
centre() (menpo.shape.ColouredTriMesh method), 192
centre() (menpo.shape.PointCloud method), 123
centre() (menpo.shape.PointDirectedGraph method), 159
centre() (menpo.shape.PointTree method), 172
centre() (menpo.shape.PointUndirectedGraph method),

148
centre() (menpo.shape.TexturedTriMesh method), 201
centre() (menpo.shape.TriMesh method), 184
centre_of_bounds() (menpo.shape.ColouredTriMesh

method), 193
centre_of_bounds() (menpo.shape.PointCloud method),

123
centre_of_bounds() (menpo.shape.PointDirectedGraph

method), 160
centre_of_bounds() (menpo.shape.PointTree method),

172
centre_of_bounds() (menpo.shape.PointUndirectedGraph

method), 148
centre_of_bounds() (menpo.shape.TexturedTriMesh

method), 201
centre_of_bounds() (menpo.shape.TriMesh method), 184
ChannelOptionsWidget (class in

menpo.visualize.widgets), 279
children() (menpo.shape.DirectedGraph method), 131
children() (menpo.shape.PointDirectedGraph method),

160
children() (menpo.shape.PointTree method), 172
children() (menpo.shape.Tree method), 136
clear() (menpo.landmark.LandmarkGroup method), 81
clear() (menpo.landmark.LandmarkManager method), 79
ColouredTriMesh (class in menpo.shape), 187

Index 305

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

component() (menpo.model.InstanceLinearModel
method), 100

component() (menpo.model.MeanInstanceLinearModel
method), 105

component() (menpo.model.PCAModel method), 107
component_vector() (menpo.model.InstanceLinearModel

method), 100
component_vector() (menpo.model.LinearModel

method), 98
component_vector() (menpo.model.MeanInstanceLinearModel

method), 105
component_vector() (menpo.model.MeanLinearModel

method), 103
component_vector() (menpo.model.PCAModel method),

108
components (menpo.model.InstanceLinearModel at-

tribute), 102
components (menpo.model.LinearModel attribute), 100
components (menpo.model.MeanInstanceLinearModel

attribute), 107
components (menpo.model.MeanLinearModel attribute),

104
components (menpo.model.PCAModel attribute), 116
ComposableTransform (class in

menpo.transform.base.composable), 264
compose_after() (menpo.transform.Affine method), 210
compose_after() (menpo.transform.AlignmentAffine

method), 235
compose_after() (menpo.transform.AlignmentRotation

method), 244
compose_after() (menpo.transform.AlignmentSimilarity

method), 240
compose_after() (menpo.transform.AlignmentTranslation

method), 248
compose_after() (menpo.transform.AlignmentUniformScale

method), 252
compose_after() (menpo.transform.base.composable.ComposableTransform

method), 264
compose_after() (menpo.transform.Homogeneous

method), 206
compose_after() (menpo.transform.NonUniformScale

method), 229
compose_after() (menpo.transform.R2LogR2RBF

method), 259
compose_after() (menpo.transform.R2LogRRBF

method), 260
compose_after() (menpo.transform.Rotation method),

218
compose_after() (menpo.transform.Similarity method),

214
compose_after() (menpo.transform.ThinPlateSplines

method), 233
compose_after() (menpo.transform.Transform method),

262

compose_after() (menpo.transform.TransformChain
method), 256

compose_after() (menpo.transform.Translation method),
222

compose_after() (menpo.transform.UniformScale
method), 225

compose_after_from_vector_inplace()
(menpo.transform.base.composable.VComposable
method), 268

compose_after_inplace() (menpo.transform.Affine
method), 210

compose_after_inplace() (menpo.transform.AlignmentAffine
method), 235

compose_after_inplace() (menpo.transform.AlignmentRotation
method), 244

compose_after_inplace() (menpo.transform.AlignmentSimilarity
method), 240

compose_after_inplace() (menpo.transform.AlignmentTranslation
method), 249

compose_after_inplace() (menpo.transform.AlignmentUniformScale
method), 253

compose_after_inplace() (menpo.transform.base.composable.ComposableTransform
method), 265

compose_after_inplace() (menpo.transform.Homogeneous
method), 207

compose_after_inplace() (menpo.transform.NonUniformScale
method), 229

compose_after_inplace() (menpo.transform.Rotation
method), 218

compose_after_inplace() (menpo.transform.Similarity
method), 214

compose_after_inplace() (menpo.transform.TransformChain
method), 257

compose_after_inplace() (menpo.transform.Translation
method), 222

compose_after_inplace() (menpo.transform.UniformScale
method), 226

compose_before() (menpo.transform.Affine method), 210
compose_before() (menpo.transform.AlignmentAffine

method), 236
compose_before() (menpo.transform.AlignmentRotation

method), 245
compose_before() (menpo.transform.AlignmentSimilarity

method), 240
compose_before() (menpo.transform.AlignmentTranslation

method), 249
compose_before() (menpo.transform.AlignmentUniformScale

method), 253
compose_before() (menpo.transform.base.composable.ComposableTransform

method), 265
compose_before() (menpo.transform.Homogeneous

method), 207
compose_before() (menpo.transform.NonUniformScale

method), 229

306 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

compose_before() (menpo.transform.R2LogR2RBF
method), 259

compose_before() (menpo.transform.R2LogRRBF
method), 260

compose_before() (menpo.transform.Rotation method),
218

compose_before() (menpo.transform.Similarity method),
214

compose_before() (menpo.transform.ThinPlateSplines
method), 233

compose_before() (menpo.transform.Transform method),
262

compose_before() (menpo.transform.TransformChain
method), 257

compose_before() (menpo.transform.Translation
method), 222

compose_before() (menpo.transform.UniformScale
method), 226

compose_before_inplace() (menpo.transform.Affine
method), 211

compose_before_inplace()
(menpo.transform.AlignmentAffine method),
236

compose_before_inplace()
(menpo.transform.AlignmentRotation method),
245

compose_before_inplace()
(menpo.transform.AlignmentSimilarity
method), 240

compose_before_inplace()
(menpo.transform.AlignmentTranslation
method), 249

compose_before_inplace()
(menpo.transform.AlignmentUniformScale
method), 253

compose_before_inplace()
(menpo.transform.base.composable.ComposableTransform
method), 265

compose_before_inplace()
(menpo.transform.Homogeneous method),
207

compose_before_inplace()
(menpo.transform.NonUniformScale method),
230

compose_before_inplace() (menpo.transform.Rotation
method), 219

compose_before_inplace() (menpo.transform.Similarity
method), 215

compose_before_inplace()
(menpo.transform.TransformChain method),
257

compose_before_inplace() (menpo.transform.Translation
method), 222

compose_before_inplace()
(menpo.transform.UniformScale method),
226

composes_inplace_with (menpo.transform.Affine at-
tribute), 212

composes_inplace_with (menpo.transform.AlignmentAffine
attribute), 237

composes_inplace_with (menpo.transform.AlignmentRotation
attribute), 247

composes_inplace_with (menpo.transform.AlignmentSimilarity
attribute), 242

composes_inplace_with (menpo.transform.AlignmentTranslation
attribute), 250

composes_inplace_with (menpo.transform.AlignmentUniformScale
attribute), 254

composes_inplace_with (menpo.transform.base.composable.ComposableTransform
attribute), 265

composes_inplace_with (menpo.transform.Homogeneous
attribute), 208

composes_inplace_with (menpo.transform.NonUniformScale
attribute), 231

composes_inplace_with (menpo.transform.Rotation at-
tribute), 220

composes_inplace_with (menpo.transform.Similarity at-
tribute), 216

composes_inplace_with (menpo.transform.TransformChain
attribute), 258

composes_inplace_with (menpo.transform.Translation
attribute), 224

composes_inplace_with (menpo.transform.UniformScale
attribute), 227

composes_with (menpo.transform.Affine attribute), 212
composes_with (menpo.transform.AlignmentAffine at-

tribute), 237
composes_with (menpo.transform.AlignmentRotation at-

tribute), 247
composes_with (menpo.transform.AlignmentSimilarity

attribute), 242
composes_with (menpo.transform.AlignmentTranslation

attribute), 250
composes_with (menpo.transform.AlignmentUniformScale

attribute), 254
composes_with (menpo.transform.base.composable.ComposableTransform

attribute), 266
composes_with (menpo.transform.Homogeneous at-

tribute), 209
composes_with (menpo.transform.NonUniformScale at-

tribute), 231
composes_with (menpo.transform.Rotation attribute),

220
composes_with (menpo.transform.Similarity attribute),

216
composes_with (menpo.transform.TransformChain at-

tribute), 258

Index 307

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

composes_with (menpo.transform.Translation attribute),
224

composes_with (menpo.transform.UniformScale at-
tribute), 227

constrain_landmarks_to_bounds()
(menpo.image.BooleanImage method), 44

constrain_landmarks_to_bounds() (menpo.image.Image
method), 32

constrain_landmarks_to_bounds()
(menpo.image.MaskedImage method), 61

constrain_mask_to_landmarks()
(menpo.image.MaskedImage method), 61

constrain_points_to_bounds()
(menpo.image.BooleanImage method), 44

constrain_points_to_bounds() (menpo.image.Image
method), 32

constrain_points_to_bounds()
(menpo.image.MaskedImage method), 61

constrain_to_landmarks() (menpo.image.BooleanImage
method), 44

constrain_to_pointcloud() (menpo.image.BooleanImage
method), 44

copy() (menpo.base.Copyable method), 19
copy() (menpo.base.Targetable method), 21
copy() (menpo.base.Vectorizable method), 20
copy() (menpo.image.BooleanImage method), 45
copy() (menpo.image.Image method), 32
copy() (menpo.image.MaskedImage method), 61
copy() (menpo.landmark.Landmarkable method), 78
copy() (menpo.landmark.LandmarkGroup method), 81
copy() (menpo.landmark.LandmarkManager method), 79
copy() (menpo.model.InstanceLinearModel method), 100
copy() (menpo.model.LinearModel method), 98
copy() (menpo.model.MeanInstanceLinearModel

method), 105
copy() (menpo.model.MeanLinearModel method), 103
copy() (menpo.model.PCAModel method), 108
copy() (menpo.shape.base.Shape method), 117
copy() (menpo.shape.ColouredTriMesh method), 193
copy() (menpo.shape.PointCloud method), 123
copy() (menpo.shape.PointDirectedGraph method), 160
copy() (menpo.shape.PointTree method), 172
copy() (menpo.shape.PointUndirectedGraph method),

148
copy() (menpo.shape.TexturedTriMesh method), 201
copy() (menpo.shape.TriMesh method), 184
copy() (menpo.transform.Affine method), 211
copy() (menpo.transform.AlignmentAffine method), 236
copy() (menpo.transform.AlignmentRotation method),

245
copy() (menpo.transform.AlignmentSimilarity method),

241
copy() (menpo.transform.AlignmentTranslation method),

249

copy() (menpo.transform.AlignmentUniformScale
method), 253

copy() (menpo.transform.base.alignment.Alignment
method), 267

copy() (menpo.transform.base.composable.ComposableTransform
method), 265

copy() (menpo.transform.base.Transformable method),
263

copy() (menpo.transform.Homogeneous method), 207
copy() (menpo.transform.NonUniformScale method),

230
copy() (menpo.transform.R2LogR2RBF method), 259
copy() (menpo.transform.R2LogRRBF method), 261
copy() (menpo.transform.Rotation method), 219
copy() (menpo.transform.Similarity method), 215
copy() (menpo.transform.ThinPlateSplines method), 233
copy() (menpo.transform.Transform method), 263
copy() (menpo.transform.TransformChain method), 257
copy() (menpo.transform.Translation method), 223
copy() (menpo.transform.UniformScale method), 226
Copyable (class in menpo.base), 19
crop() (menpo.image.BooleanImage method), 45
crop() (menpo.image.Image method), 33
crop() (menpo.image.MaskedImage method), 62
crop_inplace() (menpo.image.BooleanImage method), 45
crop_inplace() (menpo.image.Image method), 33
crop_inplace() (menpo.image.MaskedImage method), 62
crop_to_landmarks() (menpo.image.BooleanImage

method), 45
crop_to_landmarks() (menpo.image.Image method), 33
crop_to_landmarks() (menpo.image.MaskedImage

method), 62
crop_to_landmarks_inplace()

(menpo.image.BooleanImage method), 46
crop_to_landmarks_inplace() (menpo.image.Image

method), 33
crop_to_landmarks_inplace()

(menpo.image.MaskedImage method), 62
crop_to_landmarks_proportion()

(menpo.image.BooleanImage method), 46
crop_to_landmarks_proportion() (menpo.image.Image

method), 33
crop_to_landmarks_proportion()

(menpo.image.MaskedImage method), 62
crop_to_landmarks_proportion_inplace()

(menpo.image.BooleanImage method), 46
crop_to_landmarks_proportion_inplace()

(menpo.image.Image method), 34
crop_to_landmarks_proportion_inplace()

(menpo.image.MaskedImage method), 63
crop_to_true_mask() (menpo.image.MaskedImage

method), 63

308 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

D
daisy() (in module menpo.feature), 76
data_dir_path() (in module menpo.io), 26
data_path_to() (in module menpo.io), 26
decompose() (menpo.transform.Affine method), 211
decompose() (menpo.transform.AlignmentAffine

method), 236
decompose() (menpo.transform.AlignmentRotation

method), 245
decompose() (menpo.transform.AlignmentSimilarity

method), 241
decompose() (menpo.transform.AlignmentTranslation

method), 249
decompose() (menpo.transform.AlignmentUniformScale

method), 253
decompose() (menpo.transform.homogeneous.affine.DiscreteAffine

method), 268
decompose() (menpo.transform.NonUniformScale

method), 230
decompose() (menpo.transform.Rotation method), 219
decompose() (menpo.transform.Similarity method), 215
decompose() (menpo.transform.Translation method), 223
decompose() (menpo.transform.UniformScale method),

226
depth_of_vertex() (menpo.shape.PointTree method), 173
depth_of_vertex() (menpo.shape.Tree method), 136
diagonal() (menpo.image.BooleanImage method), 46
diagonal() (menpo.image.Image method), 34
diagonal() (menpo.image.MaskedImage method), 63
DirectedGraph (class in menpo.shape), 130
DiscreteAffine (class in

menpo.transform.homogeneous.affine), 267
distance_to() (menpo.shape.ColouredTriMesh method),

193
distance_to() (menpo.shape.PointCloud method), 123
distance_to() (menpo.shape.PointDirectedGraph

method), 160
distance_to() (menpo.shape.PointTree method), 173
distance_to() (menpo.shape.PointUndirectedGraph

method), 148
distance_to() (menpo.shape.TexturedTriMesh method),

202
distance_to() (menpo.shape.TriMesh method), 184
dot_inplace_left() (in module menpo.math), 96
dot_inplace_right() (in module menpo.math), 95

E
edge_indices() (menpo.shape.ColouredTriMesh method),

193
edge_indices() (menpo.shape.TexturedTriMesh method),

202
edge_indices() (menpo.shape.TriMesh method), 184
edge_lengths() (menpo.shape.ColouredTriMesh method),

193

edge_lengths() (menpo.shape.TexturedTriMesh method),
202

edge_lengths() (menpo.shape.TriMesh method), 184
edge_vectors() (menpo.shape.ColouredTriMesh method),

193
edge_vectors() (menpo.shape.TexturedTriMesh method),

202
edge_vectors() (menpo.shape.TriMesh method), 185
eigenvalue_decomposition() (in module menpo.math), 94
eigenvalues (menpo.model.PCAModel attribute), 116
eigenvalues_cumulative_ratio()

(menpo.model.PCAModel method), 108
eigenvalues_ratio() (menpo.model.PCAModel method),

108
es() (in module menpo.feature), 74
export_image() (in module menpo.io), 24
export_landmark_file() (in module menpo.io), 25
export_pickle() (in module menpo.io), 25
extract_channels() (menpo.image.BooleanImage

method), 46
extract_channels() (menpo.image.Image method), 34
extract_channels() (menpo.image.MaskedImage

method), 63
extract_patches() (menpo.image.BooleanImage method),

46
extract_patches() (menpo.image.Image method), 34
extract_patches() (menpo.image.MaskedImage method),

63
extract_patches_around_landmarks()

(menpo.image.BooleanImage method), 47
extract_patches_around_landmarks()

(menpo.image.Image method), 34
extract_patches_around_landmarks()

(menpo.image.MaskedImage method), 64

F
false_indices() (menpo.image.BooleanImage method), 47
features_selection() (in module menpo.visualize), 272
features_selection_widget() (in module menpo.feature),

78
find_all_paths() (menpo.shape.DirectedGraph method),

131
find_all_paths() (menpo.shape.PointDirectedGraph

method), 160
find_all_paths() (menpo.shape.PointTree method), 173
find_all_paths() (menpo.shape.PointUndirectedGraph

method), 148
find_all_paths() (menpo.shape.Tree method), 137
find_all_paths() (menpo.shape.UndirectedGraph

method), 126
find_all_shortest_paths() (menpo.shape.DirectedGraph

method), 131
find_all_shortest_paths() (menpo.shape.PointDirectedGraph

method), 160

Index 309

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

find_all_shortest_paths() (menpo.shape.PointTree
method), 173

find_all_shortest_paths() (menpo.shape.PointUndirectedGraph
method), 148

find_all_shortest_paths() (menpo.shape.Tree method),
137

find_all_shortest_paths() (menpo.shape.UndirectedGraph
method), 126

find_path() (menpo.shape.DirectedGraph method), 132
find_path() (menpo.shape.PointDirectedGraph method),

161
find_path() (menpo.shape.PointTree method), 173
find_path() (menpo.shape.PointUndirectedGraph

method), 149
find_path() (menpo.shape.Tree method), 137
find_path() (menpo.shape.UndirectedGraph method), 127
find_shortest_path() (menpo.shape.DirectedGraph

method), 132
find_shortest_path() (menpo.shape.PointDirectedGraph

method), 161
find_shortest_path() (menpo.shape.PointTree method),

174
find_shortest_path() (menpo.shape.PointUndirectedGraph

method), 149
find_shortest_path() (menpo.shape.Tree method), 137
find_shortest_path() (menpo.shape.UndirectedGraph

method), 127
flic_pose() (in module menpo.landmark), 89
from_mask() (menpo.shape.ColouredTriMesh method),

193
from_mask() (menpo.shape.PointCloud method), 123
from_mask() (menpo.shape.PointDirectedGraph

method), 161
from_mask() (menpo.shape.PointTree method), 174
from_mask() (menpo.shape.PointUndirectedGraph

method), 149
from_mask() (menpo.shape.TexturedTriMesh method),

202
from_mask() (menpo.shape.TriMesh method), 185
from_matrix() (in module menpo.math), 96
from_vector() (menpo.base.Vectorizable method), 20
from_vector() (menpo.image.BooleanImage method), 47
from_vector() (menpo.image.Image method), 35
from_vector() (menpo.image.MaskedImage method), 64
from_vector() (menpo.shape.base.Shape method), 117
from_vector() (menpo.shape.ColouredTriMesh method),

194
from_vector() (menpo.shape.PointCloud method), 123
from_vector() (menpo.shape.PointDirectedGraph

method), 161
from_vector() (menpo.shape.PointTree method), 174
from_vector() (menpo.shape.PointUndirectedGraph

method), 149

from_vector() (menpo.shape.TexturedTriMesh method),
202

from_vector() (menpo.shape.TriMesh method), 185
from_vector() (menpo.transform.Affine method), 211
from_vector() (menpo.transform.AlignmentAffine

method), 236
from_vector() (menpo.transform.AlignmentRotation

method), 245
from_vector() (menpo.transform.AlignmentSimilarity

method), 241
from_vector() (menpo.transform.AlignmentTranslation

method), 249
from_vector() (menpo.transform.AlignmentUniformScale

method), 253
from_vector() (menpo.transform.Homogeneous method),

208
from_vector() (menpo.transform.NonUniformScale

method), 230
from_vector() (menpo.transform.Rotation method), 219
from_vector() (menpo.transform.Similarity method), 215
from_vector() (menpo.transform.Translation method),

223
from_vector() (menpo.transform.UniformScale method),

227
from_vector_inplace() (menpo.base.Vectorizable

method), 20
from_vector_inplace() (menpo.image.BooleanImage

method), 48
from_vector_inplace() (menpo.image.Image method), 35
from_vector_inplace() (menpo.image.MaskedImage

method), 64
from_vector_inplace() (menpo.shape.base.Shape

method), 117
from_vector_inplace() (menpo.shape.ColouredTriMesh

method), 194
from_vector_inplace() (menpo.shape.PointCloud

method), 123
from_vector_inplace() (menpo.shape.PointDirectedGraph

method), 162
from_vector_inplace() (menpo.shape.PointTree method),

174
from_vector_inplace() (menpo.shape.PointUndirectedGraph

method), 150
from_vector_inplace() (menpo.shape.TexturedTriMesh

method), 203
from_vector_inplace() (menpo.shape.TriMesh method),

185
from_vector_inplace() (menpo.transform.Affine method),

211
from_vector_inplace() (menpo.transform.AlignmentAffine

method), 237
from_vector_inplace() (menpo.transform.AlignmentRotation

method), 245

310 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

from_vector_inplace() (menpo.transform.AlignmentSimilarity
method), 241

from_vector_inplace() (menpo.transform.AlignmentTranslation
method), 250

from_vector_inplace() (menpo.transform.AlignmentUniformScale
method), 254

from_vector_inplace() (menpo.transform.Homogeneous
method), 208

from_vector_inplace() (menpo.transform.NonUniformScale
method), 230

from_vector_inplace() (menpo.transform.Rotation
method), 219

from_vector_inplace() (menpo.transform.Similarity
method), 215

from_vector_inplace() (menpo.transform.Translation
method), 223

from_vector_inplace() (menpo.transform.UniformScale
method), 227

G
gaussian_filter() (in module menpo.feature), 73
gaussian_pyramid() (menpo.image.BooleanImage

method), 48
gaussian_pyramid() (menpo.image.Image method), 35
gaussian_pyramid() (menpo.image.MaskedImage

method), 65
GeneralizedProcrustesAnalysis (class in

menpo.transform), 255
get() (menpo.landmark.LandmarkGroup method), 81
get() (menpo.landmark.LandmarkManager method), 79
get_adjacency_list() (menpo.shape.DirectedGraph

method), 133
get_adjacency_list() (menpo.shape.PointDirectedGraph

method), 162
get_adjacency_list() (menpo.shape.PointTree method),

175
get_adjacency_list() (menpo.shape.PointUndirectedGraph

method), 150
get_adjacency_list() (menpo.shape.Tree method), 138
get_adjacency_list() (menpo.shape.UndirectedGraph

method), 127
get_figure() (menpo.visualize.MatplotlibRenderer

method), 270
get_figure() (menpo.visualize.Renderer method), 269
glyph() (in module menpo.feature.visualize), 77
gradient() (in module menpo.feature), 73
gradient() (menpo.image.BooleanImage method), 48
gradient() (menpo.image.Image method), 36
gradient() (menpo.image.MaskedImage method), 65
GraphOptionsWidget (class in menpo.visualize.widgets),

294
group_labels (menpo.landmark.LandmarkManager at-

tribute), 80

H
h_matrix (menpo.transform.Affine attribute), 212
h_matrix (menpo.transform.AlignmentAffine attribute),

238
h_matrix (menpo.transform.AlignmentRotation at-

tribute), 247
h_matrix (menpo.transform.AlignmentSimilarity at-

tribute), 242
h_matrix (menpo.transform.AlignmentTranslation

attribute), 251
h_matrix (menpo.transform.AlignmentUniformScale at-

tribute), 254
h_matrix (menpo.transform.Homogeneous attribute), 209
h_matrix (menpo.transform.NonUniformScale attribute),

231
h_matrix (menpo.transform.Rotation attribute), 220
h_matrix (menpo.transform.Similarity attribute), 216
h_matrix (menpo.transform.Translation attribute), 224
h_matrix (menpo.transform.UniformScale attribute), 228
h_matrix_is_mutable (menpo.transform.Affine attribute),

212
h_matrix_is_mutable (menpo.transform.AlignmentAffine

attribute), 238
h_matrix_is_mutable (menpo.transform.AlignmentRotation

attribute), 247
h_matrix_is_mutable (menpo.transform.AlignmentSimilarity

attribute), 242
h_matrix_is_mutable (menpo.transform.AlignmentTranslation

attribute), 251
h_matrix_is_mutable (menpo.transform.AlignmentUniformScale

attribute), 255
h_matrix_is_mutable (menpo.transform.Homogeneous

attribute), 209
h_matrix_is_mutable (menpo.transform.NonUniformScale

attribute), 231
h_matrix_is_mutable (menpo.transform.Rotation at-

tribute), 220
h_matrix_is_mutable (menpo.transform.Similarity

attribute), 216
h_matrix_is_mutable (menpo.transform.Translation at-

tribute), 224
h_matrix_is_mutable (menpo.transform.UniformScale at-

tribute), 228
h_points() (menpo.shape.ColouredTriMesh method), 194
h_points() (menpo.shape.PointCloud method), 124
h_points() (menpo.shape.PointDirectedGraph method),

162
h_points() (menpo.shape.PointTree method), 175
h_points() (menpo.shape.PointUndirectedGraph method),

150
h_points() (menpo.shape.TexturedTriMesh method), 203
h_points() (menpo.shape.TriMesh method), 185
has_cycles() (menpo.shape.DirectedGraph method), 133

Index 311

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

has_cycles() (menpo.shape.PointDirectedGraph method),
162

has_cycles() (menpo.shape.PointTree method), 175
has_cycles() (menpo.shape.PointUndirectedGraph

method), 150
has_cycles() (menpo.shape.Tree method), 138
has_cycles() (menpo.shape.UndirectedGraph method),

128
has_isolated_vertices() (menpo.shape.DirectedGraph

method), 133
has_isolated_vertices() (menpo.shape.PointDirectedGraph

method), 162
has_isolated_vertices() (menpo.shape.PointTree method),

175
has_isolated_vertices() (menpo.shape.PointUndirectedGraph

method), 150
has_isolated_vertices() (menpo.shape.Tree method), 138
has_isolated_vertices() (menpo.shape.UndirectedGraph

method), 128
has_landmarks (menpo.image.BooleanImage attribute),

53
has_landmarks (menpo.image.Image attribute), 41
has_landmarks (menpo.image.MaskedImage attribute),

71
has_landmarks (menpo.landmark.Landmarkable at-

tribute), 79
has_landmarks (menpo.landmark.LandmarkManager at-

tribute), 80
has_landmarks (menpo.shape.base.Shape attribute), 117
has_landmarks (menpo.shape.ColouredTriMesh at-

tribute), 195
has_landmarks (menpo.shape.PointCloud attribute), 124
has_landmarks (menpo.shape.PointDirectedGraph

attribute), 165
has_landmarks (menpo.shape.PointTree attribute), 178
has_landmarks (menpo.shape.PointUndirectedGraph at-

tribute), 152
has_landmarks (menpo.shape.TexturedTriMesh at-

tribute), 205
has_landmarks (menpo.shape.TriMesh attribute), 187
has_landmarks_outside_bounds

(menpo.image.BooleanImage attribute),
53

has_landmarks_outside_bounds (menpo.image.Image at-
tribute), 41

has_landmarks_outside_bounds
(menpo.image.MaskedImage attribute), 71

has_nan_values() (menpo.base.Vectorizable method), 20
has_nan_values() (menpo.image.BooleanImage method),

48
has_nan_values() (menpo.image.Image method), 36
has_nan_values() (menpo.image.MaskedImage method),

65

has_nan_values() (menpo.landmark.LandmarkGroup
method), 81

has_nan_values() (menpo.shape.base.Shape method), 117
has_nan_values() (menpo.shape.ColouredTriMesh

method), 194
has_nan_values() (menpo.shape.PointCloud method),

124
has_nan_values() (menpo.shape.PointDirectedGraph

method), 162
has_nan_values() (menpo.shape.PointTree method), 175
has_nan_values() (menpo.shape.PointUndirectedGraph

method), 150
has_nan_values() (menpo.shape.TexturedTriMesh

method), 203
has_nan_values() (menpo.shape.TriMesh method), 185
has_nan_values() (menpo.transform.Affine method), 211
has_nan_values() (menpo.transform.AlignmentAffine

method), 237
has_nan_values() (menpo.transform.AlignmentRotation

method), 245
has_nan_values() (menpo.transform.AlignmentSimilarity

method), 241
has_nan_values() (menpo.transform.AlignmentTranslation

method), 250
has_nan_values() (menpo.transform.AlignmentUniformScale

method), 254
has_nan_values() (menpo.transform.Homogeneous

method), 208
has_nan_values() (menpo.transform.NonUniformScale

method), 230
has_nan_values() (menpo.transform.Rotation method),

219
has_nan_values() (menpo.transform.Similarity method),

215
has_nan_values() (menpo.transform.Translation method),

223
has_nan_values() (menpo.transform.UniformScale

method), 227
has_true_inverse (menpo.transform.Affine attribute), 212
has_true_inverse (menpo.transform.AlignmentAffine at-

tribute), 238
has_true_inverse (menpo.transform.AlignmentRotation

attribute), 247
has_true_inverse (menpo.transform.AlignmentSimilarity

attribute), 242
has_true_inverse (menpo.transform.AlignmentTranslation

attribute), 251
has_true_inverse (menpo.transform.AlignmentUniformScale

attribute), 255
has_true_inverse (menpo.transform.base.invertible.Invertible

attribute), 266
has_true_inverse (menpo.transform.base.invertible.VInvertible

attribute), 268

312 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

has_true_inverse (menpo.transform.Homogeneous
attribute), 209

has_true_inverse (menpo.transform.NonUniformScale at-
tribute), 231

has_true_inverse (menpo.transform.Rotation attribute),
220

has_true_inverse (menpo.transform.Similarity attribute),
216

has_true_inverse (menpo.transform.ThinPlateSplines at-
tribute), 233

has_true_inverse (menpo.transform.Translation attribute),
224

has_true_inverse (menpo.transform.UniformScale at-
tribute), 228

height (menpo.image.BooleanImage attribute), 53
height (menpo.image.Image attribute), 41
height (menpo.image.MaskedImage attribute), 71
hog() (in module menpo.feature), 75
Homogeneous (class in menpo.transform), 206

I
ibug_close_eye_points() (in module menpo.landmark),

88
ibug_close_eye_trimesh() (in module menpo.landmark),

88
ibug_face_49() (in module menpo.landmark), 83
ibug_face_51() (in module menpo.landmark), 83
ibug_face_65_closed_mouth() (in module

menpo.landmark), 85
ibug_face_66() (in module menpo.landmark), 84
ibug_face_68() (in module menpo.landmark), 84
ibug_face_68_trimesh() (in module menpo.landmark), 85
ibug_hand() (in module menpo.landmark), 89
ibug_open_eye() (in module menpo.landmark), 87
ibug_open_eye_trimesh() (in module menpo.landmark),

88
ibug_tongue() (in module menpo.landmark), 94
igo() (in module menpo.feature), 73
Image (class in menpo.image), 27
image_paths() (in module menpo.io), 26
ImageBoundaryError (class in menpo.image), 72
imm_face() (in module menpo.landmark), 86
import_builtin_asset() (in module menpo.io), 24
import_image() (in module menpo.io), 21
import_images() (in module menpo.io), 22
import_landmark_file() (in module menpo.io), 23
import_landmark_files() (in module menpo.io), 23
import_pickle() (in module menpo.io), 23
import_pickles() (in module menpo.io), 24
increment() (menpo.model.PCAModel method), 108
indices() (menpo.image.BooleanImage method), 48
indices() (menpo.image.Image method), 36
indices() (menpo.image.MaskedImage method), 65

init_blank() (menpo.image.BooleanImage class method),
48

init_blank() (menpo.image.Image class method), 36
init_blank() (menpo.image.MaskedImage class method),

65
init_from_2d_ccw_angle()

(menpo.transform.AlignmentRotation method),
246

init_from_2d_ccw_angle() (menpo.transform.Rotation
class method), 219

init_from_edges() (menpo.shape.DirectedGraph method),
133

init_from_edges() (menpo.shape.PointDirectedGraph
method), 162

init_from_edges() (menpo.shape.PointTree class
method), 175

init_from_edges() (menpo.shape.PointUndirectedGraph
class method), 150

init_from_edges() (menpo.shape.Tree method), 138
init_from_edges() (menpo.shape.UndirectedGraph class

method), 128
init_identity() (menpo.transform.Affine class method),

211
init_identity() (menpo.transform.AlignmentAffine

method), 237
init_identity() (menpo.transform.AlignmentRotation

method), 246
init_identity() (menpo.transform.AlignmentSimilarity

method), 241
init_identity() (menpo.transform.AlignmentTranslation

method), 250
init_identity() (menpo.transform.AlignmentUniformScale

method), 254
init_identity() (menpo.transform.Homogeneous class

method), 208
init_identity() (menpo.transform.NonUniformScale class

method), 230
init_identity() (menpo.transform.Rotation class method),

220
init_identity() (menpo.transform.Similarity class

method), 216
init_identity() (menpo.transform.Translation class

method), 223
init_identity() (menpo.transform.UniformScale class

method), 227
init_with_all_label() (menpo.landmark.LandmarkGroup

class method), 81
instance() (menpo.model.InstanceLinearModel method),

100
instance() (menpo.model.MeanInstanceLinearModel

method), 105
instance() (menpo.model.PCAModel method), 109
instance_vector() (menpo.model.InstanceLinearModel

method), 100

Index 313

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

instance_vector() (menpo.model.LinearModel method),
98

instance_vector() (menpo.model.MeanInstanceLinearModel
method), 105

instance_vector() (menpo.model.MeanLinearModel
method), 103

instance_vector() (menpo.model.PCAModel method),
109

instance_vectors() (menpo.model.InstanceLinearModel
method), 101

instance_vectors() (menpo.model.LinearModel method),
98

instance_vectors() (menpo.model.MeanInstanceLinearModel
method), 105

instance_vectors() (menpo.model.MeanLinearModel
method), 103

instance_vectors() (menpo.model.PCAModel method),
109

InstanceLinearModel (class in menpo.model), 100
inverse_noise_variance() (menpo.model.PCAModel

method), 109
invert() (menpo.image.BooleanImage method), 49
invert_inplace() (menpo.image.BooleanImage method),

49
Invertible (class in menpo.transform.base.invertible), 266
ipca() (in module menpo.math), 94
is_edge() (menpo.shape.DirectedGraph method), 134
is_edge() (menpo.shape.PointDirectedGraph method),

163
is_edge() (menpo.shape.PointTree method), 176
is_edge() (menpo.shape.PointUndirectedGraph method),

151
is_edge() (menpo.shape.Tree method), 139
is_edge() (menpo.shape.UndirectedGraph method), 129
is_leaf() (menpo.shape.PointTree method), 176
is_leaf() (menpo.shape.Tree method), 139
is_tree() (menpo.shape.DirectedGraph method), 134
is_tree() (menpo.shape.PointDirectedGraph method), 164
is_tree() (menpo.shape.PointTree method), 176
is_tree() (menpo.shape.PointUndirectedGraph method),

151
is_tree() (menpo.shape.Tree method), 140
is_tree() (menpo.shape.UndirectedGraph method), 129
isolated_vertices() (menpo.shape.DirectedGraph

method), 134
isolated_vertices() (menpo.shape.PointDirectedGraph

method), 164
isolated_vertices() (menpo.shape.PointTree method), 176
isolated_vertices() (menpo.shape.PointUndirectedGraph

method), 151
isolated_vertices() (menpo.shape.Tree method), 140
isolated_vertices() (menpo.shape.UndirectedGraph

method), 129
items() (menpo.landmark.LandmarkGroup method), 81

items() (menpo.landmark.LandmarkManager method),
79

items_matching() (menpo.landmark.LandmarkManager
method), 79

iteritems() (menpo.landmark.LandmarkGroup method),
81

iteritems() (menpo.landmark.LandmarkManager
method), 80

iterkeys() (menpo.landmark.LandmarkGroup method), 81
iterkeys() (menpo.landmark.LandmarkManager method),

80
itervalues() (menpo.landmark.LandmarkGroup method),

81
itervalues() (menpo.landmark.LandmarkManager

method), 80

K
keys() (menpo.landmark.LandmarkGroup method), 81
keys() (menpo.landmark.LandmarkManager method), 80
keys_matching() (menpo.landmark.LandmarkManager

method), 80

L
labeller() (in module menpo.landmark), 83
LabellingError (class in menpo.landmark), 79
labels (menpo.landmark.LandmarkGroup attribute), 82
landmark_file_paths() (in module menpo.io), 26
Landmarkable (class in menpo.landmark), 78
LandmarkableViewable (class in menpo.visualize), 270
LandmarkGroup (class in menpo.landmark), 81
LandmarkManager (class in menpo.landmark), 79
LandmarkOptionsWidget (class in

menpo.visualize.widgets), 282
landmarks (menpo.image.BooleanImage attribute), 53
landmarks (menpo.image.Image attribute), 41
landmarks (menpo.image.MaskedImage attribute), 71
landmarks (menpo.landmark.Landmarkable attribute), 79
landmarks (menpo.shape.base.Shape attribute), 117
landmarks (menpo.shape.ColouredTriMesh attribute),

195
landmarks (menpo.shape.PointCloud attribute), 124
landmarks (menpo.shape.PointDirectedGraph attribute),

165
landmarks (menpo.shape.PointTree attribute), 178
landmarks (menpo.shape.PointUndirectedGraph at-

tribute), 152
landmarks (menpo.shape.TexturedTriMesh attribute), 205
landmarks (menpo.shape.TriMesh attribute), 187
lbp() (in module menpo.feature), 74
leaves (menpo.shape.PointTree attribute), 178
leaves (menpo.shape.Tree attribute), 141
lfpw_face() (in module menpo.landmark), 86
linear_component (menpo.transform.Affine attribute),

212

314 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

linear_component (menpo.transform.AlignmentAffine at-
tribute), 238

linear_component (menpo.transform.AlignmentRotation
attribute), 247

linear_component (menpo.transform.AlignmentSimilarity
attribute), 242

linear_component (menpo.transform.AlignmentTranslation
attribute), 251

linear_component (menpo.transform.AlignmentUniformScale
attribute), 255

linear_component (menpo.transform.NonUniformScale
attribute), 231

linear_component (menpo.transform.Rotation attribute),
221

linear_component (menpo.transform.Similarity attribute),
216

linear_component (menpo.transform.Translation at-
tribute), 224

linear_component (menpo.transform.UniformScale at-
tribute), 228

LinearModel (class in menpo.model), 98
lms (menpo.landmark.LandmarkGroup attribute), 82
log_gabor() (in module menpo.math), 97
ls_builtin_assets() (in module menpo.io), 26
lsp_pose() (in module menpo.landmark), 90

M
mask (menpo.image.BooleanImage attribute), 53
masked_pixels() (menpo.image.MaskedImage method),

65
MaskedImage (class in menpo.image), 54
MatplotlibRenderer (class in menpo.visualize), 270
maximum_depth (menpo.shape.PointTree attribute), 178
maximum_depth (menpo.shape.Tree attribute), 141
mean() (menpo.model.MeanInstanceLinearModel

method), 106
mean() (menpo.model.PCAModel method), 109
mean_aligned_shape() (menpo.transform.GeneralizedProcrustesAnalysis

method), 256
mean_alignment_error() (menpo.transform.GeneralizedProcrustesAnalysis

method), 256
mean_edge_length() (menpo.shape.ColouredTriMesh

method), 194
mean_edge_length() (menpo.shape.TexturedTriMesh

method), 203
mean_edge_length() (menpo.shape.TriMesh method),

185
mean_pointcloud() (in module menpo.shape), 205
mean_tri_area() (menpo.shape.ColouredTriMesh

method), 194
mean_tri_area() (menpo.shape.TexturedTriMesh

method), 203
mean_tri_area() (menpo.shape.TriMesh method), 185
MeanInstanceLinearModel (class in menpo.model), 104

MeanLinearModel (class in menpo.model), 102
menpo_src_dir_path() (in module menpo.base), 21
minimum_spanning_tree()

(menpo.shape.PointUndirectedGraph method),
151

minimum_spanning_tree()
(menpo.shape.UndirectedGraph method),
129

MultipleAlignment (class in
menpo.transform.groupalign.base), 267

N
n_active_components (menpo.model.PCAModel at-

tribute), 116
n_centres (menpo.transform.R2LogR2RBF attribute),

259
n_centres (menpo.transform.R2LogRRBF attribute), 261
n_channels (menpo.image.BooleanImage attribute), 54
n_channels (menpo.image.Image attribute), 41
n_channels (menpo.image.MaskedImage attribute), 71
n_children() (menpo.shape.DirectedGraph method), 134
n_children() (menpo.shape.PointDirectedGraph method),

164
n_children() (menpo.shape.PointTree method), 176
n_children() (menpo.shape.Tree method), 140
n_components (menpo.model.InstanceLinearModel at-

tribute), 102
n_components (menpo.model.LinearModel attribute),

100
n_components (menpo.model.MeanInstanceLinearModel

attribute), 107
n_components (menpo.model.MeanLinearModel at-

tribute), 104
n_components (menpo.model.PCAModel attribute), 116
n_dims (menpo.base.Targetable attribute), 21
n_dims (menpo.image.BooleanImage attribute), 54
n_dims (menpo.image.Image attribute), 41
n_dims (menpo.image.MaskedImage attribute), 71
n_dims (menpo.landmark.LandmarkGroup attribute), 82
n_dims (menpo.landmark.LandmarkManager attribute),

80
n_dims (menpo.shape.ColouredTriMesh attribute), 196
n_dims (menpo.shape.PointCloud attribute), 124
n_dims (menpo.shape.PointDirectedGraph attribute), 165
n_dims (menpo.shape.PointTree attribute), 178
n_dims (menpo.shape.PointUndirectedGraph attribute),

153
n_dims (menpo.shape.TexturedTriMesh attribute), 205
n_dims (menpo.shape.TriMesh attribute), 187
n_dims (menpo.transform.Affine attribute), 212
n_dims (menpo.transform.AlignmentAffine attribute),

238
n_dims (menpo.transform.AlignmentRotation attribute),

247

Index 315

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_dims (menpo.transform.AlignmentSimilarity attribute),
242

n_dims (menpo.transform.AlignmentTranslation at-
tribute), 251

n_dims (menpo.transform.AlignmentUniformScale at-
tribute), 255

n_dims (menpo.transform.base.alignment.Alignment at-
tribute), 267

n_dims (menpo.transform.base.composable.ComposableTransform
attribute), 266

n_dims (menpo.transform.Homogeneous attribute), 209
n_dims (menpo.transform.NonUniformScale attribute),

231
n_dims (menpo.transform.R2LogR2RBF attribute), 259
n_dims (menpo.transform.R2LogRRBF attribute), 261
n_dims (menpo.transform.Rotation attribute), 221
n_dims (menpo.transform.Similarity attribute), 217
n_dims (menpo.transform.ThinPlateSplines attribute),

233
n_dims (menpo.transform.Transform attribute), 263
n_dims (menpo.transform.TransformChain attribute), 258
n_dims (menpo.transform.Translation attribute), 224
n_dims (menpo.transform.UniformScale attribute), 228
n_dims() (menpo.landmark.Landmarkable method), 79
n_dims() (menpo.shape.base.Shape method), 117
n_dims_output (menpo.transform.Affine attribute), 213
n_dims_output (menpo.transform.AlignmentAffine at-

tribute), 238
n_dims_output (menpo.transform.AlignmentRotation at-

tribute), 247
n_dims_output (menpo.transform.AlignmentSimilarity

attribute), 242
n_dims_output (menpo.transform.AlignmentTranslation

attribute), 251
n_dims_output (menpo.transform.AlignmentUniformScale

attribute), 255
n_dims_output (menpo.transform.base.composable.ComposableTransform

attribute), 266
n_dims_output (menpo.transform.Homogeneous at-

tribute), 209
n_dims_output (menpo.transform.NonUniformScale at-

tribute), 231
n_dims_output (menpo.transform.R2LogR2RBF at-

tribute), 260
n_dims_output (menpo.transform.R2LogRRBF at-

tribute), 261
n_dims_output (menpo.transform.Rotation attribute), 221
n_dims_output (menpo.transform.Similarity attribute),

217
n_dims_output (menpo.transform.ThinPlateSplines at-

tribute), 234
n_dims_output (menpo.transform.Transform attribute),

263

n_dims_output (menpo.transform.TransformChain
attribute), 258

n_dims_output (menpo.transform.Translation attribute),
224

n_dims_output (menpo.transform.UniformScale at-
tribute), 228

n_edges (menpo.shape.DirectedGraph attribute), 135
n_edges (menpo.shape.PointDirectedGraph attribute),

165
n_edges (menpo.shape.PointTree attribute), 178
n_edges (menpo.shape.PointUndirectedGraph attribute),

153
n_edges (menpo.shape.Tree attribute), 141
n_edges (menpo.shape.UndirectedGraph attribute), 129
n_elements (menpo.image.BooleanImage attribute), 54
n_elements (menpo.image.Image attribute), 41
n_elements (menpo.image.MaskedImage attribute), 71
n_false() (menpo.image.BooleanImage method), 49
n_false_elements() (menpo.image.MaskedImage

method), 66
n_false_pixels() (menpo.image.MaskedImage method),

66
n_features (menpo.model.InstanceLinearModel at-

tribute), 102
n_features (menpo.model.LinearModel attribute), 100
n_features (menpo.model.MeanInstanceLinearModel at-

tribute), 107
n_features (menpo.model.MeanLinearModel attribute),

104
n_features (menpo.model.PCAModel attribute), 116
n_groups (menpo.landmark.LandmarkManager at-

tribute), 80
n_labels (menpo.landmark.LandmarkGroup attribute), 82
n_landmark_groups (menpo.image.BooleanImage

attribute), 54
n_landmark_groups (menpo.image.Image attribute), 41
n_landmark_groups (menpo.image.MaskedImage at-

tribute), 71
n_landmark_groups (menpo.landmark.Landmarkable at-

tribute), 79
n_landmark_groups (menpo.shape.base.Shape attribute),

118
n_landmark_groups (menpo.shape.ColouredTriMesh at-

tribute), 196
n_landmark_groups (menpo.shape.PointCloud attribute),

124
n_landmark_groups (menpo.shape.PointDirectedGraph

attribute), 166
n_landmark_groups (menpo.shape.PointTree attribute),

178
n_landmark_groups (menpo.shape.PointUndirectedGraph

attribute), 153
n_landmark_groups (menpo.shape.TexturedTriMesh at-

tribute), 205

316 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

n_landmark_groups (menpo.shape.TriMesh attribute),
187

n_landmarks (menpo.landmark.LandmarkGroup at-
tribute), 82

n_leaves (menpo.shape.PointTree attribute), 178
n_leaves (menpo.shape.Tree attribute), 141
n_neighbours() (menpo.shape.PointUndirectedGraph

method), 151
n_neighbours() (menpo.shape.UndirectedGraph method),

129
n_parameters (menpo.base.Vectorizable attribute), 20
n_parameters (menpo.image.BooleanImage attribute), 54
n_parameters (menpo.image.Image attribute), 41
n_parameters (menpo.image.MaskedImage attribute), 72
n_parameters (menpo.shape.base.Shape attribute), 118
n_parameters (menpo.shape.ColouredTriMesh attribute),

196
n_parameters (menpo.shape.PointCloud attribute), 125
n_parameters (menpo.shape.PointDirectedGraph at-

tribute), 166
n_parameters (menpo.shape.PointTree attribute), 178
n_parameters (menpo.shape.PointUndirectedGraph at-

tribute), 153
n_parameters (menpo.shape.TexturedTriMesh attribute),

205
n_parameters (menpo.shape.TriMesh attribute), 187
n_parameters (menpo.transform.Affine attribute), 213
n_parameters (menpo.transform.AlignmentAffine at-

tribute), 238
n_parameters (menpo.transform.AlignmentSimilarity at-

tribute), 242
n_parameters (menpo.transform.AlignmentTranslation

attribute), 251
n_parameters (menpo.transform.AlignmentUniformScale

attribute), 255
n_parameters (menpo.transform.Homogeneous attribute),

209
n_parameters (menpo.transform.NonUniformScale at-

tribute), 231
n_parameters (menpo.transform.Similarity attribute), 217
n_parameters (menpo.transform.Translation attribute),

224
n_parameters (menpo.transform.UniformScale attribute),

228
n_parents() (menpo.shape.DirectedGraph method), 135
n_parents() (menpo.shape.PointDirectedGraph method),

164
n_parents() (menpo.shape.PointTree method), 176
n_parents() (menpo.shape.Tree method), 140
n_paths() (menpo.shape.DirectedGraph method), 135
n_paths() (menpo.shape.PointDirectedGraph method),

164
n_paths() (menpo.shape.PointTree method), 176

n_paths() (menpo.shape.PointUndirectedGraph method),
152

n_paths() (menpo.shape.Tree method), 140
n_paths() (menpo.shape.UndirectedGraph method), 129
n_pixels (menpo.image.BooleanImage attribute), 54
n_pixels (menpo.image.Image attribute), 41
n_pixels (menpo.image.MaskedImage attribute), 72
n_points (menpo.base.Targetable attribute), 21
n_points (menpo.shape.ColouredTriMesh attribute), 196
n_points (menpo.shape.PointCloud attribute), 125
n_points (menpo.shape.PointDirectedGraph attribute),

166
n_points (menpo.shape.PointTree attribute), 178
n_points (menpo.shape.PointUndirectedGraph attribute),

153
n_points (menpo.shape.TexturedTriMesh attribute), 205
n_points (menpo.shape.TriMesh attribute), 187
n_points (menpo.transform.AlignmentAffine attribute),

238
n_points (menpo.transform.AlignmentRotation attribute),

247
n_points (menpo.transform.AlignmentSimilarity at-

tribute), 243
n_points (menpo.transform.AlignmentTranslation at-

tribute), 251
n_points (menpo.transform.AlignmentUniformScale at-

tribute), 255
n_points (menpo.transform.base.alignment.Alignment at-

tribute), 267
n_points (menpo.transform.ThinPlateSplines attribute),

234
n_tris (menpo.shape.ColouredTriMesh attribute), 196
n_tris (menpo.shape.TexturedTriMesh attribute), 205
n_tris (menpo.shape.TriMesh attribute), 187
n_true() (menpo.image.BooleanImage method), 49
n_true_elements() (menpo.image.MaskedImage method),

66
n_true_pixels() (menpo.image.MaskedImage method), 66
n_vertices (menpo.shape.DirectedGraph attribute), 135
n_vertices (menpo.shape.PointDirectedGraph attribute),

166
n_vertices (menpo.shape.PointTree attribute), 178
n_vertices (menpo.shape.PointUndirectedGraph at-

tribute), 153
n_vertices (menpo.shape.Tree attribute), 141
n_vertices (menpo.shape.UndirectedGraph attribute), 130
n_vertices_at_depth() (menpo.shape.PointTree method),

176
n_vertices_at_depth() (menpo.shape.Tree method), 140
neighbours() (menpo.shape.PointUndirectedGraph

method), 152
neighbours() (menpo.shape.UndirectedGraph method),

129
no_op() (in module menpo.feature), 72

Index 317

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

noise_variance() (menpo.model.PCAModel method), 109
noise_variance_ratio() (menpo.model.PCAModel

method), 109
NonUniformScale (class in menpo.transform), 228
norm() (menpo.shape.ColouredTriMesh method), 194
norm() (menpo.shape.PointCloud method), 124
norm() (menpo.shape.PointDirectedGraph method), 164
norm() (menpo.shape.PointTree method), 177
norm() (menpo.shape.PointUndirectedGraph method),

152
norm() (menpo.shape.TexturedTriMesh method), 203
norm() (menpo.shape.TriMesh method), 185
normalize_norm_inplace() (menpo.image.BooleanImage

method), 49
normalize_norm_inplace() (menpo.image.Image

method), 36
normalize_norm_inplace() (menpo.image.MaskedImage

method), 66
normalize_std_inplace() (menpo.image.BooleanImage

method), 49
normalize_std_inplace() (menpo.image.Image method),

36
normalize_std_inplace() (menpo.image.MaskedImage

method), 66

O
original_variance() (menpo.model.PCAModel method),

109
orthonormalize_against_inplace()

(menpo.model.InstanceLinearModel method),
101

orthonormalize_against_inplace()
(menpo.model.LinearModel method), 99

orthonormalize_against_inplace()
(menpo.model.MeanInstanceLinearModel
method), 106

orthonormalize_against_inplace()
(menpo.model.MeanLinearModel method),
103

orthonormalize_against_inplace()
(menpo.model.PCAModel method), 110

orthonormalize_inplace()
(menpo.model.InstanceLinearModel method),
101

orthonormalize_inplace() (menpo.model.LinearModel
method), 99

orthonormalize_inplace()
(menpo.model.MeanInstanceLinearModel
method), 106

orthonormalize_inplace()
(menpo.model.MeanLinearModel method),
103

orthonormalize_inplace() (menpo.model.PCAModel
method), 110

P
parent() (menpo.shape.PointTree method), 177
parent() (menpo.shape.Tree method), 140
parents() (menpo.shape.DirectedGraph method), 135
parents() (menpo.shape.PointDirectedGraph method),

164
parents() (menpo.shape.PointTree method), 177
parents() (menpo.shape.Tree method), 140
pca() (in module menpo.math), 95
PCAModel (class in menpo.model), 107
PiecewiseAffine (in module menpo.transform), 234
plot_eigenvalues() (menpo.model.PCAModel method),

110
plot_eigenvalues_cumulative_ratio()

(menpo.model.PCAModel method), 111
plot_eigenvalues_cumulative_ratio_widget()

(menpo.model.PCAModel method), 113
plot_eigenvalues_ratio() (menpo.model.PCAModel

method), 113
plot_eigenvalues_ratio_widget()

(menpo.model.PCAModel method), 114
plot_eigenvalues_widget() (menpo.model.PCAModel

method), 114
plot_graph() (in module menpo.visualize), 273
PointCloud (class in menpo.shape), 118
PointDirectedGraph (class in menpo.shape), 153
PointTree (class in menpo.shape), 166
PointUndirectedGraph (class in menpo.shape), 141
pop() (menpo.landmark.LandmarkGroup method), 81
pop() (menpo.landmark.LandmarkManager method), 80
popitem() (menpo.landmark.LandmarkGroup method),

81
popitem() (menpo.landmark.LandmarkManager method),

80
predefined_style() (menpo.visualize.widgets.AnimationOptionsWidget

method), 277
predefined_style() (menpo.visualize.widgets.ChannelOptionsWidget

method), 281
predefined_style() (menpo.visualize.widgets.GraphOptionsWidget

method), 296
predefined_style() (menpo.visualize.widgets.LandmarkOptionsWidget

method), 284
predefined_style() (menpo.visualize.widgets.RendererOptionsWidget

method), 290
predefined_style() (menpo.visualize.widgets.SaveFigureOptionsWidget

method), 299
predefined_style() (menpo.visualize.widgets.TextPrintWidget

method), 301
print_dynamic() (in module menpo.visualize), 274
print_progress() (in module menpo.visualize), 273
progress_bar_str() (in module menpo.visualize), 274
project() (menpo.model.InstanceLinearModel method),

101

318 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

project() (menpo.model.MeanInstanceLinearModel
method), 106

project() (menpo.model.PCAModel method), 114
project_out() (menpo.model.InstanceLinearModel

method), 101
project_out() (menpo.model.MeanInstanceLinearModel

method), 106
project_out() (menpo.model.PCAModel method), 114
project_out_vector() (menpo.model.InstanceLinearModel

method), 101
project_out_vector() (menpo.model.LinearModel

method), 99
project_out_vector() (menpo.model.MeanInstanceLinearModel

method), 106
project_out_vector() (menpo.model.MeanLinearModel

method), 103
project_out_vector() (menpo.model.PCAModel method),

115
project_out_vectors() (menpo.model.InstanceLinearModel

method), 101
project_out_vectors() (menpo.model.LinearModel

method), 99
project_out_vectors() (menpo.model.MeanInstanceLinearModel

method), 106
project_out_vectors() (menpo.model.MeanLinearModel

method), 104
project_out_vectors() (menpo.model.PCAModel

method), 115
project_vector() (menpo.model.InstanceLinearModel

method), 101
project_vector() (menpo.model.LinearModel method), 99
project_vector() (menpo.model.MeanInstanceLinearModel

method), 106
project_vector() (menpo.model.MeanLinearModel

method), 104
project_vector() (menpo.model.PCAModel method), 115
project_vectors() (menpo.model.InstanceLinearModel

method), 101
project_vectors() (menpo.model.LinearModel method),

99
project_vectors() (menpo.model.MeanInstanceLinearModel

method), 106
project_vectors() (menpo.model.MeanLinearModel

method), 104
project_vectors() (menpo.model.PCAModel method),

115
project_whitened() (menpo.model.PCAModel method),

115
project_whitened_vector() (menpo.model.PCAModel

method), 115
proportion_false() (menpo.image.BooleanImage

method), 49
proportion_true() (menpo.image.BooleanImage method),

49

pseudoinverse() (menpo.transform.Affine method), 212
pseudoinverse() (menpo.transform.AlignmentAffine

method), 237
pseudoinverse() (menpo.transform.AlignmentRotation

method), 246
pseudoinverse() (menpo.transform.AlignmentSimilarity

method), 241
pseudoinverse() (menpo.transform.AlignmentTranslation

method), 250
pseudoinverse() (menpo.transform.AlignmentUniformScale

method), 254
pseudoinverse() (menpo.transform.base.invertible.Invertible

method), 266
pseudoinverse() (menpo.transform.base.invertible.VInvertible

method), 268
pseudoinverse() (menpo.transform.Homogeneous

method), 208
pseudoinverse() (menpo.transform.NonUniformScale

method), 230
pseudoinverse() (menpo.transform.Rotation method), 220
pseudoinverse() (menpo.transform.Similarity method),

216
pseudoinverse() (menpo.transform.ThinPlateSplines

method), 233
pseudoinverse() (menpo.transform.Translation method),

223
pseudoinverse() (menpo.transform.UniformScale

method), 227
pseudoinverse_vector() (menpo.transform.Affine

method), 212
pseudoinverse_vector() (menpo.transform.AlignmentAffine

method), 237
pseudoinverse_vector() (menpo.transform.AlignmentRotation

method), 246
pseudoinverse_vector() (menpo.transform.AlignmentSimilarity

method), 241
pseudoinverse_vector() (menpo.transform.AlignmentTranslation

method), 250
pseudoinverse_vector() (menpo.transform.AlignmentUniformScale

method), 254
pseudoinverse_vector() (menpo.transform.base.invertible.VInvertible

method), 268
pseudoinverse_vector() (menpo.transform.Homogeneous

method), 208
pseudoinverse_vector() (menpo.transform.NonUniformScale

method), 231
pseudoinverse_vector() (menpo.transform.Rotation

method), 220
pseudoinverse_vector() (menpo.transform.Similarity

method), 216
pseudoinverse_vector() (menpo.transform.Translation

method), 223
pseudoinverse_vector() (menpo.transform.UniformScale

method), 227

Index 319

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

pyramid() (menpo.image.BooleanImage method), 49
pyramid() (menpo.image.Image method), 36
pyramid() (menpo.image.MaskedImage method), 66

R
R2LogR2RBF (class in menpo.transform), 258
R2LogRRBF (class in menpo.transform), 260
range() (menpo.shape.ColouredTriMesh method), 194
range() (menpo.shape.PointCloud method), 124
range() (menpo.shape.PointDirectedGraph method), 164
range() (menpo.shape.PointTree method), 177
range() (menpo.shape.PointUndirectedGraph method),

152
range() (menpo.shape.TexturedTriMesh method), 203
range() (menpo.shape.TriMesh method), 186
reconstruct() (menpo.model.InstanceLinearModel

method), 102
reconstruct() (menpo.model.MeanInstanceLinearModel

method), 106
reconstruct() (menpo.model.PCAModel method), 115
reconstruct_vector() (menpo.model.InstanceLinearModel

method), 102
reconstruct_vector() (menpo.model.LinearModel

method), 99
reconstruct_vector() (menpo.model.MeanInstanceLinearModel

method), 107
reconstruct_vector() (menpo.model.MeanLinearModel

method), 104
reconstruct_vector() (menpo.model.PCAModel method),

115
reconstruct_vectors() (menpo.model.InstanceLinearModel

method), 102
reconstruct_vectors() (menpo.model.LinearModel

method), 99
reconstruct_vectors() (menpo.model.MeanInstanceLinearModel

method), 107
reconstruct_vectors() (menpo.model.MeanLinearModel

method), 104
reconstruct_vectors() (menpo.model.PCAModel

method), 115
relative_location_edge() (menpo.shape.PointDirectedGraph

method), 165
relative_location_edge() (menpo.shape.PointTree

method), 177
relative_locations() (menpo.shape.PointDirectedGraph

method), 165
relative_locations() (menpo.shape.PointTree method),

177
remove_render_function()

(menpo.visualize.widgets.AnimationOptionsWidget
method), 277

remove_render_function()
(menpo.visualize.widgets.ChannelOptionsWidget
method), 281

remove_render_function()
(menpo.visualize.widgets.GraphOptionsWidget
method), 296

remove_render_function()
(menpo.visualize.widgets.LandmarkOptionsWidget
method), 284

remove_render_function()
(menpo.visualize.widgets.RendererOptionsWidget
method), 291

remove_update_function()
(menpo.visualize.widgets.AnimationOptionsWidget
method), 277

remove_update_function()
(menpo.visualize.widgets.LandmarkOptionsWidget
method), 284

render() (menpo.visualize.MatplotlibRenderer method),
270

render() (menpo.visualize.Renderer method), 269
Renderer (class in menpo.visualize), 269
RendererOptionsWidget (class in

menpo.visualize.widgets), 286
replace_render_function()

(menpo.visualize.widgets.AnimationOptionsWidget
method), 278

replace_render_function()
(menpo.visualize.widgets.ChannelOptionsWidget
method), 281

replace_render_function()
(menpo.visualize.widgets.GraphOptionsWidget
method), 296

replace_render_function()
(menpo.visualize.widgets.LandmarkOptionsWidget
method), 284

replace_render_function()
(menpo.visualize.widgets.RendererOptionsWidget
method), 291

replace_update_function()
(menpo.visualize.widgets.AnimationOptionsWidget
method), 278

replace_update_function()
(menpo.visualize.widgets.LandmarkOptionsWidget
method), 284

rescale() (menpo.image.BooleanImage method), 49
rescale() (menpo.image.Image method), 36
rescale() (menpo.image.MaskedImage method), 66
rescale_landmarks_to_diagonal_range()

(menpo.image.BooleanImage method), 50
rescale_landmarks_to_diagonal_range()

(menpo.image.Image method), 37
rescale_landmarks_to_diagonal_range()

(menpo.image.MaskedImage method), 67
rescale_pixels() (menpo.image.BooleanImage method),

50
rescale_pixels() (menpo.image.Image method), 37

320 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

rescale_pixels() (menpo.image.MaskedImage method),
67

rescale_to_diagonal() (menpo.image.BooleanImage
method), 50

rescale_to_diagonal() (menpo.image.Image method), 38
rescale_to_diagonal() (menpo.image.MaskedImage

method), 67
rescale_to_reference_shape()

(menpo.image.BooleanImage method), 51
rescale_to_reference_shape() (menpo.image.Image

method), 38
rescale_to_reference_shape()

(menpo.image.MaskedImage method), 68
resize() (menpo.image.BooleanImage method), 51
resize() (menpo.image.Image method), 38
resize() (menpo.image.MaskedImage method), 68
rolled_channels() (menpo.image.BooleanImage method),

51
rolled_channels() (menpo.image.Image method), 38
rolled_channels() (menpo.image.MaskedImage method),

68
rotate_ccw_about_centre() (menpo.image.BooleanImage

method), 51
rotate_ccw_about_centre() (menpo.image.Image

method), 39
rotate_ccw_about_centre() (menpo.image.MaskedImage

method), 68
Rotation (class in menpo.transform), 217
rotation_matrix (menpo.transform.AlignmentRotation at-

tribute), 247
rotation_matrix (menpo.transform.Rotation attribute),

221

S
sample() (menpo.image.BooleanImage method), 52
sample() (menpo.image.Image method), 39
sample() (menpo.image.MaskedImage method), 69
save_figure() (menpo.visualize.MatplotlibRenderer

method), 270
save_figure() (menpo.visualize.Renderer method), 269
save_figure_widget() (menpo.visualize.MatplotlibRenderer

method), 271
save_matplotlib_figure() (in module menpo.visualize),

273
SaveFigureOptionsWidget (class in

menpo.visualize.widgets), 298
scale (menpo.transform.AlignmentUniformScale at-

tribute), 255
scale (menpo.transform.NonUniformScale attribute), 232
scale (menpo.transform.UniformScale attribute), 228
Scale() (in module menpo.transform), 224
set_boundary_pixels() (menpo.image.MaskedImage

method), 69
set_h_matrix() (menpo.transform.Affine method), 212

set_h_matrix() (menpo.transform.AlignmentAffine
method), 237

set_h_matrix() (menpo.transform.AlignmentRotation
method), 246

set_h_matrix() (menpo.transform.AlignmentSimilarity
method), 242

set_h_matrix() (menpo.transform.AlignmentTranslation
method), 250

set_h_matrix() (menpo.transform.AlignmentUniformScale
method), 254

set_h_matrix() (menpo.transform.Homogeneous
method), 208

set_h_matrix() (menpo.transform.NonUniformScale
method), 231

set_h_matrix() (menpo.transform.Rotation method), 220
set_h_matrix() (menpo.transform.Similarity method),

216
set_h_matrix() (menpo.transform.Translation method),

223
set_h_matrix() (menpo.transform.UniformScale method),

227
set_masked_pixels() (menpo.image.MaskedImage

method), 69
set_rotation_matrix() (menpo.transform.AlignmentRotation

method), 246
set_rotation_matrix() (menpo.transform.Rotation

method), 220
set_target() (menpo.base.Targetable method), 21
set_target() (menpo.transform.AlignmentAffine method),

237
set_target() (menpo.transform.AlignmentRotation

method), 246
set_target() (menpo.transform.AlignmentSimilarity

method), 242
set_target() (menpo.transform.AlignmentTranslation

method), 250
set_target() (menpo.transform.AlignmentUniformScale

method), 254
set_target() (menpo.transform.base.alignment.Alignment

method), 267
set_target() (menpo.transform.ThinPlateSplines method),

233
set_widget_state() (menpo.visualize.widgets.AnimationOptionsWidget

method), 278
set_widget_state() (menpo.visualize.widgets.ChannelOptionsWidget

method), 281
set_widget_state() (menpo.visualize.widgets.LandmarkOptionsWidget

method), 284
set_widget_state() (menpo.visualize.widgets.RendererOptionsWidget

method), 291
set_widget_state() (menpo.visualize.widgets.TextPrintWidget

method), 301
setdefault() (menpo.landmark.LandmarkGroup method),

81

Index 321

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

setdefault() (menpo.landmark.LandmarkManager
method), 80

Shape (class in menpo.shape.base), 117
shape (menpo.image.BooleanImage attribute), 54
shape (menpo.image.Image attribute), 41
shape (menpo.image.MaskedImage attribute), 72
Similarity (class in menpo.transform), 213
source (menpo.transform.AlignmentAffine attribute), 238
source (menpo.transform.AlignmentRotation attribute),

247
source (menpo.transform.AlignmentSimilarity attribute),

243
source (menpo.transform.AlignmentTranslation at-

tribute), 251
source (menpo.transform.AlignmentUniformScale

attribute), 255
source (menpo.transform.base.alignment.Alignment at-

tribute), 267
source (menpo.transform.ThinPlateSplines attribute), 234
stickmen_pose() (in module menpo.landmark), 89
streetscene_car_view_0() (in module menpo.landmark),

90
streetscene_car_view_1() (in module menpo.landmark),

91
streetscene_car_view_2() (in module menpo.landmark),

91
streetscene_car_view_3() (in module menpo.landmark),

92
streetscene_car_view_4() (in module menpo.landmark),

92
streetscene_car_view_5() (in module menpo.landmark),

92
streetscene_car_view_6() (in module menpo.landmark),

93
streetscene_car_view_7() (in module menpo.landmark),

93
style() (menpo.visualize.widgets.AnimationOptionsWidget

method), 278
style() (menpo.visualize.widgets.ChannelOptionsWidget

method), 281
style() (menpo.visualize.widgets.GraphOptionsWidget

method), 296
style() (menpo.visualize.widgets.LandmarkOptionsWidget

method), 285
style() (menpo.visualize.widgets.RendererOptionsWidget

method), 292
style() (menpo.visualize.widgets.SaveFigureOptionsWidget

method), 299
style() (menpo.visualize.widgets.TextPrintWidget

method), 301
sum_channels() (in module menpo.feature.visualize), 77

T
target (menpo.base.Targetable attribute), 21

target (menpo.transform.AlignmentAffine attribute), 238
target (menpo.transform.AlignmentRotation attribute),

247
target (menpo.transform.AlignmentSimilarity attribute),

243
target (menpo.transform.AlignmentTranslation attribute),

251
target (menpo.transform.AlignmentUniformScale at-

tribute), 255
target (menpo.transform.base.alignment.Alignment at-

tribute), 267
target (menpo.transform.ThinPlateSplines attribute), 234
Targetable (class in menpo.base), 20
tcoords_pixel_scaled() (menpo.shape.TexturedTriMesh

method), 203
TextPrintWidget (class in menpo.visualize.widgets), 300
TexturedTriMesh (class in menpo.shape), 196
ThinPlateSplines (class in menpo.transform), 232
tojson() (menpo.landmark.LandmarkGroup method), 81
tojson() (menpo.shape.ColouredTriMesh method), 194
tojson() (menpo.shape.PointCloud method), 124
tojson() (menpo.shape.PointDirectedGraph method), 165
tojson() (menpo.shape.PointTree method), 177
tojson() (menpo.shape.PointUndirectedGraph method),

152
tojson() (menpo.shape.TexturedTriMesh method), 204
tojson() (menpo.shape.TriMesh method), 186
Transform (class in menpo.transform), 261
Transformable (class in menpo.transform.base), 263
TransformChain (class in menpo.transform), 256
Translation (class in menpo.transform), 221
translation_component (menpo.transform.Affine at-

tribute), 213
translation_component (menpo.transform.AlignmentAffine

attribute), 238
translation_component (menpo.transform.AlignmentRotation

attribute), 247
translation_component (menpo.transform.AlignmentSimilarity

attribute), 243
translation_component (menpo.transform.AlignmentTranslation

attribute), 251
translation_component (menpo.transform.AlignmentUniformScale

attribute), 255
translation_component (menpo.transform.NonUniformScale

attribute), 232
translation_component (menpo.transform.Rotation

attribute), 221
translation_component (menpo.transform.Similarity at-

tribute), 217
translation_component (menpo.transform.Translation at-

tribute), 224
translation_component (menpo.transform.UniformScale

attribute), 228
Tree (class in menpo.shape), 135

322 Index

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

tri_areas() (menpo.shape.ColouredTriMesh method), 195
tri_areas() (menpo.shape.TexturedTriMesh method), 204
tri_areas() (menpo.shape.TriMesh method), 186
tri_normals() (menpo.shape.ColouredTriMesh method),

195
tri_normals() (menpo.shape.TexturedTriMesh method),

204
tri_normals() (menpo.shape.TriMesh method), 186
trim_components() (menpo.model.PCAModel method),

116
TriMesh (class in menpo.shape), 179
true_indices() (menpo.image.BooleanImage method), 52

U
UndirectedGraph (class in menpo.shape), 125
UniformScale (class in menpo.transform), 225
unique_edge_indicies() (menpo.shape.ColouredTriMesh

method), 195
unique_edge_indicies() (menpo.shape.TexturedTriMesh

method), 204
unique_edge_indicies() (menpo.shape.TriMesh method),

186
unique_edge_lengths() (menpo.shape.ColouredTriMesh

method), 195
unique_edge_lengths() (menpo.shape.TexturedTriMesh

method), 204
unique_edge_lengths() (menpo.shape.TriMesh method),

186
unique_edge_vectors() (menpo.shape.ColouredTriMesh

method), 195
unique_edge_vectors() (menpo.shape.TexturedTriMesh

method), 204
unique_edge_vectors() (menpo.shape.TriMesh method),

186
update() (menpo.landmark.LandmarkGroup method), 82
update() (menpo.landmark.LandmarkManager method),

80
update_object_names() (menpo.visualize.widgets.RendererOptionsWidget

method), 293

V
values() (menpo.landmark.LandmarkGroup method), 82
values() (menpo.landmark.LandmarkManager method),

80
variance() (menpo.model.PCAModel method), 116
variance_ratio() (menpo.model.PCAModel method), 116
VComposable (class in

menpo.transform.base.composable), 268
Vectorizable (class in menpo.base), 19
vertex_normals() (menpo.shape.ColouredTriMesh

method), 195
vertex_normals() (menpo.shape.TexturedTriMesh

method), 204
vertex_normals() (menpo.shape.TriMesh method), 186

vertices (menpo.shape.DirectedGraph attribute), 135
vertices (menpo.shape.PointDirectedGraph attribute), 166
vertices (menpo.shape.PointTree attribute), 178
vertices (menpo.shape.PointUndirectedGraph attribute),

153
vertices (menpo.shape.Tree attribute), 141
vertices (menpo.shape.UndirectedGraph attribute), 130
vertices_at_depth() (menpo.shape.PointTree method),

177
vertices_at_depth() (menpo.shape.Tree method), 141
view_widget() (menpo.image.BooleanImage method), 52
view_widget() (menpo.image.Image method), 39
view_widget() (menpo.image.MaskedImage method), 69
view_widget() (menpo.landmark.LandmarkGroup

method), 82
view_widget() (menpo.landmark.LandmarkManager

method), 80
view_widget() (menpo.shape.ColouredTriMesh method),

195
view_widget() (menpo.shape.PointCloud method), 124
view_widget() (menpo.shape.PointDirectedGraph

method), 165
view_widget() (menpo.shape.PointTree method), 178
view_widget() (menpo.shape.PointUndirectedGraph

method), 152
view_widget() (menpo.shape.TexturedTriMesh method),

204
view_widget() (menpo.shape.TriMesh method), 186
Viewable (class in menpo.visualize), 269
VInvertible (class in menpo.transform.base.invertible),

268
visualize_images() (in module menpo.visualize), 271
visualize_landmarkgroups() (in module

menpo.visualize), 272
visualize_landmarks() (in module menpo.visualize), 271
visualize_pointclouds() (in module menpo.visualize), 272

W
warp_to_mask() (menpo.image.BooleanImage method),

52
warp_to_mask() (menpo.image.Image method), 39
warp_to_mask() (menpo.image.MaskedImage method),

70
warp_to_shape() (menpo.image.BooleanImage method),

53
warp_to_shape() (menpo.image.Image method), 40
warp_to_shape() (menpo.image.MaskedImage method),

70
whitened_components() (menpo.model.PCAModel

method), 116
width (menpo.image.BooleanImage attribute), 54
width (menpo.image.Image attribute), 41
width (menpo.image.MaskedImage attribute), 72

Index 323

Menpo Documentation, Release 0.5.0+0.ge1ed845.dirty

with_labels() (menpo.landmark.LandmarkGroup
method), 82

without_labels() (menpo.landmark.LandmarkGroup
method), 82

Z
zoom() (menpo.image.BooleanImage method), 53
zoom() (menpo.image.Image method), 40
zoom() (menpo.image.MaskedImage method), 71

324 Index

	User Guide
	Quick Start
	Introduction
	Menpo's Data Types
	Working with Images and PointClouds
	Vectorizing Objects
	Visualizing Objects
	Changelog

	The Menpo API
	menpo.base
	menpo.io
	menpo.image
	menpo.feature
	menpo.landmark
	menpo.math
	menpo.model
	menpo.shape
	menpo.transform
	menpo.visualize

