

 Navigation

 	
 index

 	
 next |

 	Menpo 0.4.3-dirty documentation

Welcome

Welcome to the Menpo documentation!

Menpo is a Python package designed to make manipulating annotated data more
simple. In particular, sparse locations on either images or meshes, referred
to as landmarks within Menpo, are tightly coupled with their reference
objects. For areas such as Computer Vision that involve learning models
based on prior knowledge of object location (such as object detection
and landmark localisation), Menpo is a very powerful toolkit.

A short example is often more illustrative than a verbose explanation. Let’s
assume that you want to load a set of images that have been annotated with
bounding boxes, and that these bounding box locations live in text files
next to the images. Here’s how we would load the images and extract the
areas within the bounding boxes using Menpo:

import menpo.io as mio

images = []
for image in mio.import_images('./images_folder'):
 image.crop_to_landmarks_inplace()
 images.append(image)

Where import_images yields a generator to keep memory usage low.

Although the above is a very simple example, we believe that being able
to easily manipulate and couple landmarks with images and meshes, is an
important problem for building powerful models in areas such as facial
point localisation.

To get started, check out the User Guide for instructions on installation
and some of the core concepts within Menpo.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

User Guide

The User Guide is designed to give you an overview of the key concepts within
Menpo. In particular, we want to try and explain some of the design decisions
that we made and demonstrate why we think they are powerful concepts
for exploring visual data.

	Quick Start
	Basic Installation

	API Documentation

	Notebooks

	User Group and Issues

	Introduction
	Core Interfaces

	Data containers

	Menpo’s Data Types
	Why have data types - what’s wrong with numpy arrays?

	Key points

	Working with Images and PointClouds
	Menpo’s approach

	Key Points

	Vectorizing Objects
	Key points

	Visualizing Objects
	Visualizing 2D Images

	Visualizing A List Of 2D Images

	Visualizing A 2D PointCloud

	Visualizing In 3D

	Changelog
	0.4.0 (2015/02/04)
	Github Pull Requests

	v0.4.0a2 (2014/12/03)
	Github Pull Requests

	v0.4.0a1 (2014/10/31)
	Github Pull Requests

	v0.3.0 (2014/05/27)
	Github Pull Requests

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Quick Start

Here we give a very quick rundown of the basic links and information sources
for the project.

Basic Installation

Menpo should be installable via pip on all major platforms:

$ pip install menpo

However, in the menpo team, we strongly advocate the usage of conda for
scientific Python, as it makes installation of compiled binaries much more
simple. In particular, if you wish to use any of the related Menpo projects
such as menpofit, menpo3d or menpodetect, you will not be able to easily
do so without using conda.

$ conda install -c menpo menpo

To install using conda, please see the thorough instructions for each platform
on the Menpo website [http://www.menpo.org/installation/].

API Documentation

Visit API Documentation

Menpo is extensively documented on a per-method/class level and much
of this documentation is reflected in the API Documentation.
If any functions or classes are missing, please bring it to the attention
of the developers on Github [https://github.com/menpo/menpo].

Notebooks

Explore the Menpo Notebooks [http://www.menpo.org/notebooks.html]

For a more thorough set of examples, we provide a set of IPython notebooks
that demonstrate common use cases of Menpo. This concentrates on an overview
of the functionality of the major classes and ideas behind Menpo.

User Group and Issues

If you wish to get in contact with the Menpo developers, you can do so
via various channels. If you have found a bug, or if any part of Menpo behaves
in a way you do not expect, please raise an issue on
Github [https://github.com/menpo/menpo].

If you want to ask a theoretical question, or are having problems installing
or setting up Menpo, please visit the
user group [https://groups.google.com/forum/#!forum/menpo-users].

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Introduction

This user guide is a general introduction to Menpo, aiming to provide a
bird’s eye of Menpo’s design. After reading this guide you should be able to
go explore Menpo’s extensive Notebooks and not be too suprised by what you see.

Core Interfaces

Menpo is an object oriented framework built around a set of core abstract
interfaces, each one governing a single facet of Menpo’s design. Menpo’s key
interfaces are:

	Shape - spatial data containers

	Vectorizable - efficient bi-directional conversion of types to a vector representation

	Targetable - objects that generate some spatial data

	Transform - flexible spatial transformations

	Landmarkable - objects that can be annotated with spatial labelled landmarks

Data containers

Most numerical data in Menpo is passed around in one of our core data
containers. The features of each of the data containers is explained in great
detail in the notebooks - here we just list them to give you a feel for what
to expect:

	Image - n-dimensional image with k-channels of data

	MaskedImage - As Image, but with a boolean mask

	BooleanImage - As boolean image that is used for masking images.

	PointCloud - n-dimensional ordered point collection

	PointUndirectedGraph - n-dimensional ordered point collection with directed connectivity

	PointDirectedGraph - n-dimensional ordered point collection with undirected connectivity

	TriMesh - As PointCloud, but with a triangulation

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Menpo’s Data Types

Menpo is a high level software package. It is not a replacement for scikit-image,
scikit-learn, or opencv - it ties all these types of packages together in to a
unified framework for building and fitting deformable models. As a result, most
of our algorithms take as input a higher level representation of data than
simple numpy arrays.

Why have data types - what’s wrong with numpy arrays?

Menpo’s data types are thin wrappers around numpy arrays. They give semantic
meaning to the underlying array through providing clearly named and consistent
properties. As an example let’s take a look at PointCloud, Menpo’s
workhorse for spatial data. Construction requires a numpy array:

x = np.random.rand(3, 2)
pc = PointCloud(x)

It’s natural to ask the question:

Is this a collection of three 2D points, or two 3D points?

In Menpo, you never do this - just look at the properties on the
pointcloud:

pc.n_points # 3
pc.n_dims # 2

If we take a look at the properties we can see they are trivial:

@property
def n_points(self):
 return self.points.shape[0]

@property
def n_dims(self):
 return self.points.shape[1]

Using these properties makes code much more readable in algorithms accepting
Menpo’s types. Let’s imagine a routine that does some operation on an image
and a related point cloud. If it accepted numpy arrays, we might see something
like this on the top line:

def foo_arrays(x, img):
 # preallocate the result
 y = np.zeros(x.shape[1],
 x.shape[2],
 img.shape[-1])
 ...

On first glance it is not at all apparent what y‘s shape is semantically.
Now let’s take a look at the equivalent code using Menpo’s types:

def foo_menpo(pc, img):
 # preallocate the result
 y = np.zeros(pc.n_dims,
 pc.n_points,
 img.n_channels)
 ...

This time it’s immediately apparent what y‘s shape is. Although this is a
somewhat contrived example, you will find this pattern applied consistently
across Menpo, and it aids greatly in keeping the code readable.

Key points

1. Containers store the underlying numpy array in an easy to access
attribute. For the PointCloud family see the .points attribute. On
Image and subclasses, the actual data array is stored at .pixels.

2. Importing assets though menpo.io will result in our data
containers, not numpy arrays. This means in a lot of situations you never
need to remember the Menpo conventions for ordering of array data - just ask
for an image and you will get an Image object.

3. All containers copy data by default. Look for the copy=False keyword
argument if you want to avoid copying a large numpy array for performance.

4. Containers perform sanity checks. This helps catch obvious bugs like
misshaping an array. You can sometimes suppress them for extra performance with
the skip_checks=True keyword argument.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Working with Images and PointClouds

Menpo takes an opinionated stance on certain issues - one of which is
establishing sensible rules for how to work with spatial data and image data
in the same framework.

Let’s start with a quiz - which of the following is correct?

[image: ../_images/indexing.jpg]

Most would answer b - images are indexed from the top left, with x going
across and y going down.

Now another question - how do I access that pixel in the pixels array?

a: lenna[30, 50]
b: lenna[50, 30]

The correct answer is b - pixels get stored in a y, x order so we have to
flip the points to access the array.

As Menpo blends together use of PointClouds and Images frequently this can
cause a lot of confusion. You might create a Translation of 5 in the
y direction as the following:

t = menpo.transform.Translation([0, 5])

And then expect to use it to warp an image:

img.warp_to(reference_shape, t)

and then some spatial data related to the image:

t.apply(some_data)

Unfortunately the meaning of y in these two domains is different - some
code would have to flip the order of applying the translation of the transform
to an image, a potential cause of confusion.

The worst part about this is that once we go to voxel data (which
Image largely supports, and will fully support in the future), a z-axis
is added.
Now we drop all the swapping business - and the third axis of the spatial
data once more corresponds with the third axis of the image data. Trying to
keep track of these rules muddies an otherwise very simple concept.

Menpo’s approach

Menpo’s solution to this problem is simple - drop the insistence of calling
axes x, y, and z. The zeroth axis of the pixel data is simply that - the
zeroth axis. It corresponds exactly with the zeroth axis on the point cloud.
If you have an image with annotations provided the zeroth axis of the
PointCloud representing the annotations will correspond with the zeroth
axis of the image. This rule makes working with images and spatial data simple -
short you should never have to think about flipping axes in Menpo.

It’s natural to be concerned at this point that establishing such rules must
make it really difficult ingest data which follows different conventions. This
is incorrect - one of the biggest strengths of the menpo.io module
is that each asset importer normalizes the format of the data to format Menpo’s
rules.

Key Points

	Menpo is n-dimensional. We try and avoid speaking of x and y,
because there are many different conventions in use.

	The IO module ensures that different data formats are normalized upon
loading into Menpo. For example, Image types are imported as 64-bit
floating point numbers normalised between [0, 1], by default.

	axis 0 of landmarks corresponds to axis 0 of the container it is an annotation of.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Vectorizing Objects

[image: ../_images/vectorizing.jpg]
Figure 1: Vectorizing allows Menpo to have rich data types whilst
simultaneously providing efficient linear algebra routines. Here an image is
vectorized, and an arbitrary process f() is performed on it’s vector
representation. Afterwards the vector is converted the back into an image.
The vector operation is completely general, and could have equally been
performed on some spatial data.

Computer Vision algorithms are frequently formulated as linear algebra problems
in a high dimensional space, where each asset is stripped into a vector.
In this high dimensional space we may perform any number of operations,
but normally we can’t stay in this space for the whole algorithm - we normally
have to recast the vector back into it’s original domain in order to perform
other operations.

An example of this might be seen with images, where the gradient of the
intensity values of an image needs to be taken. This is a complex problem to
solve in a vector space representation of the image, but trivial to solve in the
image domain.

Menpo bridges the gap by naively supporting bi-directional vectorisation of
it’s types through the Vectorizable interface. Through this, any type can
be safely and efficiently converted to a vector form and back again. You’ll find
the key methods of Vectorizable are extensively used in Menpo. They are

	as_vector - generate a vector from one of our types.

	from_vector - rebuild one of our types from a vector

	from_vector_inplace - alter an object inplace to take on the new state

Key points

1. Each type defines it’s own form of vectorization. Calling
as_vector on a Image returns all of the pixels in a single strip,
whilst on a MaskedImage only the true pixels are returned. This
distinction means that much of Menpo’s image algorithms work equally well with
masked or unmasked data - it’s the Vectorizable interface that abstracts
away the difference between the two.

2. Lots of things are vectorizable, not just images. Pointclouds and
lots of transforms are too.

3. The length of the resulting vector of a type can be found by querying the
``n_parameters`` property.

4. The vectorized form of an object does not have to be ‘complete’.
from_vector and from_vector_inplace can use the object they are
called on to rebuild a complete state. Think of vectorization more as a
parametrization of the object, not a complete serialization.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Visualizing Objects

In Menpo, we take an opinionated stance that data exploration is a key part
of working with visual data. Therefore, we tried to make the mental overhead
of visualizing objects as low as possible. Therefore, we made visualization a
key concept directly on our data containers, rather than requiring extra imports
in order to view your data.

We also took a strong step towards simple visualization of data collections
by integrating some of our core types such as Image with visualization
widgets for the IPython notebook.

Visualizing 2D Images

Without further ado, a quick example of viewing a 2D image:

%matplotlib inline # This is only needed if viewing in an IPython notebook
import menpo.io as mio

bb = mio.import_builtin_asset.breakingbad_jpg()
bb.view()

Viewing the image landmarks:

%matplotlib inline # This is only needed if viewing in an IPython notebook
import menpo.io as mio

bb = mio.import_builtin_asset.breakingbad_jpg()
bb.view_landmarks()

Viewing the image with a native IPython widget:

%matplotlib inline # This is only needed if viewing in an IPython notebook
import menpo.io as mio

bb = mio.import_builtin_asset.breakingbad_jpg()
bb.view_widget()

Visualizing A List Of 2D Images

Visualizing lists of images is also incredibly simple if you are using
the IPython notebook:

%matplotlib inline
import menpo.io as mio
from menpo.visualize import visualize_images

import_images is a generator, so we must exhaust the generator before
we can visualize the list. This is because the widget allows you to
jump arbitrarily around the list, which cannot be done with generators.
images = list(mio.import_images('./path/to/images/*.jpg'))
visualize_images(images)

Visualizing A 2D PointCloud

Visualizing PointCloud objects and subclasses is a very familiar
experience:

%matplotlib inline
from menpo.shape import PointCloud
import numpy as np

pcloud = PointCloud(np.array([[0, 0], [1, 0], [1, 1], [0, 1]]))
pcloud.view()

Visualizing In 3D

Menpo natively supports 3D objects, such as triangulated meshes, as our
base classes are n-dimensional. However, as viewing in 3D is a much more
complicated experience, we have segregated the 3D viewing package into one
of our sub-packages: Menpo3D.

If you try to view a 3D PointCloud without having Menpo3D installed, you
will receive an exception asking you to install it.

Menpo3D also comes with many other complicated pieces of functionality for
3D meshes such as a rasterizer. We recommend you look at Menpo3D if you want
to use Menpo for 3D mesh manipulation.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	User Guide

Changelog

0.4.0 (2015/02/04)

The 0.4.0 release (pending any currently unknown bugs), represents a very
significant overhaul of Menpo from v0.3.0. In particular, Menpo has been
broken into four distinct packages: Menpo, MenpoFit, Menpo3D and MenpotDetect.

Visualization has had major improvements for 2D viewing, in particular
through the use of IPython widgets and explicit options on the viewing methods
for common tasks (like changing the landmark marker color). This final release
is a much smaller set of changes over the alpha releases, so please check the
full changelog for the alphas to see all changes from v0.3.0 to v0.4.0.

Summary of changes since v0.4.0a2:

	Lots of documentation rendering fixes and style fixes including this
changelog.

	Move the LJSON format to V2. V1 is now being deprecated over the next
version.

	More visualization customization fixes including multiple marker colors
for landmark groups.

Github Pull Requests

	#546 [https://github.com/menpo/menpo/pull/546] IO doc fixes (@jabooth)

	#545 [https://github.com/menpo/menpo/pull/545] Different marker colour per label (@nontas)

	#543 [https://github.com/menpo/menpo/pull/543] Bug fix for importing an image, case of a dot in image name. (@grigorisg9gr)

	#544 [https://github.com/menpo/menpo/pull/544] Move docs to Sphinx 1.3b2 (@patricksnape)

	#536 [https://github.com/menpo/menpo/pull/536] Docs fixes (@patricksnape)

	#530 [https://github.com/menpo/menpo/pull/530] Visualization and Widgets upgrade (@patricksnape, @nontas)

	#540 [https://github.com/menpo/menpo/pull/540] LJSON v2 (@jabooth)

	#537 [https://github.com/menpo/menpo/pull/537] fix BU3DFE connectivity, pretty JSON files (@jabooth)

	#529 [https://github.com/menpo/menpo/pull/529] BU3D-FE labeller added (@jabooth)

	#527 [https://github.com/menpo/menpo/pull/527] fixes paths for pickle importing (@jabooth)

	#525 [https://github.com/menpo/menpo/pull/525] Fix .rst doc files, auto-generation script (@jabooth)

v0.4.0a2 (2014/12/03)

Alpha 2 moves towards extending the graphing API so that visualization is
more dependable.

Summary:

	Add graph classes, PointGraph, PointDirectedGraph,
PointTree, PointUndirectedGraph. This makes visualization
of landmarks much nicer looking.

	Better support of pickling menpo objects

	Add a bounding box method to PointCloud for calculating the correctly
oriented bounding box of point clouds.

	Allow PCA to operate in place for large data matrices.

Github Pull Requests

	#522 [https://github.com/menpo/menpo/pull/522] Add bounding box method to pointclouds (@patricksnape)

	#523 [https://github.com/menpo/menpo/pull/523] HOTFIX: fix export_pickle bug, add path support (@jabooth)

	#521 [https://github.com/menpo/menpo/pull/521] menpo.io add pickle support, move to pathlib (@jabooth)

	#520 [https://github.com/menpo/menpo/pull/520] Documentation fixes (@patricksnape, @jabooth)

	#518 [https://github.com/menpo/menpo/pull/518] PCA memory improvements, inplace dot product (@jabooth)

	#519 [https://github.com/menpo/menpo/pull/519] replace wrapt with functools.wraps - we can pickle (@jabooth)

	#517 [https://github.com/menpo/menpo/pull/517] (@jabooth)

	#514 [https://github.com/menpo/menpo/pull/514] Remove the use of triplot (@patricksnape)

	#516 [https://github.com/menpo/menpo/pull/516] Fix how images are converted to PIL (@patricksnape)

	#515 [https://github.com/menpo/menpo/pull/515] Show the path in the image widgets (@patricksnape)

	#511 [https://github.com/menpo/menpo/pull/511] 2D Rotation convenience constructor, Image.rotate_ccw_about_centre (@jabooth)

	#510 [https://github.com/menpo/menpo/pull/510] all menpo io glob operations are now always sorted (@jabooth)

	#508 [https://github.com/menpo/menpo/pull/508] visualize image on MaskedImage reports Mask proportion (@jabooth)

	#509 [https://github.com/menpo/menpo/pull/509] path is now preserved on image warping (@jabooth)

	#507 [https://github.com/menpo/menpo/pull/507] fix rounding issue in n_components (@jabooth)

	#506 [https://github.com/menpo/menpo/pull/506] is_tree update in Graph (@nontas)

	#505 [https://github.com/menpo/menpo/pull/505] (@nontas)

	#504 [https://github.com/menpo/menpo/pull/504] explicitly have kwarg in IO for landmark extensions (@jabooth)

	#503 [https://github.com/menpo/menpo/pull/503] Update the README (@patricksnape)

v0.4.0a1 (2014/10/31)

This first alpha release makes a number of large, breaking changes to Menpo
from v0.3.0. The biggest change is that Menpo3D and MenpoFit were created
and thus all AAM and 3D visualization/rasterization code has been moved out
of the main Menpo repository. This is working towards Menpo being pip
installable.

Summary:

	Fixes memory leak whereby weak references were being kept between
landmarks and their host objects. The Landmark manager now no longer
keeps references to its host object. This also helps with serialization.

	Use pathlib instead of strings for paths in the io module.

	Importing of builtin assets from a simple function

	Improve support for image importing (including ability to import without
normalising)

	Add fast methods for image warping, warp_to_mask and warp_to_shape
instead of warp_to

	Allow masking of triangle meshes

	Add IPython visualization widgets for our core types

	All expensive properties (properties that would be worth caching in
a variable and are not merely a lookup) are changed to methods.

Github Pull Requests

	#502 [https://github.com/menpo/menpo/pull/502] Fixes pseudoinverse for Alignment Transforms (@jalabort, @patricksnape)

	#501 [https://github.com/menpo/menpo/pull/501] Remove menpofit widgets (@nontas)

	#500 [https://github.com/menpo/menpo/pull/500] Shapes widget (@nontas)

	#499 [https://github.com/menpo/menpo/pull/499] spin out AAM, CLM, SDM, ATM and related code to menpofit (@jabooth)

	#498 [https://github.com/menpo/menpo/pull/498] Minimum spanning tree bug fix (@nontas)

	#492 [https://github.com/menpo/menpo/pull/492] Some fixes for PIL image importing (@patricksnape)

	#494 [https://github.com/menpo/menpo/pull/494] Widgets bug fix and Active Template Model widget (@nontas)

	#491 [https://github.com/menpo/menpo/pull/491] Widgets fixes (@nontas)

	#489 [https://github.com/menpo/menpo/pull/489] remove _view, fix up color_list -> colour_list (@jabooth)

	#486 [https://github.com/menpo/menpo/pull/486] Image visualisation improvements (@patricksnape)

	#488 [https://github.com/menpo/menpo/pull/488] Move expensive image properties to methods (@jabooth)

	#487 [https://github.com/menpo/menpo/pull/487] Change expensive PCA properties to methods (@jabooth)

	#485 [https://github.com/menpo/menpo/pull/485] MeanInstanceLinearModel.mean is now a method (@jabooth)

	#452 [https://github.com/menpo/menpo/pull/452] Advanced widgets (@patricksnape, @nontas)

	#481 [https://github.com/menpo/menpo/pull/481] Remove 3D (@patricksnape)

	#480 [https://github.com/menpo/menpo/pull/480] Graphs functionality (@nontas)

	#479 [https://github.com/menpo/menpo/pull/479] Extract patches on image (@patricksnape)

	#469 [https://github.com/menpo/menpo/pull/469] Active Template Models (@nontas)

	#478 [https://github.com/menpo/menpo/pull/478] Fix residuals for AAMs (@patricksnape, @jabooth)

	#474 [https://github.com/menpo/menpo/pull/474] remove HDF5able making room for h5it (@jabooth)

	#475 [https://github.com/menpo/menpo/pull/475] Normalize norm and std of Image object (@nontas)

	#472 [https://github.com/menpo/menpo/pull/472] Daisy features (@nontas)

	#473 [https://github.com/menpo/menpo/pull/473] Fix from_mask for Trimesh subclasses (@patricksnape)

	#470 [https://github.com/menpo/menpo/pull/470] expensive properties should really be methods (@jabooth)

	#467 [https://github.com/menpo/menpo/pull/467] get a progress bar on top level feature computation (@jabooth)

	#466 [https://github.com/menpo/menpo/pull/466] Spin out rasterization and related methods to menpo3d (@jabooth)

	#465 [https://github.com/menpo/menpo/pull/465] ‘me_norm’ error type in tests (@nontas)

	#463 [https://github.com/menpo/menpo/pull/463] goodbye ioinfo, hello path (@jabooth)

	#464 [https://github.com/menpo/menpo/pull/464] make mayavi an optional dependency (@jabooth)

	#447 [https://github.com/menpo/menpo/pull/447] Displacements in fitting result (@nontas)

	#451 [https://github.com/menpo/menpo/pull/451] AppVeyor Windows continuous builds from condaci (@jabooth)

	#445 [https://github.com/menpo/menpo/pull/445] Serialize fit results (@patricksnape)

	#444 [https://github.com/menpo/menpo/pull/444] remove pyramid_on_features from Menpo (@jabooth)

	#443 [https://github.com/menpo/menpo/pull/443] create_pyramid now applies features even if pyramid_on_features=False, SDM uses it too (@jabooth)

	#369 [https://github.com/menpo/menpo/pull/369] warp_to_mask, warp_to_shape, fast resizing of images (@nontas, @patricksnape, @jabooth)

	#442 [https://github.com/menpo/menpo/pull/442] add rescale_to_diagonal, diagonal property to Image (@jabooth)

	#441 [https://github.com/menpo/menpo/pull/441] adds constrain_to_landmarks on BooleanImage (@jabooth)

	#440 [https://github.com/menpo/menpo/pull/440] pathlib.Path can no be used in menpo.io (@jabooth)

	#439 [https://github.com/menpo/menpo/pull/439] Labelling fixes (@jabooth, @patricksnape)

	#438 [https://github.com/menpo/menpo/pull/438] extract_channels (@jabooth)

	#437 [https://github.com/menpo/menpo/pull/437] GLRasterizer becomes HDF5able (@jabooth)

	#435 [https://github.com/menpo/menpo/pull/435] import_builtin_asset.ASSET_NAME (@jabooth)

	#434 [https://github.com/menpo/menpo/pull/434] check_regression_features unified with check_features, classmethods removed from SDM (@jabooth)

	#433 [https://github.com/menpo/menpo/pull/433] tidy classifiers (@jabooth)

	#432 [https://github.com/menpo/menpo/pull/432] aam.fitter, clm.fitter, sdm.trainer packages (@jabooth)

	#431 [https://github.com/menpo/menpo/pull/431] More fitmultilevel tidying (@jabooth)

	#430 [https://github.com/menpo/menpo/pull/430] Remove classmethods from DeformableModelBuilder (@jabooth)

	#412 [https://github.com/menpo/menpo/pull/412] First visualization widgets (@jalabort, @nontas)

	#429 [https://github.com/menpo/menpo/pull/429] Masked image fixes (@patricksnape)

	#426 [https://github.com/menpo/menpo/pull/426] rename ‘feature_type’ to ‘features throughout Menpo (@jabooth)

	#427 [https://github.com/menpo/menpo/pull/427] Adds HDF5able serialization support to Menpo (@jabooth)

	#425 [https://github.com/menpo/menpo/pull/425] Faster cached piecewise affine, Cython varient demoted (@jabooth)

	#424 [https://github.com/menpo/menpo/pull/424] (@nontas)

	#378 [https://github.com/menpo/menpo/pull/378] Fitting result fixes (@jabooth, @nontas, @jalabort)

	#423 [https://github.com/menpo/menpo/pull/423] name now displays on constrained features (@jabooth)

	#421 [https://github.com/menpo/menpo/pull/421] Travis CI now makes builds, Linux/OS X Python 2.7/3.4 (@jabooth, @patricksnape)

	#400 [https://github.com/menpo/menpo/pull/400] Features as functions (@nontas, @patricksnape, @jabooth)

	#420 [https://github.com/menpo/menpo/pull/420] move IOInfo to use pathlib (@jabooth)

	#405 [https://github.com/menpo/menpo/pull/405] import menpo is now twice as fast (@jabooth)

	#416 [https://github.com/menpo/menpo/pull/416] waffle.io Badge (@waffle-iron)

	#415 [https://github.com/menpo/menpo/pull/415] export_mesh with .OBJ exporter (@jabooth, @patricksnape)

	#410 [https://github.com/menpo/menpo/pull/410] Fix the render_labels logic (@patricksnape)

	#407 [https://github.com/menpo/menpo/pull/407] Exporters (@patricksnape)

	#406 [https://github.com/menpo/menpo/pull/406] Fix greyscale PIL images (@patricksnape)

	#404 [https://github.com/menpo/menpo/pull/404] LandmarkGroup tojson method and PointGraph (@patricksnape)

	#403 [https://github.com/menpo/menpo/pull/403] Fixes a couple of viewing problems in fitting results (@patricksnape)

	#402 [https://github.com/menpo/menpo/pull/402] Landmarks fixes (@jabooth, @patricksnape)

	#401 [https://github.com/menpo/menpo/pull/401] Dogfood landmark_resolver in menpo.io (@jabooth)

	#399 [https://github.com/menpo/menpo/pull/399] bunch of Python 3 compatibility fixes (@jabooth)

	#398 [https://github.com/menpo/menpo/pull/398] throughout Menpo. (@jabooth)

	#397 [https://github.com/menpo/menpo/pull/397] Performance improvements for Similarity family (@jabooth)

	#396 [https://github.com/menpo/menpo/pull/396] More efficient initialisations of Menpo types (@jabooth)

	#395 [https://github.com/menpo/menpo/pull/395] remove cyclic target reference from landmarks (@jabooth)

	#393 [https://github.com/menpo/menpo/pull/393] Groundwork for dense correspondence pipeline (@jabooth)

	#394 [https://github.com/menpo/menpo/pull/394] weakref to break cyclic references (@jabooth)

	#389 [https://github.com/menpo/menpo/pull/389] assorted fixes (@jabooth)

	#390 [https://github.com/menpo/menpo/pull/390] (@jabooth)

	#387 [https://github.com/menpo/menpo/pull/387] Adds landmark label for tongues (@nontas)

	#386 [https://github.com/menpo/menpo/pull/386] Adds labels for the ibug eye annotation scheme (@jalabort)

	#382 [https://github.com/menpo/menpo/pull/382] BUG fixed: block element not reset if norm=0 (@dubzzz)

	#381 [https://github.com/menpo/menpo/pull/381] Recursive globbing (@jabooth)

	#384 [https://github.com/menpo/menpo/pull/384] Adds support for odd patch shapes in function extract_local_patches_fast (@jalabort)

	#379 [https://github.com/menpo/menpo/pull/379] imported textures have ioinfo, docs improvements (@jabooth)

v0.3.0 (2014/05/27)

First public release of Menpo, this release coincided with submission
to the ACM Multimedia Open Source Software Competition 2014. This provides
the basic scaffolding for Menpo, but it is not advised to use this version
over the improvements in 0.4.0.

Github Pull Requests

	#377 [https://github.com/menpo/menpo/pull/377] Simple fixes (@patricksnape)

	#375 [https://github.com/menpo/menpo/pull/375] improvements to importing multiple assets (@jabooth)

	#374 [https://github.com/menpo/menpo/pull/374] Menpo’s User guide (@jabooth)

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

The Menpo API

This section attempts to provide a simple browsing experience for the Menpo
documentation. In Menpo, we use legible docstrings, and therefore, all
documentation should be easily accessible in any sensible IDE (or IPython)
via tab completion. However, this section should make most of the core
classes available for viewing online.

	menpo.base

	menpo.io

	menpo.image

	menpo.feature

	menpo.landmark

	menpo.math

	menpo.model

	menpo.shape

	menpo.transform

	menpo.visualize

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.base

Core

Core interfaces of Menpo.

	Copyable

	Vectorizable

	Targetable

Convenience

	menpo_src_dir_path

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.base

Copyable

	
class menpo.base.Copyable[source]

	Bases: object

Efficient copying of classes containing numpy arrays.

Interface that provides a single method for copying classes very
efficiently.

	
copy()[source]

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.base

Vectorizable

	
class menpo.base.Vectorizable[source]

	Bases: Copyable

Flattening of rich objects to vectors and rebuilding them back.

Interface that provides methods for ‘flattening’ an object into a
vector, and restoring from the same vectorized form. Useful for
statistical analysis of objects, which commonly requires the data
to be provided as a single vector.

	
as_vector(**kwargs)[source]

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
from_vector(vector)[source]

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)[source]

	Update the state of this object from a vector form.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.base

Targetable

	
class menpo.base.Targetable[source]

	Bases: Copyable

Interface for objects that can produce a target PointCloud.

This could for instance be the result of an alignment or a generation of a
PointCloud instance from a shape model.

Implementations must define sensible behavior for:

	what a target is: see target

	how to set a target: see set_target()

	how to update the object after a target is set:
see _sync_state_from_target()

	how to produce a new target after the changes:
see _new_target_from_state()

Note that _sync_target_from_state() needs to be triggered as
appropriate by subclasses e.g. when from_vector_inplace is
called. This will in turn trigger _new_target_from_state(), which each
subclass must implement.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
set_target(new_target)[source]

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_points

	The number of points on the target.

	Type:	int

	
target

	The current PointCloud that this object produces.

	Type:	PointCloud

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.base

menpo_src_dir_path

	
menpo.base.menpo_src_dir_path()[source]

	The path to the top of the menpo Python package.

Useful for locating where the data folder is stored.

	Returns:	path (pathlib.Path) –
The full path to the top of the Menpo package

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.io

Input

	import_image

	import_images

	import_landmark_file

	import_landmark_files

	import_pickle

	import_pickles

	import_builtin_asset

Output

	export_image

	export_landmark_file

	export_pickle

Path Operations

	image_paths

	landmark_file_paths

	data_path_to

	data_dir_path

	ls_builtin_assets

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_image

	
menpo.io.import_image(filepath, landmark_resolver=<function same_name at 0x7f94e4cd25f0>, normalise=True)[source]

	Single image (and associated landmarks) importer.

If an image file is found at filepath, returns an Image or
subclass representing it. By default, landmark files sharing the same
filename stem will be imported and attached with a group name based on the
extension of the landmark file, although this behavior can be customised
(see landmark_resolver). If the image defines a mask, this mask will be
imported.

	Parameters:	
	filepath (pathlib.Path or str) – A relative or absolute filepath to an image file.

	landmark_resolver (function, optional) – This function will be used to find landmarks for the
image. The function should take one argument (the image itself) and
return a dictionary of the form {'group_name': 'landmark_filepath'}
Default finds landmarks with the same name as the image file.

	normalise (bool, optional) – If True, normalise the image pixels between 0 and 1 and convert
to floating point. If false, the native datatype of the image will be
maintained (commonly uint8). Note that in general Menpo assumes
Image instances contain floating point data - if you disable
this flag you will have to manually convert the images you import to
floating point before doing most Menpo operations. This however can be
useful to save on memory usage if you only wish to view or crop images.

	Returns:	images (Image or list of) –
An instantiated Image or subclass thereof or a list of images.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_images

	
menpo.io.import_images(pattern, max_images=None, landmark_resolver=<function same_name at 0x7f94e4cd25f0>, normalise=True, verbose=False)[source]

	Multiple image (and associated landmarks) importer.

For each image found yields an Image or
subclass representing it. By default, landmark files sharing the same
filename stem will be imported and attached with a group name based on the
extension of the landmark file, although this behavior can be customised
(see landmark_resolver). If the image defines a mask, this mask will be
imported.

Note that this is a generator function. This allows for pre-processing
of data to take place as data is imported (e.g. cropping images to
landmarks as they are imported for memory efficiency).

	Parameters:	
	pattern (str) – A glob path pattern to search for images. Every image found to match
the glob will be imported one by one. See image_paths for more
details of what images will be found.

	max_images (positive int, optional) – If not None, only import the first max_images found. Else,
import all.

	landmark_resolver (function, optional) – This function will be used to find landmarks for the
image. The function should take one argument (the image itself) and
return a dictionary of the form {'group_name': 'landmark_filepath'}
Default finds landmarks with the same name as the image file.

	normalise (bool, optional) – If True, normalise the image pixels between 0 and 1 and convert
to floating point. If false, the native datatype of the image will be
maintained (commonly uint8). Note that in general Menpo assumes
Image instances contain floating point data - if you disable
this flag you will have to manually convert the images you import to
floating point before doing most Menpo operations. This however can be
useful to save on memory usage if you only wish to view or crop images.

	verbose (bool, optional) – If True progress of the importing will be dynamically reported with
a progress bar.

	Returns:	generator (generator yielding Image or list of) –
Generator yielding Image instances found to match the glob
pattern provided.

	Raises:	ValueError –
If no images are found at the provided glob.

Examples

Import images at 20% scale from a huge collection:

>>> images = []
>>> for img in menpo.io.import_images('./massive_image_db/*'):
>>> # rescale to a sensible size as we go
>>> images.append(img.rescale(0.2))

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_landmark_file

	
menpo.io.import_landmark_file(filepath, asset=None)[source]

	Single landmark group importer.

If a landmark file is found at filepath, returns a
LandmarkGroup representing it.

	Parameters:	filepath (pathlib.Path or str) – A relative or absolute filepath to an landmark file.

	Returns:	landmark_group (LandmarkGroup) –
The LandmarkGroup that the file format represents.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_landmark_files

	
menpo.io.import_landmark_files(pattern, max_landmarks=None, verbose=False)[source]

	Multiple landmark file import generator.

Note that this is a generator function.

	Parameters:	
	pattern (str) – A glob path pattern to search for landmark files. Every
landmark file found to match the glob will be imported one by one.
See landmark_file_paths for more details of what landmark files
will be found.

	max_landmark_files (positive int, optional) – If not None, only import the first max_landmark_files found.
Else, import all.

	verbose (bool, optional) – If True progress of the importing will be dynamically reported.

	Returns:	generator (generator yielding LandmarkGroup) –
Generator yielding LandmarkGroup instances found to match the
glob pattern provided.

	Raises:	ValueError –
If no landmarks are found at the provided glob.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_pickle

	
menpo.io.import_pickle(filepath)[source]

	Import a pickle file of arbitrary Python objects.

Menpo unambiguously uses .pkl as it’s choice of extension for Pickle
files. Menpo also supports automatic importing and exporting of gzip
compressed pickle files - just choose a filepath ending pkl.gz and
gzip compression will automatically be applied. Compression can massively
reduce the filesize of a pickle file at the cost of longer import and
export times.

	Parameters:	filepath (pathlib.Path or str) – A relative or absolute filepath to a .pkl or .pkl.gz file.

	Returns:	object (object) –
Whatever Python objects are present in the Pickle file

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_pickles

	
menpo.io.import_pickles(pattern, max_pickles=None, verbose=False)[source]

	Multiple pickle file import generator.

Note that this is a generator function.

Menpo unambiguously uses .pkl as it’s choice of extension for pickle
files. Menpo also supports automatic importing of gzip compressed pickle
files - matching files with extension pkl.gz will be automatically
un-gzipped and imported.

	Parameters:	
	pattern (str) – The glob path pattern to search for pickles. Every pickle file found
to match the glob will be imported one by one.

	max_pickles (positive int, optional) – If not None, only import the first max_pickles found.
Else, import all.

	verbose (bool, optional) – If True progress of the importing will be dynamically reported.

	Returns:	generator (generator yielding object) –
Generator yielding whatever Python object is present in the pickle
files that match the glob pattern provided.

	Raises:	ValueError –
If no pickles are found at the provided glob.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

import_builtin_asset

	
menpo.io.import_builtin_asset()

	This is a dynamically generated method. This method is designed to
automatically generate import methods for each data file in the data
folder. This method it designed to be tab completed, so you do not need
to call this method explicitly. It should be treated more like a property
that will dynamically generate functions that will import the shipped
data. For example:

>>> import menpo
>>> bb_image = menpo.io.import_builtin_asset.breakingbad_jpg()

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

export_image

	
menpo.io.export_image(image, fp, extension=None, overwrite=False)[source]

	Exports a given image. The fp argument can be either
a str or any Python type that acts like a file. If a file is provided,
the extension kwarg must be provided. If no
extension is provided and a str filepath is provided, then
the export type is calculated based on the filepath extension.

Due to the mix of string and file types, an explicit overwrite argument is
used which is False by default.

	Parameters:	
	image (Image) – The image to export.

	fp (str or file-like object) – The string path or file-like object to save the object at/into.

	extension (str or None, optional) – The extension to use, this must match the file path if the file
path is a string. Determines the type of exporter that is used.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	Raises:	
	ValueError –
File already exists and overwrite != True

	ValueError –
fp is a str and the extension is not None
and the two extensions do not match

	ValueError –
fp is a file-like object and extension is
None

	ValueError –
The provided extension does not match to an existing exporter type
(the output type is not supported).

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

export_landmark_file

	
menpo.io.export_landmark_file(landmark_group, fp, extension=None, overwrite=False)[source]

	Exports a given landmark group. The fp argument can be either
or a str or any Python type that acts like a file. If a file is provided,
the extension kwarg must be provided. If no
extension is provided and a str filepath is provided, then
the export type is calculated based on the filepath extension.

Due to the mix in string and file types, an explicit overwrite argument is
used which is False by default.

	Parameters:	
	landmark_group (LandmarkGroup) – The landmark group to export.

	fp (str or file-like object) – The string path or file-like object to save the object at/into.

	extension (str or None, optional) – The extension to use, this must match the file path if the file
path is a string. Determines the type of exporter that is used.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	Raises:	
	ValueError –
File already exists and overwrite != True

	ValueError –
fp is a str and the extension is not None
and the two extensions do not match

	ValueError –
fp is a file-like object and extension is
None

	ValueError –
The provided extension does not match to an existing exporter type
(the output type is not supported).

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

export_pickle

	
menpo.io.export_pickle(obj, fp, overwrite=False)[source]

	Exports a given collection of Python objects with Pickle.

The fp argument can be either a str or any Python type that acts like
a file.
If fp is a path, it must have the suffix .pkl or .pkl.gz. If
.pkl, the object will be pickled using Pickle protocol 2 without
compression. If .pkl.gz the object will be pickled using Pickle protocol
2 with gzip compression (at a fixed compression level of 3).

	Parameters:	
	obj (object) – The object to export.

	fp (str or file-like object) – The string path or file-like object to save the object at/into.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	Raises:	
	ValueError –
File already exists and overwrite != True

	ValueError –
fp is a file-like object and extension is
None

	ValueError –
The provided extension does not match to an existing exporter type
(the output type is not supported).

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

image_paths

	
menpo.io.image_paths(pattern)[source]

	Return image filepaths that Menpo can import that match the glob pattern.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

landmark_file_paths

	
menpo.io.landmark_file_paths(pattern)[source]

	Return landmark file filepaths that Menpo can import that match the glob
pattern.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

data_path_to

	
menpo.io.data_path_to(asset_filename)[source]

	The path to a builtin asset in the ./data folder on this machine.

	Parameters:	asset_filename (str) – The filename (with extension) of a file builtin to Menpo. The full
set of allowed names is given by ls_builtin_assets()

	Returns:	data_path (pathlib.Path) –
The path to a given asset in the ./data folder

	Raises:	ValueError –
If the asset_filename doesn’t exist in the data folder.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

data_dir_path

	
menpo.io.data_dir_path()[source]

	A path to the Menpo built in ./data folder on this machine.

	Returns:	pathlib.Path –
The path to the local Menpo ./data folder

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.io

ls_builtin_assets

	
menpo.io.ls_builtin_assets()[source]

	List all the builtin asset examples provided in Menpo.

	Returns:	list of strings –
Filenames of all assets in the data directory shipped with Menpo

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.image

Image Types

	Image

	BooleanImage

	MaskedImage

Exceptions

	ImageBoundaryError

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.image

Image

	
class menpo.image.Image(image_data, copy=True)[source]

	Bases: Vectorizable, Landmarkable, Viewable, LandmarkableViewable

An n-dimensional image.

Images are n-dimensional homogeneous regular arrays of data. Each
spatially distinct location in the array is referred to as a pixel.
At a pixel, k distinct pieces of information can be stored. Each
datum at a pixel is refereed to as being in a channel. All pixels in
the image have the same number of channels, and all channels have the
same data-type (float64).

	Parameters:	
	image_data ((M, N ..., Q, C) ndarray) – Array representing the image pixels, with the last axis being
channels.

	copy (bool, optional) – If False, the image_data will not be copied on assignment.
Note that this will miss out on additional checks. Further note that we
still demand that the array is C-contiguous - if it isn’t, a copy will
be generated anyway.
In general, this should only be used if you know what you are doing.

	Raises:	
	Warning –
If copy=False cannot be honoured

	ValueError –
If the pixel array is malformed

	
_view_2d(figure_id=None, new_figure=False, channels=None, interpolation='bilinear', alpha=1.0, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))[source]

	View the image using the default image viewer. This method will appear
on the Image as view if the Image is 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	channels (int or list of int or all or None) –
If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) –
The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options{none, nearest, bilinear, bicubic, spline16, spline36,
hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
bessel, mitchell, sinc, lanczos}

	alpha (float, optional) –
The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	Returns:	viewer (ImageViewer) –
The image viewing object.

	
_view_landmarks_2d(channels=None, group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, interpolation='bilinear', alpha=1.0, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))[source]

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_PILImage()[source]

	Return a PIL copy of the image. Depending on the image data type,
different operations are performed:

	dtype
	Processing

	uint8
	No processing, directly converted to PIL

	bool
	Scale by 255, convert to uint8

	float32
	Scale by 255, convert to uint8

	float64
	Scale by 255, convert to uint8

	OTHER
	Raise ValueError

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 images must be in the rage [0, 1] to be converted.

	Returns:	pil_image (PILImage) –
PIL copy of image

	Raises:	
	ValueError –
If image is not 2D and 1 channel or 3 channels.

	ValueError –
If pixels data type is not float32, float64, bool or uint8

	ValueError –
If pixels data type is float32 or float64 and the pixel
range is outside of [0, 1]

	
as_greyscale(mode='luminosity', channel=None)[source]

	Returns a greyscale version of the image. If the image does not
represent a 2D RGB image, then the luminosity mode will fail.

	Parameters:	
	mode ({average, luminosity, channel}, optional) –

	mode
	Greyscale Algorithm

	average
	Equal average of all channels

	luminosity
	Calculates the luminance using the CCIR 601 formula:

	

	
\[Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'\]

	channel
	A specific channel is chosen as the intensity value.

	channel (int, optional) – The channel to be taken. Only used if mode is channel.

	Returns:	greyscale_image (MaskedImage) –
A copy of this image in greyscale.

	
as_histogram(keep_channels=True, bins='unique')[source]

	Histogram binning of the values of this image.

	Parameters:	
	keep_channels (bool, optional) – If set to False, it returns a single histogram for all the
channels of the image. If set to True, it returns a list of
histograms, one for each channel.

	bins ({unique}, positive int or sequence of scalars, optional) – If set equal to 'unique', the bins of the histograms are centred
on the unique values of each channel. If set equal to a positive
int, then this is the number of bins. If set equal to a
sequence of scalars, these will be used as bins centres.

	Returns:	
	hist (ndarray or list with n_channels ndarrays inside) –
The histogram(s). If keep_channels=False, then hist is an
ndarray. If keep_channels=True, then hist is a list with
len(hist)=n_channels.

	bin_edges (ndarray or list with n_channels ndarrays inside) –
An array or a list of arrays corresponding to the above histograms
that store the bins’ edges.

	Raises:	ValueError –
Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples

Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

	
as_masked(mask=None, copy=True)[source]

	Return a copy of this image with an attached mask behavior.

A custom mask may be provided, or None. See the MaskedImage
constructor for details of how the kwargs will be handled.

	Parameters:	
	mask ((self.shape) ndarray or BooleanImage) – A mask to attach to the newly generated masked image.

	copy (bool, optional) – If False, the produced MaskedImage will share pixels with
self. Only suggested to be used for performance.

	Returns:	masked_image (MaskedImage) –
An image with the same pixels and landmarks as this one, but with
a mask.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
classmethod blank(shape, n_channels=1, fill=0, dtype=<Mock object at 0x7f94e4d09290>)[source]

	Returns a blank image.

	Parameters:	
	shape (tuple or list) – The shape of the image. Any floating point values are rounded up
to the nearest integer.

	n_channels (int, optional) – The number of channels to create the image with.

	fill (int, optional) – The value to fill all pixels with.

	dtype (numpy data type, optional) – The data type of the image.

	Returns:	blank_image (Image) –
A new image of the requested size.

	
constrain_landmarks_to_bounds()[source]

	Move landmarks that are located outside the image bounds on the bounds.

	
constrain_points_to_bounds(points)[source]

	Constrains the points provided to be within the bounds of this image.

	Parameters:	points ((d,) ndarray) – Points to be snapped to the image boundaries.

	Returns:	bounded_points ((d,) ndarray) –
Points snapped to not stray outside the image edges.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
crop(min_indices, max_indices, constrain_to_boundary=False)[source]

	Return a cropped copy of this image using the given minimum and
maximum indices. Landmarks are correctly adjusted so they maintain
their position relative to the newly cropped image.

	Parameters:	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	cropped_image (type(self)) –
A new instance of self, but cropped.

	Raises:	
	ValueError –
min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than
min_indices.

	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_inplace(min_indices, max_indices, constrain_to_boundary=True)[source]

	Crops this image using the given minimum and maximum indices.
Landmarks are correctly adjusted so they maintain their position
relative to the newly cropped image.

	Parameters:	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	cropped_image (type(self)) –
This image, cropped.

	Raises:	
	ValueError –
min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than
min_indices.

	map:ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_inplace(group=None, label=None, boundary=0, constrain_to_boundary=True)[source]

	Crop this image to be bounded around a set of landmarks with an
optional n_pixel boundary

	Parameters:	
	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	image (Image) –
This image, cropped to its landmarks.

	Raises:	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_proportion_inplace(boundary_proportion, group=None, label=None, minimum=True, constrain_to_boundary=True)[source]

	Crop this image to be bounded around a set of landmarks with a
border proportional to the landmark spread or range.

	Parameters:	
	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	image (Image) –
This image, cropped to its landmarks with a border proportional to
the landmark spread or range.

	Raises:	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
extract_channels(channels)[source]

	A copy of this image with only the specified channels.

	Parameters:	channels (int or [int]) – The channel index or list of channel indices to retain.

	Returns:	image (type(self)) –
A copy of this image with only the channels requested.

	
extract_patches(patch_centers, patch_size=(16, 16), sample_offsets=None, as_single_array=False)[source]

	Extract a set of patches from an image. Given a set of patch centers and
a patch size, patches are extracted from within the image, centred
on the given coordinates. Sample offsets denote a set of offsets to
extract from within a patch. This is very useful if you want to extract
a dense set of features around a set of landmarks and simply sample the
same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you
need to slice the resulting list. So for 2 offsets, the first centers
offset patches would be patches[:2].

Currently only 2D images are supported.

	Parameters:	
	patch_centers (PointCloud) – The centers to extract patches around.

	patch_size (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets (PointCloud, optional) – The offsets to sample from within a patch. So (0, 0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre.

	as_single_array (bool, optional) – If True, an (n_center * n_offset, self.shape...)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of Image objects is returned
representing each patch.

	Returns:	patches (list or ndarray) –
Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises:	ValueError –
If image is not 2D

	
extract_patches_around_landmarks(group=None, label=None, patch_size=(16, 16), sample_offsets=None, as_single_array=False)[source]

	Extract patches around landmarks existing on this image. Provided the
group label and optionally the landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.

	Parameters:	
	group (str or None optional) – The landmark group to use as patch centres.

	label (str or None optional) – The landmark label within the group to use as centres.

	patch_size (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets (PointCloud, optional) – The offsets to sample from within a patch. So (0,0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre.

	as_single_array (bool, optional) – If True, an (n_center * n_offset, self.shape...)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of Image objects is returned
representing each patch.

	Returns:	patches (list or ndarray) –
Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises:	ValueError –
If image is not 2D

	
from_vector(vector, n_channels=None, copy=True)[source]

	Takes a flattened vector and returns a new image formed by reshaping
the vector to the correct pixels and channels.

The n_channels argument is useful for when we want to add an extra
channel to an image but maintain the shape. For example, when
calculating the gradient.

Note that landmarks are transferred in the process.

	Parameters:	
	vector ((n_parameters,) ndarray) – A flattened vector of all pixels and channels of an image.

	n_channels (int, optional) – If given, will assume that vector is the same shape as this image,
but with a possibly different number of channels.

	copy (bool, optional) – If False, the vector will not be copied in creating the new
image.

	Returns:	image (Image) –
New image of same shape as this image and the number of
specified channels.

	Raises:	Warning –
If the copy=False flag cannot be honored

	
from_vector_inplace(vector, copy=True)[source]

	Takes a flattened vector and update this image by
reshaping the vector to the correct dimensions.

	Parameters:	
	vector ((n_pixels,) bool ndarray) – A vector vector of all the pixels of a BooleanImage.

	copy (bool, optional) – If False, the vector will be set as the pixels. If True, a
copy of the vector is taken.

	Raises:	Warning –
If copy=False flag cannot be honored

Note

For BooleanImage this is rebuilding a boolean image itself
from boolean values. The mask is in no way interpreted in performing
the operation, in contrast to MaskedImage, where only the masked
region is used in from_vector_inplace() and as_vector().

	
gaussian_pyramid(n_levels=3, downscale=2, sigma=None)[source]

	Return the gaussian pyramid of this image. The first image of the
pyramid will be the original, unmodified, image, and counts as level 1.

	Parameters:	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	sigma (float, optional) – Sigma for gaussian filter. Default is downscale / 3. which
corresponds to a filter mask twice the size of the scale factor
that covers more than 99% of the gaussian distribution.

	Yields:	image_pyramid (generator) –
Generator yielding pyramid layers as Image objects.

	
gradient(**kwargs)[source]

	Returns an Image which is the gradient of this one. In the case
of multiple channels, it returns the gradient over each axis over
each channel as a flat list.

	Returns:	gradient (Image) –
The gradient over each axis over each channel. Therefore, the
gradient of a 2D, single channel image, will have length 2.
The length of a 2D, 3-channel image, will have length 6.

	
indices()[source]

	Return the indices of all pixels in this image.

	Type:	(n_dims, n_pixels) ndarray

	
normalize_norm_inplace(mode='all', **kwargs)[source]

	Normalizes this image such that its pixel values have zero mean and
its norm equals 1.

	Parameters:	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	
normalize_std_inplace(mode='all', **kwargs)[source]

	Normalizes this image such that its pixel values have zero mean and
unit variance.

	Parameters:	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	
pyramid(n_levels=3, downscale=2)[source]

	Return a rescaled pyramid of this image. The first image of the
pyramid will be the original, unmodified, image, and counts as level 1.

	Parameters:	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	Yields:	image_pyramid (generator) –
Generator yielding pyramid layers as Image objects.

	
rescale(scale, round='ceil', order=1)[source]

	Return a copy of this image, rescaled by a given factor.
Landmarks are rescaled appropriately.

	Parameters:	
	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	Raises:	ValueError –
If less scales than dimensions are provided.
If any scale is less than or equal to 0.

	
rescale_landmarks_to_diagonal_range(diagonal_range, group=None, label=None, round='ceil', order=1)[source]

	Return a copy of this image, rescaled so that the diagonal_range of the
bounding box containing its landmarks matches the specified
diagonal_range range.

	Parameters:	
	diagonal_range ((n_dims,) ndarray) – The diagonal_range range that we want the landmarks of the returned
image to have.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
rescale_to_diagonal(diagonal, round='ceil')[source]

	Return a copy of this image, rescaled so that the it’s diagonal is a
new size.

	Parameters:	
	diagonal (int) – The diagonal size of the new image.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
rescale_to_reference_shape(reference_shape, group=None, label=None, round='ceil', order=1)[source]

	Return a copy of this image, rescaled so that the scale of a
particular group of landmarks matches the scale of the passed
reference landmarks.

	Parameters:	
	reference_shape (PointCloud) – The reference shape to which the landmarks scale will be matched
against.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
resize(shape, order=1)[source]

	Return a copy of this image, resized to a particular shape.
All image information (landmarks, and mask in the case of
MaskedImage) is resized appropriately.

	Parameters:	
	shape (tuple) – The new shape to resize to.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	resized_image (type(self)) –
A copy of this image, resized.

	Raises:	ValueError –
If the number of dimensions of the new shape does not match
the number of dimensions of the image.

	
rotate_ccw_about_centre(theta, degrees=True, cval=0)[source]

	Return a rotation of this image clockwise about its centre.

	Parameters:	
	theta (float) – The angle of rotation about the origin.

	degrees (bool, optional) – If True, theta is interpreted as a degree. If False,
theta is interpreted as radians.

	cval (float, optional) – The value to be set outside the rotated image boundaries.

	Returns:	rotated_image (type(self)) –
The rotated image.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))[source]

	Visualizes the image object using the visualize_images widget.
Currently only supports the rendering of 2D images.

	Parameters:	
	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the images will have the form of
plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
warp_to_mask(template_mask, transform, warp_landmarks=False, order=1, mode='constant', cval=0.0)[source]

	Return a copy of this image warped into a different reference space.

Note that warping into a mask is slower than warping into a full image.
If you don’t need a non-linear mask, consider :meth:warp_to_shape
instead.

	Parameters:	
	template_mask (BooleanImage) – Defines the shape of the result, and what pixels should be sampled.

	transform (Transform) – Transform from the template space back to this image.
Defines, for each pixel location on the template, which pixel
location should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns:	warped_image (MaskedImage) –
A copy of this image, warped.

	
warp_to_shape(template_shape, transform, warp_landmarks=False, order=1, mode='constant', cval=0.0)[source]

	Return a copy of this image warped into a different reference space.

	Parameters:	
	template_shape (tuple or ndarray) – Defines the shape of the result, and what pixel indices should be
sampled (all of them).

	transform (Transform) – Transform from the template_shape space back to this image.
Defines, for each index on template_shape, which pixel location
should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns:	warped_image (type(self)) –
A copy of this image, warped.

	
centre

	The geometric centre of the Image - the subpixel that is in the
middle.

Useful for aligning shapes and images.

	Type:	(n_dims,) ndarray

	
diagonal

	The diagonal size of this image

	Type:	float

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
has_landmarks_outside_bounds

	Indicates whether there are landmarks located outside the image bounds.

	Type:	bool

	
height

	The height of the image.

This is the height according to image semantics, and is thus the size
of the first dimension.

	Type:	int

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_channels

	The number of channels on each pixel in the image.

	Type:	int

	
n_dims

	The number of dimensions in the image. The minimum possible n_dims
is 2.

	Type:	int

	
n_elements

	Total number of data points in the image
(prod(shape), n_channels)

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_pixels

	Total number of pixels in the image (prod(shape),)

	Type:	int

	
shape

	The shape of the image
(with n_channel values at each point).

	Type:	tuple

	
width

	The width of the image.

This is the width according to image semantics, and is thus the size
of the second dimension.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.image

BooleanImage

	
class menpo.image.BooleanImage(mask_data, copy=True)[source]

	Bases: Image

A mask image made from binary pixels. The region of the image that is
left exposed by the mask is referred to as the ‘masked region’. The
set of ‘masked’ pixels is those pixels corresponding to a True value in
the mask.

	Parameters:	
	mask_data ((M, N, ..., L) ndarray) – The binary mask data. Note that there is no channel axis - a 2D Mask
Image is built from just a 2D numpy array of mask_data.
Automatically coerced in to boolean values.

	copy (bool, optional) – If False, the image_data will not be copied on assignment. Note that
if the array you provide is not boolean, there will still be copy.
In general this should only be used if you know what you are doing.

	
all_true()[source]

	True iff every element of the mask is True.

	Type:	bool

	
as_PILImage()

	Return a PIL copy of the image. Depending on the image data type,
different operations are performed:

	dtype
	Processing

	uint8
	No processing, directly converted to PIL

	bool
	Scale by 255, convert to uint8

	float32
	Scale by 255, convert to uint8

	float64
	Scale by 255, convert to uint8

	OTHER
	Raise ValueError

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 images must be in the rage [0, 1] to be converted.

	Returns:	pil_image (PILImage) –
PIL copy of image

	Raises:	
	ValueError –
If image is not 2D and 1 channel or 3 channels.

	ValueError –
If pixels data type is not float32, float64, bool or uint8

	ValueError –
If pixels data type is float32 or float64 and the pixel
range is outside of [0, 1]

	
as_greyscale(mode='luminosity', channel=None)

	Returns a greyscale version of the image. If the image does not
represent a 2D RGB image, then the luminosity mode will fail.

	Parameters:	
	mode ({average, luminosity, channel}, optional) –

	mode
	Greyscale Algorithm

	average
	Equal average of all channels

	luminosity
	Calculates the luminance using the CCIR 601 formula:

	

	
\[Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'\]

	channel
	A specific channel is chosen as the intensity value.

	channel (int, optional) – The channel to be taken. Only used if mode is channel.

	Returns:	greyscale_image (MaskedImage) –
A copy of this image in greyscale.

	
as_histogram(keep_channels=True, bins='unique')

	Histogram binning of the values of this image.

	Parameters:	
	keep_channels (bool, optional) – If set to False, it returns a single histogram for all the
channels of the image. If set to True, it returns a list of
histograms, one for each channel.

	bins ({unique}, positive int or sequence of scalars, optional) – If set equal to 'unique', the bins of the histograms are centred
on the unique values of each channel. If set equal to a positive
int, then this is the number of bins. If set equal to a
sequence of scalars, these will be used as bins centres.

	Returns:	
	hist (ndarray or list with n_channels ndarrays inside) –
The histogram(s). If keep_channels=False, then hist is an
ndarray. If keep_channels=True, then hist is a list with
len(hist)=n_channels.

	bin_edges (ndarray or list with n_channels ndarrays inside) –
An array or a list of arrays corresponding to the above histograms
that store the bins’ edges.

	Raises:	ValueError –
Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples

Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

	
as_masked(mask=None, copy=True)[source]

	Impossible for a BooleanImage to be transformed to a
MaskedImage.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
classmethod blank(shape, fill=True, round='ceil', **kwargs)[source]

	Returns a blank BooleanImage of the requested shape

	Parameters:	
	shape (tuple or list) – The shape of the image. Any floating point values are rounded
according to the round kwarg.

	fill (bool, optional) – The mask value to be set everywhere.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	Returns:	blank_image (BooleanImage) –
A blank mask of the requested size

	
bounds_false(boundary=0, constrain_to_bounds=True)[source]

	Returns the minimum to maximum indices along all dimensions that the
mask includes which fully surround the False mask values. In the case
of a 2D Image for instance, the min and max define two corners of a
rectangle bounding the False pixel values.

	Parameters:	
	boundary (int >= 0, optional) – A number of pixels that should be added to the extent. A
negative value can be used to shrink the bounds in.

	constrain_to_bounds (bool, optional) – If True, the bounding extent is snapped to not go beyond
the edge of the image. If False, the bounds are left unchanged.

	Returns:	
	min_b ((D,) ndarray) –
The minimum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	max_b ((D,) ndarray) –
The maximum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	
bounds_true(boundary=0, constrain_to_bounds=True)[source]

	Returns the minimum to maximum indices along all dimensions that the
mask includes which fully surround the True mask values. In the case
of a 2D Image for instance, the min and max define two corners of a
rectangle bounding the True pixel values.

	Parameters:	
	boundary (int, optional) – A number of pixels that should be added to the extent. A
negative value can be used to shrink the bounds in.

	constrain_to_bounds (bool, optional) – If True, the bounding extent is snapped to not go beyond
the edge of the image. If False, the bounds are left unchanged.

	Returns –

	-------- –

	min_b ((D,) ndarray) – The minimum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	max_b ((D,) ndarray) – The maximum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	
constrain_landmarks_to_bounds()

	Move landmarks that are located outside the image bounds on the bounds.

	
constrain_points_to_bounds(points)

	Constrains the points provided to be within the bounds of this image.

	Parameters:	points ((d,) ndarray) – Points to be snapped to the image boundaries.

	Returns:	bounded_points ((d,) ndarray) –
Points snapped to not stray outside the image edges.

	
constrain_to_landmarks(group=None, label=None, trilist=None)[source]

	Restricts this mask to be equal to the convex hull around the
landmarks chosen. This is not a per-pixel convex hull, but instead
relies on a triangulated approximation.

	Parameters:	
	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If no
label is passed, the convex hull of all landmarks is used.

	trilist ((t, 3) ndarray, optional) – Triangle list to be used on the landmarked points in selecting
the mask region. If None, defaults to performing Delaunay
triangulation on the points.

	
constrain_to_pointcloud(pointcloud, trilist=None)[source]

	Restricts this mask to be equal to the convex hull around a point cloud.
This is not a per-pixel convex hull, but instead
relies on a triangulated approximation.

	Parameters:	
	pointcloud (PointCloud) – The pointcloud of points that should be constrained to.

	trilist ((t, 3) ndarray, optional) – Triangle list to be used on the landmarked points in selecting
the mask region. If None defaults to performing Delaunay
triangulation on the points.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
crop(min_indices, max_indices, constrain_to_boundary=False)

	Return a cropped copy of this image using the given minimum and
maximum indices. Landmarks are correctly adjusted so they maintain
their position relative to the newly cropped image.

	Parameters:	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	cropped_image (type(self)) –
A new instance of self, but cropped.

	Raises:	
	ValueError –
min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than
min_indices.

	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_inplace(min_indices, max_indices, constrain_to_boundary=True)

	Crops this image using the given minimum and maximum indices.
Landmarks are correctly adjusted so they maintain their position
relative to the newly cropped image.

	Parameters:	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	cropped_image (type(self)) –
This image, cropped.

	Raises:	
	ValueError –
min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than
min_indices.

	map:ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_inplace(group=None, label=None, boundary=0, constrain_to_boundary=True)

	Crop this image to be bounded around a set of landmarks with an
optional n_pixel boundary

	Parameters:	
	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	image (Image) –
This image, cropped to its landmarks.

	Raises:	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_proportion_inplace(boundary_proportion, group=None, label=None, minimum=True, constrain_to_boundary=True)

	Crop this image to be bounded around a set of landmarks with a
border proportional to the landmark spread or range.

	Parameters:	
	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	image (Image) –
This image, cropped to its landmarks with a border proportional to
the landmark spread or range.

	Raises:	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
extract_channels(channels)

	A copy of this image with only the specified channels.

	Parameters:	channels (int or [int]) – The channel index or list of channel indices to retain.

	Returns:	image (type(self)) –
A copy of this image with only the channels requested.

	
extract_patches(patch_centers, patch_size=(16, 16), sample_offsets=None, as_single_array=False)

	Extract a set of patches from an image. Given a set of patch centers and
a patch size, patches are extracted from within the image, centred
on the given coordinates. Sample offsets denote a set of offsets to
extract from within a patch. This is very useful if you want to extract
a dense set of features around a set of landmarks and simply sample the
same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you
need to slice the resulting list. So for 2 offsets, the first centers
offset patches would be patches[:2].

Currently only 2D images are supported.

	Parameters:	
	patch_centers (PointCloud) – The centers to extract patches around.

	patch_size (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets (PointCloud, optional) – The offsets to sample from within a patch. So (0, 0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre.

	as_single_array (bool, optional) – If True, an (n_center * n_offset, self.shape...)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of Image objects is returned
representing each patch.

	Returns:	patches (list or ndarray) –
Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises:	ValueError –
If image is not 2D

	
extract_patches_around_landmarks(group=None, label=None, patch_size=(16, 16), sample_offsets=None, as_single_array=False)

	Extract patches around landmarks existing on this image. Provided the
group label and optionally the landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.

	Parameters:	
	group (str or None optional) – The landmark group to use as patch centres.

	label (str or None optional) – The landmark label within the group to use as centres.

	patch_size (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets (PointCloud, optional) – The offsets to sample from within a patch. So (0,0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre.

	as_single_array (bool, optional) – If True, an (n_center * n_offset, self.shape...)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of Image objects is returned
representing each patch.

	Returns:	patches (list or ndarray) –
Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises:	ValueError –
If image is not 2D

	
false_indices()[source]

	The indices of pixels that are Flase.

	Type:	(n_dims, n_false) ndarray

	
from_vector(vector, copy=True)[source]

	Takes a flattened vector and returns a new BooleanImage formed
by reshaping the vector to the correct dimensions. Note that this is
rebuilding a boolean image itself from boolean values. The mask
is in no way interpreted in performing the operation, in contrast to
MaskedImage, where only the masked region is used in
from_vector() and :meth`as_vector`. Any image landmarks are
transferred in the process.

	Parameters:	
	vector ((n_pixels,) bool ndarray) – A flattened vector of all the pixels of a BooleanImage.

	copy (bool, optional) – If False, no copy of the vector will be taken.

	Returns:	image (BooleanImage) –
New BooleanImage of same shape as this image

	Raises:	Warning –
If copy=False cannot be honored.

	
from_vector_inplace(vector, copy=True)

	Takes a flattened vector and update this image by
reshaping the vector to the correct dimensions.

	Parameters:	
	vector ((n_pixels,) bool ndarray) – A vector vector of all the pixels of a BooleanImage.

	copy (bool, optional) – If False, the vector will be set as the pixels. If True, a
copy of the vector is taken.

	Raises:	Warning –
If copy=False flag cannot be honored

Note

For BooleanImage this is rebuilding a boolean image itself
from boolean values. The mask is in no way interpreted in performing
the operation, in contrast to MaskedImage, where only the masked
region is used in from_vector_inplace() and as_vector().

	
gaussian_pyramid(n_levels=3, downscale=2, sigma=None)

	Return the gaussian pyramid of this image. The first image of the
pyramid will be the original, unmodified, image, and counts as level 1.

	Parameters:	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	sigma (float, optional) – Sigma for gaussian filter. Default is downscale / 3. which
corresponds to a filter mask twice the size of the scale factor
that covers more than 99% of the gaussian distribution.

	Yields:	image_pyramid (generator) –
Generator yielding pyramid layers as Image objects.

	
gradient(**kwargs)

	Returns an Image which is the gradient of this one. In the case
of multiple channels, it returns the gradient over each axis over
each channel as a flat list.

	Returns:	gradient (Image) –
The gradient over each axis over each channel. Therefore, the
gradient of a 2D, single channel image, will have length 2.
The length of a 2D, 3-channel image, will have length 6.

	
indices()

	Return the indices of all pixels in this image.

	Type:	(n_dims, n_pixels) ndarray

	
invert()[source]

	Returns a copy of this boolean image, which is inverted.

	Returns:	inverted (BooleanImage) –
A copy of this boolean mask, where all True values are False
and all False values are True.

	
invert_inplace()[source]

	Inverts this Boolean Image inplace.

	
n_false()[source]

	The number of False values in the mask.

	Type:	int

	
n_true()[source]

	The number of True values in the mask.

	Type:	int

	
normalize_norm_inplace(mode='all', **kwargs)

	Normalizes this image such that its pixel values have zero mean and
its norm equals 1.

	Parameters:	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	
normalize_std_inplace(mode='all', **kwargs)

	Normalizes this image such that its pixel values have zero mean and
unit variance.

	Parameters:	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	
proportion_false()[source]

	The proportion of the mask which is False

	Type:	float

	
proportion_true()[source]

	The proportion of the mask which is True.

	Type:	float

	
pyramid(n_levels=3, downscale=2)

	Return a rescaled pyramid of this image. The first image of the
pyramid will be the original, unmodified, image, and counts as level 1.

	Parameters:	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	Yields:	image_pyramid (generator) –
Generator yielding pyramid layers as Image objects.

	
rescale(scale, round='ceil', order=1)

	Return a copy of this image, rescaled by a given factor.
Landmarks are rescaled appropriately.

	Parameters:	
	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	Raises:	ValueError –
If less scales than dimensions are provided.
If any scale is less than or equal to 0.

	
rescale_landmarks_to_diagonal_range(diagonal_range, group=None, label=None, round='ceil', order=1)

	Return a copy of this image, rescaled so that the diagonal_range of the
bounding box containing its landmarks matches the specified
diagonal_range range.

	Parameters:	
	diagonal_range ((n_dims,) ndarray) – The diagonal_range range that we want the landmarks of the returned
image to have.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
rescale_to_diagonal(diagonal, round='ceil')

	Return a copy of this image, rescaled so that the it’s diagonal is a
new size.

	Parameters:	
	diagonal (int) – The diagonal size of the new image.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
rescale_to_reference_shape(reference_shape, group=None, label=None, round='ceil', order=1)

	Return a copy of this image, rescaled so that the scale of a
particular group of landmarks matches the scale of the passed
reference landmarks.

	Parameters:	
	reference_shape (PointCloud) – The reference shape to which the landmarks scale will be matched
against.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
resize(shape, order=1)

	Return a copy of this image, resized to a particular shape.
All image information (landmarks, and mask in the case of
MaskedImage) is resized appropriately.

	Parameters:	
	shape (tuple) – The new shape to resize to.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	resized_image (type(self)) –
A copy of this image, resized.

	Raises:	ValueError –
If the number of dimensions of the new shape does not match
the number of dimensions of the image.

	
rotate_ccw_about_centre(theta, degrees=True, cval=0)

	Return a rotation of this image clockwise about its centre.

	Parameters:	
	theta (float) – The angle of rotation about the origin.

	degrees (bool, optional) – If True, theta is interpreted as a degree. If False,
theta is interpreted as radians.

	cval (float, optional) – The value to be set outside the rotated image boundaries.

	Returns:	rotated_image (type(self)) –
The rotated image.

	
true_indices()[source]

	The indices of pixels that are True.

	Type:	(n_dims, n_true) ndarray

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualizes the image object using the visualize_images widget.
Currently only supports the rendering of 2D images.

	Parameters:	
	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the images will have the form of
plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
warp_to_mask(template_mask, transform, warp_landmarks=True, mode='constant', cval=0.0)[source]

	Return a copy of this BooleanImage warped into a different
reference space.

Note that warping into a mask is slower than warping into a full image.
If you don’t need a non-linear mask, consider warp_to_shape instead.

	Parameters:	
	template_mask (BooleanImage) – Defines the shape of the result, and what pixels should be
sampled.

	transform (Transform) – Transform from the template space back to this image.
Defines, for each pixel location on the template, which pixel
location should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	mode ({constant, nearest, reflect or wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns:	warped_image (BooleanImage) –
A copy of this image, warped.

	
warp_to_shape(template_shape, transform, warp_landmarks=True, mode='constant', cval=0.0, order=None)[source]

	Return a copy of this BooleanImage warped into a different
reference space.

Note that the order keyword argument is in fact ignored, as any order
other than 0 makes no sense on a binary image. The keyword argument is
present only for compatibility with the Image warp_to_shape API.

	Parameters:	
	template_shape ((n_dims,) tuple or ndarray) – Defines the shape of the result, and what pixel indices should be
sampled (all of them).

	transform (Transform) – Transform from the template_shape space back to this image.
Defines, for each index on template_shape, which pixel location
should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	mode ({constant, nearest, reflect or wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns:	warped_image (BooleanImage) –
A copy of this image, warped.

	
centre

	The geometric centre of the Image - the subpixel that is in the
middle.

Useful for aligning shapes and images.

	Type:	(n_dims,) ndarray

	
diagonal

	The diagonal size of this image

	Type:	float

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
has_landmarks_outside_bounds

	Indicates whether there are landmarks located outside the image bounds.

	Type:	bool

	
height

	The height of the image.

This is the height according to image semantics, and is thus the size
of the first dimension.

	Type:	int

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
mask

	Returns the pixels of the mask with no channel axis. This is what
should be used to mask any k-dimensional image.

	Type:	(M, N, ..., L), bool ndarray

	
n_channels

	The number of channels on each pixel in the image.

	Type:	int

	
n_dims

	The number of dimensions in the image. The minimum possible n_dims
is 2.

	Type:	int

	
n_elements

	Total number of data points in the image
(prod(shape), n_channels)

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_pixels

	Total number of pixels in the image (prod(shape),)

	Type:	int

	
shape

	The shape of the image
(with n_channel values at each point).

	Type:	tuple

	
width

	The width of the image.

This is the width according to image semantics, and is thus the size
of the second dimension.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.image

MaskedImage

	
class menpo.image.MaskedImage(image_data, mask=None, copy=True)[source]

	Bases: Image

Represents an n-dimensional k-channel image, which has a mask.
Images can be masked in order to identify a region of interest. All
images implicitly have a mask that is defined as the the entire image.
The mask is an instance of BooleanImage.

	Parameters:	
	image_data ((M, N ..., Q, C) ndarray) – The pixel data for the image, where the last axis represents the
number of channels.

	mask ((M, N) bool ndarray or BooleanImage, optional) – A binary array representing the mask. Must be the same
shape as the image. Only one mask is supported for an image (so the
mask is applied to every channel equally).

	copy (bool, optional) – If False, the image_data will not be copied on assignment. If a
mask is provided, this also won’t be copied. In general this should only
be used if you know what you are doing.

	Raises:	ValueError –
Mask is not the same shape as the image

	
_view_2d(figure_id=None, new_figure=False, channels=None, masked=True, interpolation='bilinear', alpha=1.0, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))[source]

	View the image using the default image viewer. This method will appear
on the Image as view if the Image is 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	channels (int or list of int or all or None) –
If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	masked (bool, optional) –
If True, only the masked pixels will be rendered.

	interpolation (See Below, optional) –
The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options{none, nearest, bilinear, bicubic, spline16, spline36,
hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
bessel, mitchell, sinc, lanczos}

	alpha (float, optional) –
The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	Raises:	ValueError –
If Image is not 2D

	
_view_landmarks_2d(channels=None, masked=True, group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, interpolation='bilinear', alpha=1.0, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))[source]

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	masked (bool, optional) – If True, only the masked pixels will be rendered.

	group (str or``None`` optionals) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_PILImage()

	Return a PIL copy of the image. Depending on the image data type,
different operations are performed:

	dtype
	Processing

	uint8
	No processing, directly converted to PIL

	bool
	Scale by 255, convert to uint8

	float32
	Scale by 255, convert to uint8

	float64
	Scale by 255, convert to uint8

	OTHER
	Raise ValueError

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 images must be in the rage [0, 1] to be converted.

	Returns:	pil_image (PILImage) –
PIL copy of image

	Raises:	
	ValueError –
If image is not 2D and 1 channel or 3 channels.

	ValueError –
If pixels data type is not float32, float64, bool or uint8

	ValueError –
If pixels data type is float32 or float64 and the pixel
range is outside of [0, 1]

	
as_greyscale(mode='luminosity', channel=None)

	Returns a greyscale version of the image. If the image does not
represent a 2D RGB image, then the luminosity mode will fail.

	Parameters:	
	mode ({average, luminosity, channel}, optional) –

	mode
	Greyscale Algorithm

	average
	Equal average of all channels

	luminosity
	Calculates the luminance using the CCIR 601 formula:

	

	
\[Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'\]

	channel
	A specific channel is chosen as the intensity value.

	channel (int, optional) – The channel to be taken. Only used if mode is channel.

	Returns:	greyscale_image (MaskedImage) –
A copy of this image in greyscale.

	
as_histogram(keep_channels=True, bins='unique')

	Histogram binning of the values of this image.

	Parameters:	
	keep_channels (bool, optional) – If set to False, it returns a single histogram for all the
channels of the image. If set to True, it returns a list of
histograms, one for each channel.

	bins ({unique}, positive int or sequence of scalars, optional) – If set equal to 'unique', the bins of the histograms are centred
on the unique values of each channel. If set equal to a positive
int, then this is the number of bins. If set equal to a
sequence of scalars, these will be used as bins centres.

	Returns:	
	hist (ndarray or list with n_channels ndarrays inside) –
The histogram(s). If keep_channels=False, then hist is an
ndarray. If keep_channels=True, then hist is a list with
len(hist)=n_channels.

	bin_edges (ndarray or list with n_channels ndarrays inside) –
An array or a list of arrays corresponding to the above histograms
that store the bins’ edges.

	Raises:	ValueError –
Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples

Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

	
as_masked(mask=None, copy=True)

	Return a copy of this image with an attached mask behavior.

A custom mask may be provided, or None. See the MaskedImage
constructor for details of how the kwargs will be handled.

	Parameters:	
	mask ((self.shape) ndarray or BooleanImage) – A mask to attach to the newly generated masked image.

	copy (bool, optional) – If False, the produced MaskedImage will share pixels with
self. Only suggested to be used for performance.

	Returns:	masked_image (MaskedImage) –
An image with the same pixels and landmarks as this one, but with
a mask.

	
as_unmasked(copy=True)[source]

	Return a copy of this image without the masking behavior.

By default the mask is simply discarded. In the future more options
may be possible.

	Parameters:	copy (bool, optional) – If False, the produced Image will share pixels with
self. Only suggested to be used for performance.

	Returns:	image (Image) –
An image with the same pixels and landmarks as this one, but with
no mask.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
classmethod blank(shape, n_channels=1, fill=0, dtype=<Mock object at 0x7f94e4d16690>, mask=None)[source]

	Returns a blank image

	Parameters:	
	shape (tuple or list) – The shape of the image. Any floating point values are rounded up
to the nearest integer.

	n_channels (int, optional) – The number of channels to create the image with.

	fill (int, optional) – The value to fill all pixels with.

	dtype (numpy datatype, optional) – The datatype of the image.

	mask ((M, N) bool ndarray or BooleanImage) – An optional mask that can be applied to the image. Has to have a
shape equal to that of the image.

Notes

Subclasses of MaskedImage need to overwrite this method and
explicitly call this superclass method

super(SubClass, cls).blank(shape,**kwargs)

in order to appropriately propagate the subclass type to cls.

	Returns:	blank_image (MaskedImage) –
A new masked image of the requested size.

	
build_mask_around_landmarks(patch_size, group=None, label=None)[source]

	Restricts this images mask to be patches around each landmark in
the chosen landmark group. This is useful for visualizing patch
based methods.

	Parameters:	
	patch_shape (tuple) – The size of the patch. Any floating point values are rounded up
to the nearest integer.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If no
label is passed, the convex hull of all landmarks is used.

	
constrain_landmarks_to_bounds()

	Move landmarks that are located outside the image bounds on the bounds.

	
constrain_mask_to_landmarks(group=None, label=None, trilist=None)[source]

	Restricts this image’s mask to be equal to the convex hull around the
landmarks chosen. This is not a per-pixel convex hull, but is instead
estimated by a triangulation of the points that contain the convex
hull.

	Parameters:	
	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If no
label is passed, the convex hull of all landmarks is used.

	trilist ((t, 3) ndarray, optional) – Triangle list to be used on the landmarked points in selecting
the mask region. If None defaults to performing Delaunay
triangulation on the points.

	
constrain_points_to_bounds(points)

	Constrains the points provided to be within the bounds of this image.

	Parameters:	points ((d,) ndarray) – Points to be snapped to the image boundaries.

	Returns:	bounded_points ((d,) ndarray) –
Points snapped to not stray outside the image edges.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
crop(min_indices, max_indices, constrain_to_boundary=False)

	Return a cropped copy of this image using the given minimum and
maximum indices. Landmarks are correctly adjusted so they maintain
their position relative to the newly cropped image.

	Parameters:	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	cropped_image (type(self)) –
A new instance of self, but cropped.

	Raises:	
	ValueError –
min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than
min_indices.

	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_inplace(min_indices, max_indices, constrain_to_boundary=True)[source]

	Crops this image using the given minimum and maximum indices.
Landmarks are correctly adjusted so they maintain their position
relative to the newly cropped image.

	Parameters:	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	cropped_image (type(self)) –
This image, but cropped.

	Raises:	
	ValueError –
min_indices and max_indices both have to be of length
n_dims. All max_indices must be greater than
min_indices.

	map`ImageBoundaryError` –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_inplace(group=None, label=None, boundary=0, constrain_to_boundary=True)

	Crop this image to be bounded around a set of landmarks with an
optional n_pixel boundary

	Parameters:	
	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	image (Image) –
This image, cropped to its landmarks.

	Raises:	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_proportion_inplace(boundary_proportion, group=None, label=None, minimum=True, constrain_to_boundary=True)

	Crop this image to be bounded around a set of landmarks with a
border proportional to the landmark spread or range.

	Parameters:	
	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	Returns:	image (Image) –
This image, cropped to its landmarks with a border proportional to
the landmark spread or range.

	Raises:	ImageBoundaryError –
Raised if constrain_to_boundary=False, and an attempt is made
to crop the image in a way that violates the image bounds.

	
crop_to_true_mask(boundary=0, constrain_to_boundary=True)[source]

	Crop this image to be bounded just the True values of it’s mask.

	Parameters:	
	boundary (int, optional) – An extra padding to be added all around the true mask region.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image. Note that
is only possible if boundary != 0.

	Raises:	ImageBoundaryError –
Raised if 11constrain_to_boundary=False`1, and an attempt is
made to crop the image in a way that violates the image bounds.

	
extract_channels(channels)

	A copy of this image with only the specified channels.

	Parameters:	channels (int or [int]) – The channel index or list of channel indices to retain.

	Returns:	image (type(self)) –
A copy of this image with only the channels requested.

	
extract_patches(patch_centers, patch_size=(16, 16), sample_offsets=None, as_single_array=False)

	Extract a set of patches from an image. Given a set of patch centers and
a patch size, patches are extracted from within the image, centred
on the given coordinates. Sample offsets denote a set of offsets to
extract from within a patch. This is very useful if you want to extract
a dense set of features around a set of landmarks and simply sample the
same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you
need to slice the resulting list. So for 2 offsets, the first centers
offset patches would be patches[:2].

Currently only 2D images are supported.

	Parameters:	
	patch_centers (PointCloud) – The centers to extract patches around.

	patch_size (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets (PointCloud, optional) – The offsets to sample from within a patch. So (0, 0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre.

	as_single_array (bool, optional) – If True, an (n_center * n_offset, self.shape...)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of Image objects is returned
representing each patch.

	Returns:	patches (list or ndarray) –
Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises:	ValueError –
If image is not 2D

	
extract_patches_around_landmarks(group=None, label=None, patch_size=(16, 16), sample_offsets=None, as_single_array=False)

	Extract patches around landmarks existing on this image. Provided the
group label and optionally the landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.

	Parameters:	
	group (str or None optional) – The landmark group to use as patch centres.

	label (str or None optional) – The landmark label within the group to use as centres.

	patch_size (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets (PointCloud, optional) – The offsets to sample from within a patch. So (0,0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre.

	as_single_array (bool, optional) – If True, an (n_center * n_offset, self.shape...)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of Image objects is returned
representing each patch.

	Returns:	patches (list or ndarray) –
Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises:	ValueError –
If image is not 2D

	
from_vector(vector, n_channels=None)[source]

	Takes a flattened vector and returns a new image formed by reshaping
the vector to the correct pixels and channels. Note that the only
region of the image that will be filled is the masked region.

On masked images, the vector is always copied.

The n_channels argument is useful for when we want to add an extra
channel to an image but maintain the shape. For example, when
calculating the gradient.

Note that landmarks are transferred in the process.

	Parameters:	
	vector ((n_pixels,)) – A flattened vector of all pixels and channels of an image.

	n_channels (int, optional) – If given, will assume that vector is the same shape as this image,
but with a possibly different number of channels.

	Returns:	image (MaskedImage) –
New image of same shape as this image and the number of
specified channels.

	
from_vector_inplace(vector, copy=True)[source]

	Takes a flattened vector and updates this image by reshaping
the vector to the correct pixels and channels. Note that the only
region of the image that will be filled is the masked region.

	Parameters:	
	vector ((n_parameters,)) – A flattened vector of all pixels and channels of an image.

	copy (bool, optional) – If False, the vector will be set as the pixels with no copy
made.
If True a copy of the vector is taken.

	Raises:	Warning –
If copy=False cannot be honored.

	
gaussian_pyramid(n_levels=3, downscale=2, sigma=None)

	Return the gaussian pyramid of this image. The first image of the
pyramid will be the original, unmodified, image, and counts as level 1.

	Parameters:	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	sigma (float, optional) – Sigma for gaussian filter. Default is downscale / 3. which
corresponds to a filter mask twice the size of the scale factor
that covers more than 99% of the gaussian distribution.

	Yields:	image_pyramid (generator) –
Generator yielding pyramid layers as Image objects.

	
gradient(nullify_values_at_mask_boundaries=False)[source]

	Returns a MaskedImage which is the gradient of this one. In the
case of multiple channels, it returns the gradient over each axis over
each channel as a flat list.

	Parameters:	nullify_values_at_mask_boundaries (bool, optional) – If True a one pixel boundary is set to 0 around the edge of
the True mask region. This is useful in situations where
there is absent data in the image which will cause erroneous
gradient settings.

	Returns:	gradient (MaskedImage) –
The gradient over each axis over each channel. Therefore, the
gradient of a 2D, single channel image, will have length 2.
The length of a 2D, 3-channel image, will have length 6.

	
indices()[source]

	Return the indices of all true pixels in this image.

	Type:	(n_dims, n_true_pixels) ndarray

	
masked_pixels()[source]

	Get the pixels covered by the True values in the mask.

	Type:	(mask.n_true, n_channels) ndarray

	
n_false_elements()[source]

	The number of False elements of the image over all the channels.

	Type:	int

	
n_false_pixels()[source]

	The number of False values in the mask.

	Type:	int

	
n_true_elements()[source]

	The number of True elements of the image over all the channels.

	Type:	int

	
n_true_pixels()[source]

	The number of True values in the mask.

	Type:	int

	
normalize_norm_inplace(mode='all', limit_to_mask=True, **kwargs)[source]

	Normalizes this image such that it’s pixel values have zero mean and
its norm equals 1.

	Parameters:	
	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	limit_to_mask (bool, optional) – If True, the normalization is only performed wrt the masked
pixels.
If False, the normalization is wrt all pixels, regardless of
their masking value.

	
normalize_std_inplace(mode='all', limit_to_mask=True)[source]

	Normalizes this image such that it’s pixel values have zero mean and
unit variance.

	Parameters:	
	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	limit_to_mask (bool, optional) – If True, the normalization is only performed wrt the masked
pixels.
If False, the normalization is wrt all pixels, regardless of
their masking value.

	
pyramid(n_levels=3, downscale=2)

	Return a rescaled pyramid of this image. The first image of the
pyramid will be the original, unmodified, image, and counts as level 1.

	Parameters:	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	Yields:	image_pyramid (generator) –
Generator yielding pyramid layers as Image objects.

	
rescale(scale, round='ceil', order=1)

	Return a copy of this image, rescaled by a given factor.
Landmarks are rescaled appropriately.

	Parameters:	
	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	Raises:	ValueError –
If less scales than dimensions are provided.
If any scale is less than or equal to 0.

	
rescale_landmarks_to_diagonal_range(diagonal_range, group=None, label=None, round='ceil', order=1)

	Return a copy of this image, rescaled so that the diagonal_range of the
bounding box containing its landmarks matches the specified
diagonal_range range.

	Parameters:	
	diagonal_range ((n_dims,) ndarray) – The diagonal_range range that we want the landmarks of the returned
image to have.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
rescale_to_diagonal(diagonal, round='ceil')

	Return a copy of this image, rescaled so that the it’s diagonal is a
new size.

	Parameters:	
	diagonal (int) – The diagonal size of the new image.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
rescale_to_reference_shape(reference_shape, group=None, label=None, round='ceil', order=1)

	Return a copy of this image, rescaled so that the scale of a
particular group of landmarks matches the scale of the passed
reference landmarks.

	Parameters:	
	reference_shape (PointCloud) – The reference shape to which the landmarks scale will be matched
against.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	label (str, optional) – The label of of the landmark manager that you wish to use. If
None all landmarks in the group are used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	rescaled_image (type(self)) –
A copy of this image, rescaled.

	
resize(shape, order=1)

	Return a copy of this image, resized to a particular shape.
All image information (landmarks, and mask in the case of
MaskedImage) is resized appropriately.

	Parameters:	
	shape (tuple) – The new shape to resize to.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	Returns:	resized_image (type(self)) –
A copy of this image, resized.

	Raises:	ValueError –
If the number of dimensions of the new shape does not match
the number of dimensions of the image.

	
rotate_ccw_about_centre(theta, degrees=True, cval=0)

	Return a rotation of this image clockwise about its centre.

	Parameters:	
	theta (float) – The angle of rotation about the origin.

	degrees (bool, optional) – If True, theta is interpreted as a degree. If False,
theta is interpreted as radians.

	cval (float, optional) – The value to be set outside the rotated image boundaries.

	Returns:	rotated_image (type(self)) –
The rotated image.

	
set_masked_pixels(pixels, copy=True)[source]

	Update the masked pixels only to new values.

	Parameters:	
	pixels (ndarray) – The new pixels to set.

	copy (bool, optional) – If False a copy will be avoided in assignment. This can only
happen if the mask is all True - in all other cases it will
raise a warning.

	Raises:	Warning –
If the copy=False flag cannot be honored.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualizes the image object using the visualize_images widget.
Currently only supports the rendering of 2D images.

	Parameters:	
	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the images will have the form of
plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
warp_to_mask(template_mask, transform, warp_landmarks=False, order=1, mode='constant', cval=0.0)[source]

	Warps this image into a different reference space.

	Parameters:	
	template_mask (BooleanImage) – Defines the shape of the result, and what pixels should be sampled.

	transform (Transform) – Transform from the template space back to this image.
Defines, for each pixel location on the template, which pixel
location should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns:	warped_image (type(self)) –
A copy of this image, warped.

	
warp_to_shape(template_shape, transform, warp_landmarks=False, order=1, mode='constant', cval=0.0)[source]

	Return a copy of this MaskedImage warped into a different
reference space.

	Parameters:	
	template_shape (tuple or ndarray) – Defines the shape of the result, and what pixel indices should be
sampled (all of them).

	transform (Transform) – Transform from the template_shape space back to this image.
Defines, for each index on template_shape, which pixel location
should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order
	Interpolation

	0
	Nearest-neighbor

	1
	Bi-linear (default)

	2
	Bi-quadratic

	3
	Bi-cubic

	4
	Bi-quartic

	5
	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns:	warped_image (MaskedImage) –
A copy of this image, warped.

	
centre

	The geometric centre of the Image - the subpixel that is in the
middle.

Useful for aligning shapes and images.

	Type:	(n_dims,) ndarray

	
diagonal

	The diagonal size of this image

	Type:	float

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
has_landmarks_outside_bounds

	Indicates whether there are landmarks located outside the image bounds.

	Type:	bool

	
height

	The height of the image.

This is the height according to image semantics, and is thus the size
of the first dimension.

	Type:	int

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_channels

	The number of channels on each pixel in the image.

	Type:	int

	
n_dims

	The number of dimensions in the image. The minimum possible n_dims
is 2.

	Type:	int

	
n_elements

	Total number of data points in the image
(prod(shape), n_channels)

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_pixels

	Total number of pixels in the image (prod(shape),)

	Type:	int

	
shape

	The shape of the image
(with n_channel values at each point).

	Type:	tuple

	
width

	The width of the image.

This is the width according to image semantics, and is thus the size
of the second dimension.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.image

ImageBoundaryError

	
class menpo.image.ImageBoundaryError(requested_min, requested_max, snapped_min, snapped_max)[source]

	Bases: ValueError

Exception that is thrown when an attempt is made to crop an image beyond
the edge of it’s boundary.

	Parameters:	
	requested_min ((d,) ndarray) – The per-dimension minimum index requested for the crop

	requested_max ((d,) ndarray) – The per-dimension maximum index requested for the crop

	snapped_min ((d,) ndarray) – The per-dimension minimum index that could be used if the crop was
constrained to the image boundaries.

	requested_max – The per-dimension maximum index that could be used if the crop was
constrained to the image boundaries.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.feature

Features

	no_op

	gradient

	gaussian_filter

	igo

	es

	lbp

	hog

	daisy

Widget

	features_selection_widget

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

no_op

	
menpo.feature.no_op(image, *args, **kwargs)[source]

	A no operation feature - does nothing but return a copy of the pixels
passed in.

	Parameters:	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	Returns:	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) –
A copy of the image that was passed in.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

gradient

	
menpo.feature.gradient(image, *args, **kwargs)[source]

	Calculates the gradient of an input image. The image is assumed to have
channel information on the last axis. In the case of multiple channels,
it returns the gradient over each axis over each channel as the last axis.

	Parameters:	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	Returns:	gradient (ndarray, shape (X, Y, ..., Z, C * length([X, Y, ..., Z]))) –
The gradient over each axis over each channel. Therefore, the
last axis of the gradient of a 2D, single channel image, will have
length 2. The last axis of the gradient of a 2D, 3-channel image,
will have length 6, he ordering being [Rd_x, Rd_y, Gd_x, Gd_y,
Bd_x, Bd_y].

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

gaussian_filter

	
menpo.feature.gaussian_filter(image, *args, **kwargs)[source]

	Calculates the convolution of the input image with a multidimensional
Gaussian filter.

	Parameters:	
	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	sigma (float or list of float) – The standard deviation for Gaussian kernel. The standard deviations of
the Gaussian filter are given for each axis as a list, or as a single
float, in which case it is equal for all axes.

	Returns:	output_image (Image or subclass or (X, Y, ..., Z, C) ndarray) –
The filtered image has the same type and size as the input pixels.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

igo

	
menpo.feature.igo(image, *args, **kwargs)[source]

	Extracts Image Gradient Orientation (IGO) features from the input image.
The output image has N * C number of channels, where N is the
number of channels of the original image and C = 2 or C = 4
depending on whether double angles are used.

	Parameters:	
	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	double_angles (bool, optional) – Assume that phi represents the gradient orientations.

If this flag is False, the features image is the concatenation of
cos(phi) and sin(phi), thus 2 channels.

If True, the features image is the concatenation of
cos(phi), sin(phi), cos(2 * phi), sin(2 * phi), thus 4
channels.

	verbose (bool, optional) – Flag to print IGO related information.

	Returns:	igo (Image or subclass or (X, Y, ..., Z, C) ndarray) –
The IGO features image. It has the same type and shape as the input
pixels. The output number of channels depends on the
double_angles flag.

	Raises:	ValueError –
Image has to be 2D in order to extract IGOs.

References

	[1]	G. Tzimiropoulos, S. Zafeiriou and M. Pantic, “Subspace learning
from image gradient orientations”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, num. 12, p. 2454–2466, 2012.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

es

	
menpo.feature.es(image, *args, **kwargs)[source]

	Extracts Edge Structure (ES) features from the input image. The output image
has N * C number of channels, where N is the number of channels of
the original image and C = 2.

	Parameters:	
	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	verbose (bool, optional) – Flag to print ES related information.

	Returns:	es (Image or subclass or (X, Y, ..., Z, C) ndarray) –
The ES features image. It has the same type and shape as the input
pixels. The output number of channels is C = 2.

	Raises:	ValueError –
Image has to be 2D in order to extract ES features.

References

	[1]	T. Cootes, C. Taylor, “On representing edge structure for model
matching”, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2001.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

lbp

	
menpo.feature.lbp(image, *args, **kwargs)[source]

	Extracts Local Binary Pattern (LBP) features from the input image. The
output image has N * C number of channels, where N is the number of
channels of the original image and C is the number of radius/samples
values combinations that are used in the LBP computation.

	Parameters:	
	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	radius (int or list of int or None, optional) – It defines the radius of the circle (or circles) at which the sampling
points will be extracted. The radius (or radii) values must be greater
than zero. There must be a radius value for each samples value, thus
they both need to have the same length. If None, then
[1, 2, 3, 4] is used.

	samples (int or list of int or None, optional) – It defines the number of sampling points that will be extracted at each
circle. The samples value (or values) must be greater than zero. There
must be a samples value for each radius value, thus they both need to
have the same length. If None, then [8, 8, 8, 8] is used.

	mapping_type ({u2, ri, riu2, none}, optional) – It defines the mapping type of the LBP codes. Select u2 for
uniform-2 mapping, ri for rotation-invariant mapping, riu2 for
uniform-2 and rotation-invariant mapping and none to use no mapping
and only the decimal values instead.

	window_step_vertical (float, optional) – Defines the vertical step by which the window is moved, thus it controls
the features density. The metric unit is defined by window_step_unit.

	window_step_horizontal (float, optional) – Defines the horizontal step by which the window is moved, thus it
controls the features density. The metric unit is defined by
window_step_unit.

	window_step_unit ({pixels, window}, optional) – Defines the metric unit of the window_step_vertical and
window_step_horizontal parameters.

	padding (bool, optional) – If True, the output image is padded with zeros to match the input
image’s size.

	verbose (bool, optional) – Flag to print LBP related information.

	skip_checks (bool, optional) – If True, do not perform any validation of the parameters.

	Returns:	lbp (Image or subclass or (X, Y, ..., Z, C) ndarray) –
The ES features image. It has the same type and shape as the input
pixels. The output number of channels is
C = len(radius) * len(samples).

	Raises:	
	ValueError –
Radius and samples must both be either integers or lists

	ValueError –
Radius and samples must have the same length

	ValueError –
Radius must be > 0

	ValueError –
Radii must be > 0

	ValueError –
Samples must be > 0

	ValueError –
Mapping type must be u2, ri, riu2 or none

	ValueError –
Horizontal window step must be > 0

	ValueError –
Vertical window step must be > 0

	ValueError –
Window step unit must be either pixels or window

References

	[1]	T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary
patterns”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, num. 7, p. 971-987, 2002.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

hog

	
menpo.feature.hog(image, *args, **kwargs)[source]

	Extracts Histograms of Oriented Gradients (HOG) features from the input
image.

	Parameters:	
	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	mode ({dense, sparse}, optional) – The sparse case refers to the traditional usage of HOGs, so
predefined parameters values are used.

The sparse case of dalaltriggs algorithm sets
window_height = window_width = block_size and
window_step_horizontal = window_step_vertical = cell_size.

The sparse case of zhuramanan algorithm sets
window_height = window_width = 3 * cell_size and
window_step_horizontal = window_step_vertical = cell_size.

In the dense case, the user can choose values for window_height,
window_width, window_unit, window_step_vertical,
window_step_horizontal, window_step_unit and padding to customize
the HOG calculation.

	window_height (float, optional) – Defines the height of the window. The metric unit is defined by
window_unit.

	window_width (float, optional) – Defines the width of the window. The metric unit is defined by
window_unit.

	window_unit ({blocks, pixels}, optional) – Defines the metric unit of the window_height and window_width
parameters.

	window_step_vertical (float, optional) – Defines the vertical step by which the window is moved, thus it
controls the features’ density. The metric unit is defined by
window_step_unit.

	window_step_horizontal (float, optional) – Defines the horizontal step by which the window is moved, thus it
controls the features’ density. The metric unit is defined by
window_step_unit.

	window_step_unit ({pixels, cells}, optional) – Defines the metric unit of the window_step_vertical and
window_step_horizontal parameters.

	padding (bool, optional) – If True, the output image is padded with zeros to match the input
image’s size.

	algorithm ({dalaltriggs, zhuramanan}, optional) – Specifies the algorithm used to compute HOGs. dalaltriggs is the
implementation of [1] and zhuramanan is the implementation of [2].

	cell_size (float, optional) – Defines the cell size in pixels. This value is set to both the width
and height of the cell. This option is valid for both algorithms.

	block_size (float, optional) – Defines the block size in cells. This value is set to both the width
and height of the block. This option is valid only for the
dalaltriggs algorithm.

	num_bins (float, optional) – Defines the number of orientation histogram bins. This option is
valid only for the dalaltriggs algorithm.

	signed_gradient (bool, optional) – Flag that defines whether we use signed or unsigned gradient angles.
This option is valid only for the dalaltriggs algorithm.

	l2_norm_clip (float, optional) – Defines the clipping value of the gradients’ L2-norm. This option is
valid only for the dalaltriggs algorithm.

	verbose (bool, optional) – Flag to print HOG related information.

	Returns:	hog (Image or subclass or (X, Y, ..., Z, K) ndarray) –
The HOG features image. It has the same type as the input pixels.
The output number of channels in the case of dalaltriggs is
K = num_bins * block_size *block_size and K = 31 in the case of
zhuramanan.

	Raises:	
	ValueError –
HOG features mode must be either dense or sparse

	ValueError –
Algorithm must be either dalaltriggs or zhuramanan

	ValueError –
Number of orientation bins must be > 0

	ValueError –
Cell size (in pixels) must be > 0

	ValueError –
Block size (in cells) must be > 0

	ValueError –
Value for L2-norm clipping must be > 0.0

	ValueError –
Window height must be >= block size and <= image height

	ValueError –
Window width must be >= block size and <= image width

	ValueError –
Window unit must be either pixels or blocks

	ValueError –
Horizontal window step must be > 0

	ValueError –
Vertical window step must be > 0

	ValueError –
Window step unit must be either pixels or cells

References

	[1]	N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection”, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2005.

	[2]	X. Zhu, D. Ramanan. “Face detection, pose estimation and landmark
localization in the wild”, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

daisy

	
menpo.feature.daisy(image, *args, **kwargs)[source]

	Extracts Daisy features from the input image. The output image has N * C
number of channels, where N is the number of channels of the original
image and C is the feature channels determined by the input options.
Specifically, C = (rings * histograms + 1) * orientations.

	Parameters:	
	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – Either the image object itself or an array with the pixels. The last
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	step (int, optional) – The sampling step that defines the density of the output image.

	radius (int, optional) – The radius (in pixels) of the outermost ring.

	rings (int, optional) – The number of rings to be used.

	histograms (int, optional) – The number of histograms sampled per ring.

	orientations (int, optional) – The number of orientations (bins) per histogram.

	normalization ([‘l1’, ‘l2’, ‘daisy’, None], optional) – It defines how to normalize the descriptors
If ‘l1’ then L1-normalization is applied at each descriptor.
If ‘l2’ then L2-normalization is applied at each descriptor.
If ‘daisy’ then L2-normalization is applied at individual histograms.
If None then no normalization is employed.

	sigmas (list of float or None, optional) – Standard deviation of spatial Gaussian smoothing for the centre
histogram and for each ring of histograms. The list of sigmas should
be sorted from the centre and out. I.e. the first sigma value defines
the spatial smoothing of the centre histogram and the last sigma value
defines the spatial smoothing of the outermost ring. Specifying sigmas
overrides the rings parameter by setting rings = len(sigmas) - 1.

	ring_radii (list of float or None, optional) – Radius (in pixels) for each ring. Specifying ring_radii overrides the
rings and radius parameters by setting rings = len(ring_radii)
and radius = ring_radii[-1].

If both sigmas and ring_radii are given, they must satisfy

len(ring_radii) == len(sigmas) + 1

since no radius is needed for the centre histogram.

	verbose (bool) – Flag to print Daisy related information.

	Returns:	daisy (Image or subclass or (X, Y, ..., Z, C) ndarray) –
The ES features image. It has the same type and shape as the input
pixels. The output number of channels is
C = (rings * histograms + 1) * orientations.

	Raises:	
	ValueError –
len(sigmas)-1 != len(ring_radii)

	ValueError –
Invalid normalization method.

References

	[1]	E. Tola, V. Lepetit and P. Fua, “Daisy: An efficient dense descriptor
applied to wide-baseline stereo”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, num. 5, p. 815-830, 2010.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.feature

features_selection_widget

	
menpo.feature.features_selection_widget(popup=True)[source]

	Widget that allows for easy selection of a features function and its
options. It also has a ‘preview’ tab for visual inspection. It returns a
list of length 1 with the selected features function closure.

	Parameters:	popup (bool, optional) – If True, the widget will appear as a popup window.

	Returns:	features_function (list of length 1) –
The function closure of the features function using functools.partial.
So the function can be called as:features_image = features_function[0](image)

Examples

The widget can be invoked as

from menpo.feature import features_selection_widget
features_fun = features_selection_widget()

And the returned function can be used as

import menpo.io as mio
image = mio.import_builtin_asset.lenna_png()
features_image = features_fun[0](image)

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.landmark

Abstract Classes

	Landmarkable

	LabellingError

Landmarks & Labeller

	LandmarkManager

	LandmarkGroup

	labeller

Face Labels

	ibug_face_49

	ibug_face_51

	ibug_face_66

	ibug_face_68

	ibug_face_68_trimesh

	ibug_face_65_closed_mouth

	imm_face

	lfpw_face

	bu3dfe_83

Eyes Labels

	ibug_open_eye

	ibug_open_eye_trimesh

	ibug_close_eye_trimesh

	ibug_close_eye_points

Hands Labels

	ibug_hand

Pose Labels

	stickmen_pose

	flic_pose

	lsp_pose

Car Labels

	streetscene_car_view_0

	streetscene_car_view_1

	streetscene_car_view_2

	streetscene_car_view_3

	streetscene_car_view_4

	streetscene_car_view_5

	streetscene_car_view_6

	streetscene_car_view_7

Tongue Labels

	ibug_tongue

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

Landmarkable

	
class menpo.landmark.Landmarkable[source]

	Bases: Copyable

Abstract interface for object that can have landmarks attached to them.
Landmarkable objects have a public dictionary of landmarks which are
managed by a LandmarkManager. This means that
different sets of landmarks can be attached to the same object.
Landmarks can be N-dimensional and are expected to be some
subclass of PointCloud. These landmarks
are wrapped inside a LandmarkGroup object that performs
useful tasks like label filtering and viewing.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The total number of dimensions.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

LabellingError

	
class menpo.landmark.LabellingError[source]

	Bases: Exception

Raised when labelling a landmark manager and the set of landmarks does not
match the expected semantic layout.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

LandmarkManager

	
class menpo.landmark.LandmarkManager[source]

	Bases: MutableMapping, Transformable

Store for LandmarkGroup instances associated with an object

Every Landmarkable instance has an instance of this class available
at the .landmarks property. It is through this class that all access
to landmarks attached to instances is handled. In general the
LandmarkManager provides a dictionary-like interface for storing
landmarks. LandmarkGroup instances are stored under string keys -
these keys are refereed to as the group name. A special case is
where there is a single unambiguous LandmarkGroup attached to a
LandmarkManager - in this case None can be used as a key to
access the sole group.

Note that all landmarks stored on a Landmarkable in it’s attached
LandmarkManager are automatically transformed and copied with their
parent object.

	
clear() None. Remove all items from D.

	

	
copy()[source]

	Generate an efficient copy of this LandmarkManager.

	Returns:	type(self) –
A copy of this object

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
items() list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() an iterator over the (key, value) items of D

	

	
iterkeys() an iterator over the keys of D

	

	
itervalues() an iterator over the values of D

	

	
keys() list of D's keys

	

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() list of D's values

	

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))[source]

	Visualizes the landmark manager object using the
visualize_landmarks widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the landmark managers will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
group_labels

	All the labels for the landmark set.

	Type:	list of str

	
has_landmarks

	Whether the object has landmarks or not

	Type:	int

	
n_dims

	The total number of dimensions.

	Type:	int

	
n_groups

	Total number of labels.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

LandmarkGroup

	
class menpo.landmark.LandmarkGroup(pointcloud, labels_to_masks, copy=True)[source]

	Bases: MutableMapping, Copyable, Viewable

An immutable object that holds a PointCloud (or a subclass) and
stores labels for each point. These labels are defined via masks on the
PointCloud. For this reason, the PointCloud is considered to
be immutable.

The labels to masks must be within an OrderedDict so that semantic
ordering can be maintained.

	Parameters:	
	pointcloud (PointCloud) – The pointcloud representing the landmarks.

	labels_to_masks (ordereddict {str -> bool ndarray}) – For each label, the mask that specifies the indices in to the
pointcloud that belong to the label.

	copy (bool, optional) – If True, a copy of the PointCloud is stored on the group.

	Raises:	
	ValueError –
If dict passed instead of OrderedDict

	ValueError –
If no set of label masks is passed.

	ValueError –
If any of the label masks differs in size to the pointcloud.

	ValueError –
If there exists any point in the pointcloud that is not covered
by a label.

	
clear() None. Remove all items from D.

	

	
copy()[source]

	Generate an efficient copy of this LandmarkGroup.

	Returns:	type(self) –
A copy of this object

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
items() list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() an iterator over the (key, value) items of D

	

	
iterkeys() an iterator over the keys of D

	

	
itervalues() an iterator over the values of D

	

	
keys() list of D's keys

	

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
tojson()[source]

	Convert this LandmarkGroup to a dictionary JSON representation.

	Returns:	json (dict) –
Dictionary conforming to the LJSON v2 specification.

	
update([E,]**F) None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() list of D's values

	

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))[source]

	Visualizes the landmark group object using the
visualize_landmarkgroups widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the landmark managers will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
with_labels(labels=None)[source]

	A new landmark group that contains only the certain labels

	Parameters:	labels (str or list of str, optional) – Labels that should be kept in the returned landmark group. If
None is passed, and if there is only one label on this group,
the label will be substituted automatically.

	Returns:	landmark_group (LandmarkGroup) –
A new landmark group with the same group label but containing only
the given label.

	
without_labels(labels)[source]

	A new landmark group that excludes certain labels
label.

	Parameters:	labels (str or list of str) – Labels that should be excluded in the returned landmark group.

	Returns:	landmark_group (LandmarkGroup) –
A new landmark group with the same group label but containing all
labels except the given label.

	
labels

	The list of labels that belong to this group.

	Type:	list of str

	
lms

	The pointcloud representing all the landmarks in the group.

	Type:	PointCloud

	
n_dims

	The dimensionality of these landmarks.

	Type:	int

	
n_labels

	Number of labels in the group.

	Type:	int

	
n_landmarks

	The total number of landmarks in the group.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

labeller

	
menpo.landmark.labeller(landmarkable, group, label_func)[source]

	Re-label an existing landmark group on a Landmarkable object with a
new label set.

	Parameters:	
	landmarkable (Landmarkable) – Landmarkable that will have it’s LandmarkManager
augmented with a new LandmarkGroup

	group (str) – The group label of the existing landmark group that should be
re-labelled. A copy of this group will be attached to it’s landmark
manager with new labels. The group label of this new group and the
labels it will have is determined by label_func

	label_func (func -> (str, LandmarkGroup)) – A labelling function taken from this module, Takes as input a
LandmarkGroup and returns a tuple of
(new group label, new LandmarkGroup with semantic labels applied).

	Returns:	landmarkable (Landmarkable) –
Augmented landmarkable (this is just for convenience,
the object will actually be modified in place)

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_face_49

	
menpo.landmark.ibug_face_49(landmark_group)[source]

	Apply the ibug’s “standard” 49 point semantic labels (based on the
original semantic labels of multiPIE but removing the annotations
corresponding to the jaw region and the 2 describing the inner mouth
corners) to the landmark group.

The group label will be ibug_face_49.

The semantic labels applied are as follows:

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_face_49

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 68 points

References

	[1]	http://www.multipie.org/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_face_51

	
menpo.landmark.ibug_face_51(landmark_group)[source]

	Apply the ibug’s “standard” 51 point semantic labels (based on the
original semantic labels of multiPIE but removing the annotations
corresponding to the jaw region) to the landmark group.

The group label will be ibug_face_51.

The semantic labels applied are as follows:

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_face_51

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 68 points

References

	[1]	http://www.multipie.org/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_face_66

	
menpo.landmark.ibug_face_66(landmark_group)[source]

	Apply the ibug’s “standard” 66 point semantic labels (based on the
original semantic labels of multiPIE but ignoring the 2 points
describing the inner mouth corners) to the landmark group.

The group label will be ibug_face_66.

The semantic labels applied are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_face_66

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 68 points

References

	[1]	http://www.multipie.org/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_face_68

	
menpo.landmark.ibug_face_68(landmark_group)[source]

	Apply the ibug’s “standard” 68 point semantic labels (based on the
original semantic labels of multiPIE) to the landmark group.

The group label will be ibug_face_68.

The semantic labels applied are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_face_68

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 68 points

References

	[1]	http://www.multipie.org/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_face_68_trimesh

	
menpo.landmark.ibug_face_68_trimesh(landmark_group)[source]

	Apply the ibug’s “standard” 68 point triangulation to the landmarks in
the given landmark group.

The group label will be ibug_face_68_trimesh.

The semantic labels applied are as follows:

	tri

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_face_68_trimesh

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 68 points

References

	[1]	http://www.multipie.org/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_face_65_closed_mouth

	
menpo.landmark.ibug_face_65_closed_mouth(landmark_group)[source]

	Apply the ibug’s “standard” 68 point semantic labels (based on the
original semantic labels of multiPIE) to the landmarks in
the given landmark group - but ignore the 3 points that are coincident for
a closed mouth. Therefore, there only 65 points are returned.

The group label will be ibug_face_65_closed_mouth.

The semantic labels applied are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_face_65_closed_mouth

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 68 points

References

	[1]	http://www.multipie.org/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

imm_face

	
menpo.landmark.imm_face(landmark_group)[source]

	Apply the 58 point semantic labels from the IMM dataset to the
landmarks in the given landmark group.

The group label will be imm_face.

The semantic labels applied are as follows:

	jaw

	left_eye

	right_eye

	left_eyebrow

	right_eyebrow

	mouth

	nose

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: imm_face

	landmark_group (LandmarkGroup) –
New landmark group

	Raises:	error (LabellingError) –
If the given landmark group contains less than 58 points

References

	[1]	http://www2.imm.dtu.dk/~aam/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

lfpw_face

	
menpo.landmark.lfpw_face(landmark_group)[source]

	Apply the 29 point semantic labels from the LFPW dataset to the
landmarks in the given landmark group.

The group label will be lfpw_face.

The semantic labels applied are as follows:

	chin

	left_eye

	right_eye

	left_eyebrow

	right_eyebrow

	mouth

	nose

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: lfpw_face

	landmark_group (LandmarkGroup) –
New landmark group

	Raises:	error (LabellingError) –
If the given landmark group contains less than 29 points

References

	[1]	http://homes.cs.washington.edu/~neeraj/databases/lfpw/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

bu3dfe_83

	
menpo.landmark.bu3dfe_83(landmark_group)[source]

	Apply the BU-3DFE (Binghamton University 3D Facial Expression)
Database 83 point facial annotation markup to this landmark group.

The group label will be bu3dfe_83.

The semantic labels applied are as follows:

	right_eye

	left_eye

	right_eyebrow

	left_eyebrow

	right_nose

	left_nose

	nostrils

	outer_mouth

	inner_mouth

	jaw

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: bu3dfe_83

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	class:menpo.landmark.exceptions.LabellingError –
If the given landmark group contains less than 83 points

References

	[1]	http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_open_eye

	
menpo.landmark.ibug_open_eye(landmark_group)[source]

	Apply the ibug’s “standard” open eye semantic labels to the
landmarks in the given landmark group.

The group label will be ibug_open_eye.

The semantic labels applied are as follows:

	upper_eyelid

	lower_eyelid

	iris

	pupil

	sclera

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_open_eye

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 38 points

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_open_eye_trimesh

	
menpo.landmark.ibug_open_eye_trimesh(landmark_group)[source]

	Apply the ibug’s “standard” open eye semantic labels to the
landmarks in the given landmark group.

The group label will be ibug_open_eye_trimesh.

The semantic labels applied are as follows:

	tri

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_open_eye_trimesh

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 38 points

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_close_eye_trimesh

	
menpo.landmark.ibug_close_eye_trimesh(landmark_group)[source]

	Apply the ibug’s “standard” close eye semantic labels to the
landmarks in the given landmark group.

The group label will be ibug_close_eye_trimesh.

The semantic labels applied are as follows:

	tri

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_close_eye_trimesh

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 38 points

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_close_eye_points

	
menpo.landmark.ibug_close_eye_points(landmark_group)[source]

	Apply the ibug’s “standard” close eye semantic labels to the
landmarks in the given landmark group.

The group label will be ibug_close_eye.

The semantic labels applied are as follows:

	upper_eyelid

	lower_eyelid

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_close_eye

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 17 points

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_hand

	
menpo.landmark.ibug_hand(landmark_group)[source]

	Apply the ibug’s “standard” 39 point semantic labels to the landmark group.

The group label will be ibug_hand.

The semantic labels applied are as follows:

	thumb

	index

	middle

	ring

	pinky

	palm

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_hand

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 39 points

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

stickmen_pose

	
menpo.landmark.stickmen_pose(landmark_group)[source]

	Apply the stickmen “standard” 12 point semantic labels to the landmark
group.

The group label will be stickmen_pose.

The semantic labels applied are as follows:

	torso

	right_upper_arm

	left_upper_arm

	right_lower_arm

	left_lower_arm

	head

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: stickmen_pose

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 12 points

References

	[1]	http://www.robots.ox.ac.uk/~vgg/data/stickmen/

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

flic_pose

	
menpo.landmark.flic_pose(landmark_group)[source]

	Apply the flic “standard” 11 point semantic labels to the landmark
group.

The group label will be flic_pose.

The semantic labels applied are as follows:

	left_arm

	right_arm

	hips

	face

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: flic_pose

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 11 points

References

	[1]	http://vision.grasp.upenn.edu/cgi-bin/index.php?n=VideoLearning.FLIC

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

lsp_pose

	
menpo.landmark.lsp_pose(landmark_group)[source]

	Apply the lsp “standard” 14 point semantic labels to the landmark
group.

The group label will be lsp_pose.

The semantic labels applied are as follows:

	left_leg

	right_leg

	left_arm

	right_arm

	head

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: lsp_pose

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 14 points

References

	[1]	http://www.comp.leeds.ac.uk/mat4saj/lsp.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_0

	
menpo.landmark.streetscene_car_view_0(landmark_group)[source]

	Apply the 8 point semantic labels of the view 0 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_0.

The semantic labels applied are as follows:

	front

	bonnet

	windshield

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: streetscene_car_view_0

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_1

	
menpo.landmark.streetscene_car_view_1(landmark_group)[source]

	Apply the 14 point semantic labels of the view 1 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_1.

The semantic labels applied are as follows:

	front

	bonnet

	windshield

	left_side

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: streetscene_car_view_1

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_2

	
menpo.landmark.streetscene_car_view_2(landmark_group)[source]

	Apply the 10 point semantic labels of the view 2 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_2.

The semantic labels applied are as follows:

	left_side

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ‘streetscene_car_view_2’

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_3

	
menpo.landmark.streetscene_car_view_3(landmark_group)[source]

	Apply the 14 point semantic labels of the view 3 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_2.

The semantic labels applied are as follows:

	left_side

	rear windshield

	trunk

	rear

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: streetscene_car_view_3

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_4

	
menpo.landmark.streetscene_car_view_4(landmark_group)[source]

	Apply the 14 point semantic labels of the view 4 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_4.

The semantic labels applied are as follows:

	front

	bonnet

	windshield

	right_side

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ‘streetscene_car_view_4’

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_5

	
menpo.landmark.streetscene_car_view_5(landmark_group)[source]

	Apply the 10 point semantic labels of the view 5 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_5.

The semantic labels applied are as follows:

	right_side

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: streetscene_car_view_5

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_6

	
menpo.landmark.streetscene_car_view_6(landmark_group)[source]

	Apply the 14 point semantic labels of the view 6 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_6.

The semantic labels applied are as follows:

	right_side

	rear_windshield

	trunk

	rear

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: streetscene_car_view_3

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

streetscene_car_view_7

	
menpo.landmark.streetscene_car_view_7(landmark_group)[source]

	Apply the 8 point semantic labels of the view 0 of the MIT Street Scene
Car dataset to the landmark group.

The group label will be streetscene_car_view_7.

The semantic labels applied are as follows:

	rear_windshield

	trunk

	rear

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: streetscene_car_view_7

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 20 points

References

	[1]	http://www.cs.cmu.edu/~vboddeti/alignment.html

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.landmark

ibug_tongue

	
menpo.landmark.ibug_tongue(landmark_group)[source]

	Apply the ibug’s “standard” tongue semantic labels to the landmarks in the
given landmark group.

The group label will be ibug_tongue.

The semantic labels applied are as follows:

	outline

	bisector

	Parameters:	landmark_group (LandmarkGroup) – The landmark group to apply semantic labels to.

	Returns:	
	group (str) –
The group label: ibug_tongue

	landmark_group (LandmarkGroup) –
New landmark group.

	Raises:	error (LabellingError) –
If the given landmark group contains less than 19 points

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.math

Decomposition

	eigenvalue_decomposition

	principal_component_decomposition

Linear Algebra

	dot_inplace_right

	dot_inplace_left

Convolution

	log_gabor

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.math

eigenvalue_decomposition

	
menpo.math.eigenvalue_decomposition(S, eps=1e-10)[source]

	Eigenvalue decomposition of a given covariance (or scatter) matrix.

	Parameters:	
	S ((N, N) ndarray) – Covariance/Scatter matrix

	eps (float, optional) – Small value to be used for the tolerance limit computation. The final
limit is computed as

limit = np.max(np.abs(eigenvalues)) * eps

	Returns:	
	pos_eigenvectors ((N, p) ndarray) –
The matrix with the eigenvectors corresponding to positive eigenvalues.

	pos_eigenvalues ((p,) ndarray) –
The array of positive eigenvalues.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.math

principal_component_decomposition

	
menpo.math.principal_component_decomposition(X, whiten=False, centre=True, bias=False, inplace=False)[source]

	Apply Principal Component Analysis (PCA) on the data matrix X. In the case
where the data matrix is very large, it is advisable to set
inplace = True. However, note this destructively edits the data matrix
by subtracting the mean inplace.

	Parameters:	
	X ((n_samples, n_features) ndarray) – Training data.

	whiten (bool, optional) – Normalise the eigenvectors to have unit magnitude.

	centre (bool, optional) – Whether to centre the data matrix. If False, zero will be
subtracted.

	bias (bool, optional) – Whether to use a biased estimate of the number of samples. If False,
subtracts 1 from the number of samples.

	inplace (bool, optional) – Whether to do the mean subtracting inplace or not. This is crucial if
the data matrix is greater than half the available memory size.

	Returns:	
	eigenvectors ((n_components, n_features) ndarray) –
The eigenvectors of the data matrix.

	eigenvalues ((n_components,) ndarray) –
The positive eigenvalues from the data matrix.

	mean_vector ((n_components,) ndarray) –
The mean that was subtracted from the dataset.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.math

dot_inplace_right

	
menpo.math.dot_inplace_right(a, b, block_size=1000)[source]

	Inplace dot product for memory efficiency. It computes a * b = c where
b will be replaced inplace with c.

	Parameters:	
	a ((n_small, k) ndarray, n_small <= k) – The first array to dot - assumed to be small. n_small must be
smaller than k so the result can be stored within the memory space
of b.

	b ((k, n_big) ndarray) – Second array to dot - assumed to be large. Will be damaged by this
function call as it is used to store the output inplace.

	block_size (int, optional) – The size of the block of b that a will be dotted against
in each iteration. larger block sizes increase the time performance of
the dot product at the cost of a higher memory overhead for the
operation.

	Returns:	c ((n_small, n_big) ndarray) –
The output of the operation. Exactly the same as a memory view onto
b (b[:n_small]) as b is modified inplace to store the
result.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.math

dot_inplace_left

	
menpo.math.dot_inplace_left(a, b, block_size=1000)[source]

	Inplace dot product for memory efficiency. It computes a * b = c, where
a will be replaced inplace with c.

	Parameters:	
	a ((n_big, k) ndarray) – First array to dot - assumed to be large. Will be damaged by this
function call as it is used to store the output inplace.

	b ((k, n_small) ndarray, n_small <= k) – The second array to dot - assumed to be small. n_small must be
smaller than k so the result can be stored within the memory space
of a.

	block_size (int, optional) – The size of the block of a that will be dotted against b in
each iteration. larger block sizes increase the time performance of the
dot product at the cost of a higher memory overhead for the operation.

	Returns:	c ((n_big, n_small) ndarray) –
The output of the operation. Exactly the same as a memory view onto
a (a[:, :n_small]) as a is modified inplace to store the
result.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.math

log_gabor

	
menpo.math.log_gabor(image, **kwargs)[source]

	Creates a log-gabor filter bank, including smoothing the images via a
low-pass filter at the edges.

To create a 2D filter bank, simply specify the number of phi
orientations (orientations in the xy-plane).

To create a 3D filter bank, you must specify both the number of
phi (azimuth) and theta (elevation) orientations.

This algorithm is directly derived from work by Peter Kovesi.

	Parameters:	
	image ((M, N, ...) ndarray) – Image to be convolved

	num_scales (int, optional) – Number of wavelet scales.

	Default 2D
	4

	Default 3D
	4

	num_phi_orientations (int, optional) – Number of filter orientations in the xy-plane

	Default 2D
	6

	Default 3D
	6

	num_theta_orientations (int, optional) – Only required for 3D. Number of filter orientations in the z-plane

	Default 2D
	N/A

	Default 3D
	4

	min_wavelength (int, optional) – Wavelength of smallest scale filter.

	Default 2D
	3

	Default 3D
	3

	scaling_constant (int, optional) – Scaling factor between successive filters.

	Default 2D
	2

	Default 3D
	2

	center_sigma (float, optional) – Ratio of the standard deviation of the Gaussian describing the Log
Gabor filter’s transfer function in the frequency domain to the filter
centre frequency.

	Default 2D
	0.65

	Default 3D
	0.65

	d_phi_sigma (float, optional) – Angular bandwidth in xy-plane

	Default 2D
	1.3

	Default 3D
	1.5

	d_theta_sigma (float, optional) – Only required for 3D. Angular bandwidth in z-plane

	Default 2D
	N/A

	Default 3D
	1.5

	Returns:	
	complex_conv ((num_scales, num_orientations, image.shape) ndarray) –
Complex valued convolution results. The real part is the
result of convolving with the even symmetric filter, the
imaginary part is the result from convolution with the
odd symmetric filter.

	bandpass ((num_scales, image.shape) ndarray) –
Bandpass images corresponding to each scale s

	S ((image.shape,) ndarray) –
Convolved image

Examples

Return the magnitude of the convolution over the image at
scale s and orientation o

np.abs(complex_conv[s, o, :, :])

Return the phase angles

np.angle(complex_conv[s, o, :, :])

References

	[1]	D. J. Field, “Relations Between the Statistics of Natural Images
and the Response Properties of Cortical Cells”,
Journal of The Optical Society of America A, Vol 4, No. 12,
December 1987. pp 2379-2394

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.model

	LinearModel

	InstanceLinearModel

	MeanLinearModel

	MeanInstanceLinearModel

	PCAModel

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.model

LinearModel

	
class menpo.model.LinearModel(components)[source]

	Bases: Copyable

A Linear Model contains a matrix of vector components, each component
vector being made up of features.

	Parameters:	components ((n_components, n_features) ndarray) – The components array.

	
component_vector(index)[source]

	A particular component of the model, in vectorized form.

	Parameters:	index (int) – The component that is to be returned.

	Returns:	component_vector ((n_features,) ndarray) –
The component vector.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
instance_vector(weights)[source]

	Creates a new vector instance of the model by weighting together the
components.

	Parameters:	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns:	vector ((n_features,) ndarray) –
The instance vector for the weighting provided.

	
instance_vectors(weights)[source]

	Creates new vectorized instances of the model using all the components
of the linear model.

	Parameters:	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for all components of the linear model. All
components will be used to produce the instance.

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced.

	Raises:	ValueError –
If n_weights > n_available_components

	Returns:	vectors ((n_vectors, n_features) ndarray) –
The instance vectors for the weighting provided.

	
orthonormalize_against_inplace(linear_model)[source]

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Both models keep its number of components unchanged or else a value
error is raised.

	Parameters:	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	Raises:	ValueError –
The number of features must be greater or equal than the sum of the
number of components in both linear models ({} < {})

	
orthonormalize_inplace()[source]

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
project_out_vector(vector)[source]

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters:	vector ((n_features,) ndarray) – A novel vector.

	Returns:	projected_out ((n_features,) ndarray) –
A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)[source]

	Returns a version of vectors where all the basis of the model have
been projected out.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns:	projected_out ((n_vectors, n_features) ndarray) –
A copy of vectors with all basis of the model projected out.

	
project_vector(vector)[source]

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns:	weights ((n_components,) ndarray) –
A vector of optimal linear weights.

	
project_vectors(vectors)[source]

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters:	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns:	weights ((n_samples, n_components) ndarray) –
The matrix of optimal linear weights.

	
reconstruct_vector(vector)[source]

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns:	reconstructed ((n_features,) ndarray) –
The reconstructed vector.

	
reconstruct_vectors(vectors)[source]

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns:	reconstructed ((n_vectors, n_features) ndarray) –
The reconstructed vectors.

	
components

	The components matrix of the linear model.

	Type:	(n_available_components, n_features) ndarray

	
n_components

	The number of bases of the model.

	Type:	int

	
n_features

	The number of elements in each linear component.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.model

InstanceLinearModel

	
class menpo.model.InstanceLinearModel(components)[source]

	Bases: LinearModel, InstanceBackedModel

Mixin of LinearModel and InstanceBackedModel objects.

	Parameters:	
	components ((n_components, n_features) ndarray) – The components array.

	template_instance (Vectorizable) – The template instance.

	
component(index)

	A particular component of the model, in vectorized form.

	Parameters:	index (int) – The component that is to be returned.

	Returns:	component_vector (type(self.template_instance)) –
The component vector.

	
component_vector(index)

	A particular component of the model, in vectorized form.

	Parameters:	index (int) – The component that is to be returned.

	Returns:	component_vector ((n_features,) ndarray) –
The component vector.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
instance(weights)

	Creates a new instance of the model using the first len(weights)
components.

	Parameters:	weights ((n_weights,) ndarray or list) – weights[i] is the linear contribution of the i’th component
to the instance vector.

	Raises:	ValueError –
If n_weights > n_components

	Returns:	instance (type(self.template_instance)) –
An instance of the model.

	
instance_vector(weights)

	Creates a new vector instance of the model by weighting together the
components.

	Parameters:	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns:	vector ((n_features,) ndarray) –
The instance vector for the weighting provided.

	
instance_vectors(weights)

	Creates new vectorized instances of the model using all the components
of the linear model.

	Parameters:	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for all components of the linear model. All
components will be used to produce the instance.

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced.

	Raises:	ValueError –
If n_weights > n_available_components

	Returns:	vectors ((n_vectors, n_features) ndarray) –
The instance vectors for the weighting provided.

	
orthonormalize_against_inplace(linear_model)

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Both models keep its number of components unchanged or else a value
error is raised.

	Parameters:	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	Raises:	ValueError –
The number of features must be greater or equal than the sum of the
number of components in both linear models ({} < {})

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
project(instance)

	Projects the instance onto the model, retrieving the optimal
linear weightings.

	Parameters:	novel_instance (Vectorizable) – A novel instance.

	Returns:	projected ((n_components,) ndarray) –
A vector of optimal linear weightings.

	
project_out(instance)

	Returns a version of instance where all the basis of the model
have been projected out.

	Parameters:	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns:	projected_out (self.instance_class) –
A copy of instance, with all basis of the model projected out.

	
project_out_vector(vector)

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters:	vector ((n_features,) ndarray) – A novel vector.

	Returns:	projected_out ((n_features,) ndarray) –
A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)

	Returns a version of vectors where all the basis of the model have
been projected out.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns:	projected_out ((n_vectors, n_features) ndarray) –
A copy of vectors with all basis of the model projected out.

	
project_vector(vector)

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns:	weights ((n_components,) ndarray) –
A vector of optimal linear weights.

	
project_vectors(vectors)

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters:	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns:	weights ((n_samples, n_components) ndarray) –
The matrix of optimal linear weights.

	
reconstruct(instance)

	Projects a instance onto the linear space and rebuilds from the
weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.

	Parameters:	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns:	reconstructed (self.instance_class) –
The reconstructed object.

	
reconstruct_vector(vector)

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns:	reconstructed ((n_features,) ndarray) –
The reconstructed vector.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns:	reconstructed ((n_vectors, n_features) ndarray) –
The reconstructed vectors.

	
components

	The components matrix of the linear model.

	Type:	(n_available_components, n_features) ndarray

	
n_components

	The number of bases of the model.

	Type:	int

	
n_features

	The number of elements in each linear component.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.model

MeanLinearModel

	
class menpo.model.MeanLinearModel(components, mean_vector)[source]

	Bases: LinearModel

A Linear Model containing a matrix of vector components, each component
vector being made up of features. The model additionally has a mean
component which is handled accordingly when either:

	A component of the model is selected

	A projection operation is performed

	Parameters:	
	components ((n_components, n_features) ndarray) – The components array.

	mean_vector ((n_features,) ndarray) – The mean vector.

	
component_vector(index, with_mean=True, scale=1.0)[source]

	A particular component of the model, in vectorized form.

	Parameters:	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be directly applied to the component.
Only valid in the case where with_mean == True.

	Returns:	component_vector ((n_features,) ndarray) –
The component vector.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
instance_vector(weights)

	Creates a new vector instance of the model by weighting together the
components.

	Parameters:	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns:	vector ((n_features,) ndarray) –
The instance vector for the weighting provided.

	
instance_vectors(weights)

	Creates new vectorized instances of the model using all the components
of the linear model.

	Parameters:	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for all components of the linear model. All
components will be used to produce the instance.

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced.

	Raises:	ValueError –
If n_weights > n_available_components

	Returns:	vectors ((n_vectors, n_features) ndarray) –
The instance vectors for the weighting provided.

	
orthonormalize_against_inplace(linear_model)

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Both models keep its number of components unchanged or else a value
error is raised.

	Parameters:	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	Raises:	ValueError –
The number of features must be greater or equal than the sum of the
number of components in both linear models ({} < {})

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
project_out_vector(vector)

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters:	vector ((n_features,) ndarray) – A novel vector.

	Returns:	projected_out ((n_features,) ndarray) –
A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)

	Returns a version of vectors where all the basis of the model have
been projected out.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns:	projected_out ((n_vectors, n_features) ndarray) –
A copy of vectors with all basis of the model projected out.

	
project_vector(vector)

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns:	weights ((n_components,) ndarray) –
A vector of optimal linear weights.

	
project_vectors(vectors)[source]

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters:	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns:	projected ((n_samples, n_components) ndarray) –
The matrix of optimal linear weights.

	
reconstruct_vector(vector)

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns:	reconstructed ((n_features,) ndarray) –
The reconstructed vector.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns:	reconstructed ((n_vectors, n_features) ndarray) –
The reconstructed vectors.

	
components

	The components matrix of the linear model.

	Type:	(n_available_components, n_features) ndarray

	
n_components

	The number of bases of the model.

	Type:	int

	
n_features

	The number of elements in each linear component.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.model

MeanInstanceLinearModel

	
class menpo.model.MeanInstanceLinearModel(components, mean_vector, template_instance)[source]

	Bases: MeanLinearModel, InstanceBackedModel

Mixin of MeanLinearModel and InstanceBackedModel objects.

	Parameters:	
	components ((n_components, n_features) ndarray) – The components array.

	mean_vector ((n_features,) ndarray) – The mean vector.

	template_instance (Vectorizable) – The template instance.

	
component(index, with_mean=True, scale=1.0)[source]

	Return a particular component of the linear model.

	Parameters:	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be applied to the component. Only
valid in the case where with_mean == True. See
component_vector() for how this scale factor is interpreted.

	Returns:	component (type(self.template_instance)) –
The requested component.

	
component_vector(index, with_mean=True, scale=1.0)

	A particular component of the model, in vectorized form.

	Parameters:	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be directly applied to the component.
Only valid in the case where with_mean == True.

	Returns:	component_vector ((n_features,) ndarray) –
The component vector.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
instance(weights)

	Creates a new instance of the model using the first len(weights)
components.

	Parameters:	weights ((n_weights,) ndarray or list) – weights[i] is the linear contribution of the i’th component
to the instance vector.

	Raises:	ValueError –
If n_weights > n_components

	Returns:	instance (type(self.template_instance)) –
An instance of the model.

	
instance_vector(weights)

	Creates a new vector instance of the model by weighting together the
components.

	Parameters:	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns:	vector ((n_features,) ndarray) –
The instance vector for the weighting provided.

	
instance_vectors(weights)

	Creates new vectorized instances of the model using all the components
of the linear model.

	Parameters:	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for all components of the linear model. All
components will be used to produce the instance.

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced.

	Raises:	ValueError –
If n_weights > n_available_components

	Returns:	vectors ((n_vectors, n_features) ndarray) –
The instance vectors for the weighting provided.

	
mean()[source]

	Return the mean of the model.

	Type:	Vectorizable

	
orthonormalize_against_inplace(linear_model)

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Both models keep its number of components unchanged or else a value
error is raised.

	Parameters:	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	Raises:	ValueError –
The number of features must be greater or equal than the sum of the
number of components in both linear models ({} < {})

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
project(instance)

	Projects the instance onto the model, retrieving the optimal
linear weightings.

	Parameters:	novel_instance (Vectorizable) – A novel instance.

	Returns:	projected ((n_components,) ndarray) –
A vector of optimal linear weightings.

	
project_out(instance)

	Returns a version of instance where all the basis of the model
have been projected out.

	Parameters:	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns:	projected_out (self.instance_class) –
A copy of instance, with all basis of the model projected out.

	
project_out_vector(vector)

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters:	vector ((n_features,) ndarray) – A novel vector.

	Returns:	projected_out ((n_features,) ndarray) –
A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)

	Returns a version of vectors where all the basis of the model have
been projected out.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns:	projected_out ((n_vectors, n_features) ndarray) –
A copy of vectors with all basis of the model projected out.

	
project_vector(vector)

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns:	weights ((n_components,) ndarray) –
A vector of optimal linear weights.

	
project_vectors(vectors)

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters:	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns:	projected ((n_samples, n_components) ndarray) –
The matrix of optimal linear weights.

	
reconstruct(instance)

	Projects a instance onto the linear space and rebuilds from the
weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.

	Parameters:	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns:	reconstructed (self.instance_class) –
The reconstructed object.

	
reconstruct_vector(vector)

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns:	reconstructed ((n_features,) ndarray) –
The reconstructed vector.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns:	reconstructed ((n_vectors, n_features) ndarray) –
The reconstructed vectors.

	
components

	The components matrix of the linear model.

	Type:	(n_available_components, n_features) ndarray

	
n_components

	The number of bases of the model.

	Type:	int

	
n_features

	The number of elements in each linear component.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.model

PCAModel

	
class menpo.model.PCAModel(samples, centre=True, bias=False, verbose=False, n_samples=None)[source]

	Bases: MeanInstanceLinearModel

A MeanInstanceLinearModel where components are Principal
Components.

Principal Component Analysis (PCA) by eigenvalue decomposition of the
data’s scatter matrix. For details of the implementation of PCA, see
principal_component_decomposition.

	Parameters:	
	samples (list of Vectorizable) – List of samples to build the model from.

	centre (bool, optional) – When True (default) PCA is performed after mean centering the data.
If False the data is assumed to be centred, and the mean will be
0.

	bias (bool, optional) – When True a biased estimator of the covariance matrix is used.
See notes.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a list (so we
know how large the data matrix needs to be).

Notes

True bias means that we calculate the covariance as
\(\frac{1}{N} \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T\) instead of
default \(\frac{1}{N-1} \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T\).

	
component(index, with_mean=True, scale=1.0)

	Return a particular component of the linear model.

	Parameters:	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be applied to the component. Only
valid in the case where with_mean == True. See
component_vector() for how this scale factor is interpreted.

	Returns:	component (type(self.template_instance)) –
The requested component.

	
component_vector(index, with_mean=True, scale=1.0)[source]

	A particular component of the model, in vectorized form.

	Parameters:	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be applied to the component. Only
valid in the case where with_mean is True. The scale is applied
in units of standard deviations (so a scale of 1.0
with_mean visualizes the mean plus 1 std. dev of the component
in question).

	Returns:	component_vector ((n_features,) ndarray) –
The component vector of the given index.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to_subspace(instance)[source]

	Returns a version of instance where all the basis of the model
have been projected out and which has been scaled by the inverse of
the noise_variance

	Parameters:	instance (Vectorizable) – A novel instance.

	Returns:	scaled_projected_out (self.instance_class) –
A copy of instance, with all basis of the model projected out
and scaled by the inverse of the noise_variance.

	
distance_to_subspace_vector(vector_instance)[source]

	Returns a version of instance where all the basis of the model
have been projected out and which has been scaled by the inverse of
the noise_variance.

	Parameters:	vector_instance ((n_features,) ndarray) – A novel vector.

	Returns:	scaled_projected_out ((n_features,) ndarray) –
A copy of vector_instance with all basis of the model projected
out and scaled by the inverse of the noise_variance.

	
eigenvalues_cumulative_ratio()[source]

	Returns the cumulative ratio between the variance captured by the
active components and the total amount of variance present on the
original samples.

	Returns:	eigenvalues_cumulative_ratio ((n_active_components,) ndarray) –
Array of cumulative eigenvalues.

	
eigenvalues_ratio()[source]

	Returns the ratio between the variance captured by each active
component and the total amount of variance present on the original
samples.

	Returns:	eigenvalues_ratio ((n_active_components,) ndarray) –
The active eigenvalues array scaled by the original variance.

	
instance(weights)

	Creates a new instance of the model using the first len(weights)
components.

	Parameters:	weights ((n_weights,) ndarray or list) – weights[i] is the linear contribution of the i’th component
to the instance vector.

	Raises:	ValueError –
If n_weights > n_components

	Returns:	instance (type(self.template_instance)) –
An instance of the model.

	
instance_vector(weights)

	Creates a new vector instance of the model by weighting together the
components.

	Parameters:	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns:	vector ((n_features,) ndarray) –
The instance vector for the weighting provided.

	
instance_vectors(weights)[source]

	Creates new vectorized instances of the model using the first
components in a particular weighting.

	Parameters:	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for the first n_weights components that
should be used per instance that is to be produced

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced. Note
that if n_weights < n_components, only the first n_weight
components are used in the reconstruction (i.e. unspecified
weights are implicitly 0).

	Returns:	vectors ((n_vectors, n_features) ndarray) –
The instance vectors for the weighting provided.

	Raises:	ValueError –
If n_weights > n_components

	
inverse_noise_variance()[source]

	Returns the inverse of the noise variance.

	Returns:	inverse_noise_variance (float) –
Inverse of the noise variance.

	Raises:	ValueError –
If noise_variance() == 0

	
mean()

	Return the mean of the model.

	Type:	Vectorizable

	
noise_variance()[source]

	Returns the average variance captured by the inactive components,
i.e. the sample noise assumed in a Probabilistic PCA formulation.

If all components are active, then noise_variance == 0.0.

	Returns:	noise_variance (float) –
The mean variance of the inactive components.

	
noise_variance_ratio()[source]

	Returns the ratio between the noise variance and the total amount of
variance present on the original samples.

	Returns:	noise_variance_ratio (float) –
The ratio between the noise variance and the variance present
in the original samples.

	
original_variance()[source]

	Returns the total amount of variance captured by the original model,
i.e. the amount of variance present on the original samples.

	Returns:	optional_variance (float) –
The variance captured by the model.

	
orthonormalize_against_inplace(linear_model)[source]

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Note that the model passed in is guaranteed to not have it’s number
of available components changed. This model, however, may loose some
dimensionality due to reaching a degenerate state.

The removed components will always be trimmed from the end of
components (i.e. the components which capture the least variance).
If trimming is performed, n_components and n_available_components
would be altered - see trim_components() for details.

	Parameters:	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
plot_eigenvalues(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)[source]

	Plot of the eigenvalues.

	Parameters:	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns:	viewer (MatplotlibRenderer) –
The viewer object.

	
plot_eigenvalues_cumulative_ratio(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)[source]

	Plot of the variance ratio captured by the eigenvalues.

	Parameters:	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns:	viewer (MatplotlibRenderer) –
The viewer object.

	
plot_eigenvalues_ratio(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)[source]

	Plot of the variance ratio captured by the eigenvalues.

	Parameters:	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns:	viewer (MatplotlibRenderer) –
The viewer object.

	
project(instance)

	Projects the instance onto the model, retrieving the optimal
linear weightings.

	Parameters:	novel_instance (Vectorizable) – A novel instance.

	Returns:	projected ((n_components,) ndarray) –
A vector of optimal linear weightings.

	
project_out(instance)

	Returns a version of instance where all the basis of the model
have been projected out.

	Parameters:	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns:	projected_out (self.instance_class) –
A copy of instance, with all basis of the model projected out.

	
project_out_vector(vector)

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters:	vector ((n_features,) ndarray) – A novel vector.

	Returns:	projected_out ((n_features,) ndarray) –
A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)

	Returns a version of vectors where all the basis of the model have
been projected out.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns:	projected_out ((n_vectors, n_features) ndarray) –
A copy of vectors with all basis of the model projected out.

	
project_vector(vector)

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns:	weights ((n_components,) ndarray) –
A vector of optimal linear weights.

	
project_vectors(vectors)

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters:	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns:	projected ((n_samples, n_components) ndarray) –
The matrix of optimal linear weights.

	
project_whitened(instance)[source]

	Returns a sheared (non-orthogonal) reconstruction of instance.

	Parameters:	instance (Vectorizable) – A novel instance.

	Returns:	sheared_reconstruction (self.instance_class) –
A sheared (non-orthogonal) reconstruction of instance.

	
project_whitened_vector(vector_instance)[source]

	Returns a sheared (non-orthogonal) reconstruction of vector_instance.

	Parameters:	vector_instance ((n_features,) ndarray) – A novel vector.

	Returns:	sheared_reconstruction ((n_features,) ndarray) –
A sheared (non-orthogonal) reconstruction of vector_instance

	
reconstruct(instance)

	Projects a instance onto the linear space and rebuilds from the
weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.

	Parameters:	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns:	reconstructed (self.instance_class) –
The reconstructed object.

	
reconstruct_vector(vector)

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters:	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns:	reconstructed ((n_features,) ndarray) –
The reconstructed vector.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters:	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns:	reconstructed ((n_vectors, n_features) ndarray) –
The reconstructed vectors.

	
trim_components(n_components=None)[source]

	Permanently trims the components down to a certain amount. The number of
active components will be automatically reset to this particular value.

This will reduce self.n_components down to n_components
(if None, self.n_active_components will be used), freeing up
memory in the process.

Once the model is trimmed, the trimmed components cannot be recovered.

	Parameters:	n_components (int >= 1 or float > 0.0 or None, optional) – The number of components that are kept or else the amount (ratio)
of variance that is kept. If None, self.n_active_components is
used.

Notes

In case n_components is greater than the total number of components or
greater than the amount of variance currently kept, this method does
not perform any action.

	
variance()[source]

	Returns the total amount of variance retained by the active
components.

	Returns:	variance (float) –
Total variance captured by the active components.

	
variance_ratio()[source]

	Returns the ratio between the amount of variance retained by the
active components and the total amount of variance present on the
original samples.

	Returns:	variance_ratio (float) –
Ratio of active components variance and total variance present
in original samples.

	
whitened_components()[source]

	Returns the active components of the model whitened.

	Returns:	whitened_components ((n_active_components, n_features) ndarray) –
The whitened components.

	
components

	Returns the active components of the model.

	Type:	(n_active_components, n_features) ndarray

	
eigenvalues

	Returns the eigenvalues associated to the active components of the
model, i.e. the amount of variance captured by each active component.

	Type:	(n_active_components,) ndarray

	
n_active_components

	The number of components currently in use on this model.

	Type:	int

	
n_components

	The number of bases of the model.

	Type:	int

	
n_features

	The number of elements in each linear component.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.shape

Base Classes

	Shape

PointCloud

	PointCloud

Graphs & PointGraphs

	UndirectedGraph

	DirectedGraph

	PointGraph

	PointUndirectedGraph

	PointDirectedGraph

Trees & PointTrees

	Tree

	PointTree

Triangular Meshes

	TriMesh

	ColouredTriMesh

	TexturedTriMesh

Group Operations

	mean_pointcloud

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

Shape

	
class menpo.shape.base.Shape[source]

	Bases: Vectorizable, Transformable, Landmarkable, LandmarkableViewable, Viewable

Abstract representation of shape. Shapes are Transformable,
Vectorizable, Landmarkable, LandmarkableViewable and
Viewable. This base class handles transforming landmarks when the
shape is transformed. Therefore, implementations of Shape have to
implement the abstract _transform_self_inplace() method that handles
transforming the Shape itself.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Update the state of this object from a vector form.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The total number of dimensions.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

PointCloud

	
class menpo.shape.PointCloud(points, copy=True)[source]

	Bases: Shape

An N-dimensional point cloud. This is internally represented as an ndarray
of shape (n_points, n_dims). This class is important for dealing
with complex functionality such as viewing and representing metadata such
as landmarks.

Currently only 2D and 3D pointclouds are viewable.

	Parameters:	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	copy (bool, optional) – If False, the points will not be copied on assignment. Note that
this will miss out on additional checks. Further note that we still
demand that the array is C-contiguous - if it isn’t, a copy will be
generated anyway.
In general this should only be used if you know what you are doing.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='r', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None, **kwargs)[source]

	Visualization of the PointCloud in 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))[source]

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()[source]

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)[source]

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()[source]

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()[source]

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)[source]

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointCloud. This is then broadcast across the dimensions
of the PointCloud and returns a new PointCloud containing only those
points that were True in the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	pointcloud (PointCloud) –
A new pointcloud that has been masked.

	Raises:	ValueError –
Mask must have same number of points as pointcloud.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)[source]

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
h_points()[source]

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
norm(**kwargs)[source]

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
range(boundary=0)[source]

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
tojson()[source]

	Convert this PointCloud to a dictionary representation suitable
for inclusion in the LJSON landmark format.

	Returns:	json (dict) –
Dictionary with points keys.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))[source]

	Visualization of the PointCloud using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the PointCloud objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

UndirectedGraph

	
class menpo.shape.UndirectedGraph(adjacency_array, copy=True)[source]

	Bases: Graph

Class for Undirected Graph definition and manipulation.

	Parameters:	
	adjacency_array ((n_edges, 2,) ndarray) – The Adjacency Array of the graph, i.e. an array containing the sets of
the graph’s edges. The numbering of vertices is assumed to start from 0.
For example:

|---0---| adjacency_array = ndarray([[0, 1],
| | [0, 2],
| | [1, 2],
1-------2 [1, 3],
| | [2, 4],
| | [3, 4],
3-------4 [3, 5]])
|
5

	copy (bool, optional) – If False, the adjacency_list will not be copied on assignment.

	Raises:	
	ValueError –
You must provide at least one edge.

	ValueError –
Adjacency list must contain the sets of connected edges and thus must
have shape (n_edges, 2).

	ValueError –
The vertices must be numbered starting from 0.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
get_adjacency_matrix()[source]

	Returns the adjacency matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
has_cycles()[source]

	Whether the graph has at least on cycle.

	Returns:	has_cycles (bool) –
True if it has at least one cycle.

	
is_edge(vertex_1, vertex_2)[source]

	Returns whether there is an edge between the provided vertices.

	Parameters:	
	vertex_1 (int) – The first selected vertex.

	vertex_2 (int) – The second selected vertex.

	Returns:	is_edge (bool) –
True if there is an edge.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
minimum_spanning_tree(weights, root_vertex)[source]

	Returns the minimum spanning tree given weights to the graph’s edges
using Kruskal’s algorithm.

	Parameters:	
	weights ((n_vertices, n_vertices,) ndarray) – A matrix of the same size as the adjacency matrix that attaches a
weight to each edge of the undirected graph.

	root_vertex (int) – The vertex that will be set as root in the output MST.

	Returns:	mst (Tree) –
The computed minimum spanning tree.

	Raises:	
	ValueError –
Provided graph is not an UndirectedGraph.

	ValueError –
Asymmetric weights provided.

	
n_neighbours(vertex)[source]

	Returns the number of neighbours of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_neighbours (int) –
The number of neighbours.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
neighbours(vertex)[source]

	Returns the neighbours of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	neighbours (list) –
The list of neighbours.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

DirectedGraph

	
class menpo.shape.DirectedGraph(adjacency_array, copy=True)[source]

	Bases: Graph

Class for Directed Graph definition and manipulation.

	Parameters:	
	adjacency_array ((n_edges, 2,) ndarray) – The Adjacency Array of the graph, i.e. an array containing the sets of
the graph’s edges. The numbering of vertices is assumed to start from 0.

We assume that the vertices in the first column of the
adjacency_array are the parents and the vertices in the second
column of the adjacency_array are the children, for example:

|-->0<--| adjacency_array = ndarray([[1, 0],
| | [2, 0],
| | [1, 2],
1<----->2 [2, 1],
| | [1, 3],
v v [2, 4],
3------>4 [3, 4],
| [3, 5]])
v
5

	copy (bool, optional) – If False, the adjacency_list will not be copied on assignment.

	Raises:	
	ValueError –
You must provide at least one edge.

	ValueError –
Adjacency list must contain the sets of connected edges and thus must
have shape (n_edges, 2).

	ValueError –
The vertices must be numbered starting from 0.

	
children(vertex)[source]

	Returns the children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	children (list) –
The list of children.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
get_adjacency_matrix()[source]

	Returns the Adjacency Matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
has_cycles()[source]

	Whether the graph has at least on cycle.

	Returns:	has_cycles (bool) –
True if it has at least one cycle.

	
is_edge(parent, child)[source]

	Returns whether there is an edge between the provided vertices.

	Parameters:	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns:	is_edge (bool) –
True if there is an edge.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
n_children(vertex)[source]

	Returns the number of children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_children (int) –
The number of children.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_parent(vertex)[source]

	Returns the number of parents of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_parent (int) –
The number of parents.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
parent(vertex)[source]

	Returns the parents of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	parent (list) –
The list of parents.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

PointGraph

	
class menpo.shape.PointGraph(points, adjacency_array, copy=True)[source]

	Bases: Graph, PointCloud

Class for defining a graph with geometry.

	Parameters:	
	points (ndarray) – The array of point locations.

	adjacency_array ((n_edges, 2,) ndarray) – The adjacency array of the graph, i.e. an array containing the sets of
the graph’s edges. The numbering of vertices is assumed to start from 0.

For an undirected graph, the order of an edge’s vertices doesn’t matter,
for example

|---0---| adjacency_array = ndarray([[0, 1],
| | [0, 2],
| | [1, 2],
1-------2 [1, 3],
| | [2, 4],
| | [3, 4],
3-------4 [3, 5]])
|
5

For a directed graph, we assume that the vertices in the first column of
the adjacency_array are the fathers and the vertices in the second
column of the adjacency_array are the children, for example

|-->0<--| adjacency_array = ndarray([[1, 0],
| | [2, 0],
| | [1, 2],
1<----->2 [2, 1],
| | [1, 3],
v v [2, 4],
3------>4 [3, 4],
| [3, 5]])
v
5

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
from_mask(mask)

	A 1D boolean array with the same number of elements as the number of
points in the PointCloud. This is then broadcast across the dimensions
of the PointCloud and returns a new PointCloud containing only those
points that were True in the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	pointcloud (PointCloud) –
A new pointcloud that has been masked.

	Raises:	ValueError –
Mask must have same number of points as pointcloud.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
get_adjacency_matrix()

	Returns the adjacency matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns:	has_cycles (bool) –
If the graph has cycles.

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
tojson()[source]

	Convert this PointGraph to a dictionary representation suitable
for inclusion in the LJSON landmark format.

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))[source]

	Visualization of the PointGraph using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the PointGraph objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

PointUndirectedGraph

	
class menpo.shape.PointUndirectedGraph(points, adjacency_array, copy=True)[source]

	Bases: PointGraph, UndirectedGraph

Class for defining an Undirected Graph with geometry.

	Parameters:	
	points (ndarray) – The array of point locations.

	adjacency_array ((n_edges, 2,) ndarray) – The adjacency array of the graph, i.e. an array containing the sets of
the graph’s edges. The numbering of vertices is assumed to start from 0.
For example

|---0---| adjacency_array = ndarray([[0, 1],
| | [0, 2],
| | [1, 2],
1-------2 [1, 3],
| | [2, 4],
| | [3, 4],
3-------4 [3, 5]])
|
5

	copy (bool, optional) – If False, the adjacency_list will not be copied on assignment.

	Raises:	ValueError –
A point for each graph vertex needs to be passed. Got n_points
points instead of n_vertices.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

	Visualization of the pointgraph in 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the PointGraph will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointUndirectedGraph. This is then broadcast across the
dimensions of the PointUndirectedGraph and returns a new
PointUndirectedGraph containing only those points that were True in
the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	pointgraph (PointUndirectedGraph) –
A new pointgraph that has been masked.

	Raises:	ValueError –
Mask must have same number of points as pointgraph.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
get_adjacency_matrix()

	Returns the adjacency matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
has_cycles()

	Whether the graph has at least on cycle.

	Returns:	has_cycles (bool) –
True if it has at least one cycle.

	
is_edge(vertex_1, vertex_2)

	Returns whether there is an edge between the provided vertices.

	Parameters:	
	vertex_1 (int) – The first selected vertex.

	vertex_2 (int) – The second selected vertex.

	Returns:	is_edge (bool) –
True if there is an edge.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
minimum_spanning_tree(weights, root_vertex)

	Returns the minimum spanning tree given weights to the graph’s edges
using Kruskal’s algorithm.

	Parameters:	
	weights ((n_vertices, n_vertices,) ndarray) – A matrix of the same size as the adjacency matrix that attaches a
weight to each edge of the undirected graph.

	root_vertex (int) – The vertex that will be set as root in the output MST.

	Returns:	mst (Tree) –
The computed minimum spanning tree.

	Raises:	
	ValueError –
Provided graph is not an UndirectedGraph.

	ValueError –
Asymmetric weights provided.

	
n_neighbours(vertex)

	Returns the number of neighbours of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_neighbours (int) –
The number of neighbours.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
neighbours(vertex)

	Returns the neighbours of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	neighbours (list) –
The list of neighbours.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
tojson()

	Convert this PointGraph to a dictionary representation suitable
for inclusion in the LJSON landmark format.

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualization of the PointGraph using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the PointGraph objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

PointDirectedGraph

	
class menpo.shape.PointDirectedGraph(points, adjacency_array, copy=True)[source]

	Bases: PointGraph, DirectedGraph

Class for defining a directed graph with geometry.

	Parameters:	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	adjacency_array ((n_edges, 2,) ndarray) – The adjacency array of the graph, i.e. an array containing the sets of
the graph’s edges. The numbering of vertices is assumed to start from 0.
For example

|-->0<--| adjacency_array = ndarray([[1, 0],
| | [2, 0],
| | [1, 2],
1<----->2 [2, 1],
| | [1, 3],
v v [2, 4],
3------>4 [3, 4],
| [3, 5]])
v
5

	copy (bool, optional) – If False, the adjacency_list will not be copied on assignment.

	Raises:	ValueError –
A point for each graph vertex needs to be passed. Got {n_points} points
instead of {n_vertices}.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

	Visualization of the pointgraph in 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the PointGraph will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
children(vertex)

	Returns the children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	children (list) –
The list of children.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointDirectedGraph. This is then broadcast across the
dimensions of the PointDirectedGraph and returns a new
PointDirectedGraph containing only those points that were True in
the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	pointgraph (PointDirectedGraph) –
A new pointgraph that has been masked.

	Raises:	ValueError –
Mask must have same number of points as pointgraph.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
get_adjacency_matrix()

	Returns the Adjacency Matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
has_cycles()

	Whether the graph has at least on cycle.

	Returns:	has_cycles (bool) –
True if it has at least one cycle.

	
is_edge(parent, child)

	Returns whether there is an edge between the provided vertices.

	Parameters:	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns:	is_edge (bool) –
True if there is an edge.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
n_children(vertex)

	Returns the number of children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_children (int) –
The number of children.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_parent(vertex)

	Returns the number of parents of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_parent (int) –
The number of parents.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
parent(vertex)

	Returns the parents of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	parent (list) –
The list of parents.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
relative_location_edge(parent, child)[source]

	Returns the relative location between the provided vertices. That is
if vertex j is the parent and vertex i is its child and vector l
denotes the coordinates of a vertex, then

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Parameters:	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns:	relative_location ((2,) ndarray) –
The relative location vector.

	Raises:	ValueError –
Vertices parent and child are not connected with an edge.

	
relative_locations()[source]

	Returns the relative location between the vertices of each edge. If
vertex j is the parent and vertex i is its child and vector l denotes
the coordinates of a vertex, then:

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Returns:	relative_locations ((n_vertexes, 2) ndarray) –
The relative locations vector.

	
tojson()

	Convert this PointGraph to a dictionary representation suitable
for inclusion in the LJSON landmark format.

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualization of the PointGraph using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the PointGraph objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

Tree

	
class menpo.shape.Tree(adjacency_array, root_vertex, copy=True)[source]

	Bases: DirectedGraph

Class for Tree definitions and manipulation.

	Parameters:	
	adjacency_array ((n_edges, 2,) ndarray) – The Adjacency Array of the tree, i.e. an array containing the sets of
the tree’s edges. The numbering of vertices is assumed to start from 0.

We assume that the vertices in the first column of the
adjacency_array are the parents and the vertices in the second
column of the adjacency_array are the children, for example:

 0 adjacency_array = ndarray([[0, 1],
 | [0, 2],
 ___|___ [1, 3],
 1 2 [1, 4],
 | | [2, 5],
 | | [3, 6],
3 4 5 [4, 7],
| | | [5, 8]])
| | |
6 7 8

	root_vertex (int) – The vertex that will be considered as root.

	copy (bool, optional) – If False, the adjacency_list will not be copied on assignment.

	Raises:	
	ValueError –
The provided edges do not represent a tree.

	ValueError –
The root_vertex must be in the range [0, n_vertices - 1].

	
children(vertex)

	Returns the children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	children (list) –
The list of children.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
depth_of_vertex(vertex)[source]

	Returns the depth of the specified vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	depth (int) –
The depth of the selected vertex.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
get_adjacency_matrix()

	Returns the Adjacency Matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
has_cycles()

	Whether the graph has at least on cycle.

	Returns:	has_cycles (bool) –
True if it has at least one cycle.

	
is_edge(parent, child)

	Returns whether there is an edge between the provided vertices.

	Parameters:	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns:	is_edge (bool) –
True if there is an edge.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
is_leaf(vertex)[source]

	Returns whether the vertex is a leaf.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	is_leaf (bool) –
If True, then selected vertex is a leaf.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
n_children(vertex)

	Returns the number of children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_children (int) –
The number of children.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_parent(vertex)

	Returns the number of parents of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_parent (int) –
The number of parents.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
n_vertices_at_depth(depth)[source]

	Returns the number of vertices at the specified depth.

	Parameters:	depth (int) – The selected depth.

	Returns:	n_vertices (int) –
The number of vertices that lie in the specified depth.

	
parent(vertex)[source]

	Returns the parent of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	parent (int) –
The parent vertex.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
vertices_at_depth(depth)[source]

	Returns a list of vertices at the specified depth.

	Parameters:	depth (int) – The selected depth.

	Returns:	vertices (list) –
The vertices that lie in the specified depth.

	
leaves

	Returns a list with the all leaves of the tree.

	Type:	list

	
maximum_depth

	Returns the maximum depth of the tree.

	Type:	int

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_leaves

	Returns the number of leaves of the tree.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

PointTree

	
class menpo.shape.PointTree(points, adjacency_array, root_vertex, copy=True)[source]

	Bases: PointDirectedGraph, Tree

Class for defining a Tree with geometry.

	Parameters:	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	adjacency_array ((n_edges, 2,) ndarray) – The Adjacency Array of the tree, i.e. an array containing the sets of
the tree’s edges. The numbering of vertices is assumed to start from 0.

We assume that the vertices in the first column of the
adjacency_array are the fathers and the vertices in the second
column of the adjacency_array are the children, for example:

 0 adjacency_array = ndarray([[0, 1],
 | [0, 2],
 ___|___ [1, 3],
 1 2 [1, 4],
 | | [2, 5],
 | | [3, 6],
3 4 5 [4, 7],
| | | [5, 8]])
| | |
6 7 8

	root_vertex (int) – The root vertex of the tree.

	copy (bool, optional) – If False, the adjacency_list will not be copied on assignment.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)

	Visualization of the pointgraph in 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the PointGraph will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
children(vertex)

	Returns the children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	children (list) –
The list of children.

	Raises:	ValueError –
The vertex must be between 0 and {n_vertices-1}.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
depth_of_vertex(vertex)

	Returns the depth of the specified vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	depth (int) –
The depth of the selected vertex.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns:	paths (list of list) –
The list containing all the paths from start to end.

	
find_path(start, end, path=None)

	Returns a list with the first path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The path’s vertices.

	
find_shortest_path(start, end, path=None)

	Returns a list with the shortest path (without cycles) found from start
vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex from which the path ends.

	path (list, optional) – An existing path to append to.

	Returns:	path (list) –
The shortest path’s vertices.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointTree. This is then broadcast across the dimensions
of the PointTree and returns a new PointTree containing only those
points that were True in the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	pointtree (PointTree) –
A new pointtree that has been masked.

	Raises:	ValueError –
Mask must have same number of points as pointtree.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
get_adjacency_matrix()

	Returns the Adjacency Matrix of the graph, i.e. the boolean ndarray
that is True and False if there is an edge connecting the two
vertices or not respectively.

	Type:	(n_vertices, n_vertices,) ndarray

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
has_cycles()

	Whether the graph has at least on cycle.

	Returns:	has_cycles (bool) –
True if it has at least one cycle.

	
is_edge(parent, child)

	Returns whether there is an edge between the provided vertices.

	Parameters:	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns:	is_edge (bool) –
True if there is an edge.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
is_leaf(vertex)

	Returns whether the vertex is a leaf.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	is_leaf (bool) –
If True, then selected vertex is a leaf.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
is_tree()

	Checks if the graph is tree.

	Returns:	is_true (bool) –
If the graph is a tree.

	
n_children(vertex)

	Returns the number of children of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_children (int) –
The number of children.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_parent(vertex)

	Returns the number of parents of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	n_parent (int) –
The number of parents.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters:	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns:	paths (int) –
The paths’ numbers.

	
n_vertices_at_depth(depth)

	Returns the number of vertices at the specified depth.

	Parameters:	depth (int) – The selected depth.

	Returns:	n_vertices (int) –
The number of vertices that lie in the specified depth.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
parent(vertex)

	Returns the parent of the selected vertex.

	Parameters:	vertex (int) – The selected vertex.

	Returns:	parent (int) –
The parent vertex.

	Raises:	ValueError –
The vertex must be in the range [0, n_vertices - 1].

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
relative_location_edge(parent, child)

	Returns the relative location between the provided vertices. That is
if vertex j is the parent and vertex i is its child and vector l
denotes the coordinates of a vertex, then

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Parameters:	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns:	relative_location ((2,) ndarray) –
The relative location vector.

	Raises:	ValueError –
Vertices parent and child are not connected with an edge.

	
relative_locations()

	Returns the relative location between the vertices of each edge. If
vertex j is the parent and vertex i is its child and vector l denotes
the coordinates of a vertex, then:

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Returns:	relative_locations ((n_vertexes, 2) ndarray) –
The relative locations vector.

	
tojson()

	Convert this PointGraph to a dictionary representation suitable
for inclusion in the LJSON landmark format.

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
vertices_at_depth(depth)

	Returns a list of vertices at the specified depth.

	Parameters:	depth (int) – The selected depth.

	Returns:	vertices (list) –
The vertices that lie in the specified depth.

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualization of the PointGraph using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the PointGraph objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
leaves

	Returns a list with the all leaves of the tree.

	Type:	list

	
maximum_depth

	Returns the maximum depth of the tree.

	Type:	int

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_edges

	Returns the number of the graph edges.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_leaves

	Returns the number of leaves of the tree.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_vertices

	Returns the number of the graph vertices.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

TriMesh

	
class menpo.shape.TriMesh(points, trilist=None, copy=True)[source]

	Bases: PointCloud

A pointcloud with a connectivity defined by a triangle list. These are
designed to be explicitly 2D or 3D.

	Parameters:	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delaunay triangulation of
the points will be used instead.

	copy (bool, optional) – If False, the points will not be copied on assignment.
Any trilist will also not be copied.
In general this should only be used if you know what you are doing.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)[source]

	Visualization of the TriMesh in 2D.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the TriMesh will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_pointgraph(copy=True)[source]

	Converts the TriMesh to a PointUndirectedGraph.

	Parameters:	copy (bool, optional) – If True, the graph will be a copy.

	Returns:	pointgraph (PointUndirectedGraph) –
The point graph.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
face_normals()[source]

	Compute the face normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns:	normals ((n_tris, 3) ndarray) –
Normal at each face.

	Raises:	ValueError –
If mesh is not 3D

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the TriMesh. This is then broadcast across the dimensions
of the mesh and returns a new mesh containing only those
points that were True in the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	mesh (TriMesh) –
A new mesh that has been masked.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
tojson()[source]

	Convert this TriMesh to a dictionary representation suitable
for inclusion in the LJSON landmark format. Note that this enforces a
simpler representation, and as such is not suitable for
a permanent serialization of a TriMesh (to be clear,
TriMesh‘s serialized as part of a landmark set will be rebuilt
as a PointUndirectedGraph).

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
vertex_normals()[source]

	Compute the per-vertex normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns:	normals ((n_points, 3) ndarray) –
Normal at each point.

	Raises:	ValueError –
If mesh is not 3D

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))[source]

	Visualization of the TriMesh using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the TriMesh objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_tris

	The number of triangles in the triangle list.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

ColouredTriMesh

	
class menpo.shape.ColouredTriMesh(points, trilist=None, colours=None, copy=True)[source]

	Bases: TriMesh

Combines a TriMesh with a colour per vertex.

	Parameters:	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delaunay triangulation of
the points will be used instead.

	colours ((N, 3) ndarray, optional) – The floating point RGB colour per vertex. If not given, grey will be
assigned to each vertex.

	copy (bool, optional) – If False, the points, trilist and colours will not be copied on
assignment.
In general this should only be used if you know what you are doing.

	Raises:	ValueError –
If the number of colour values does not match the number of vertices.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)[source]

	Visualization of the TriMesh in 2D. Currently, explicit coloured TriMesh
viewing is not supported, and therefore viewing falls back to uncoloured
2D TriMesh viewing.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the ColouredTriMesh will be viewed as if it is in the
image coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	Raises:	warning –
2D Viewing of Coloured TriMeshes is not supported, automatically
falls back to 2D TriMesh viewing.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_pointgraph(copy=True)

	Converts the TriMesh to a PointUndirectedGraph.

	Parameters:	copy (bool, optional) – If True, the graph will be a copy.

	Returns:	pointgraph (PointUndirectedGraph) –
The point graph.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
face_normals()

	Compute the face normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns:	normals ((n_tris, 3) ndarray) –
Normal at each face.

	Raises:	ValueError –
If mesh is not 3D

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the ColouredTriMesh. This is then broadcast across the
dimensions of the mesh and returns a new mesh containing only those
points that were True in the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	mesh (ColouredTriMesh) –
A new mesh that has been masked.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	object (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
tojson()

	Convert this TriMesh to a dictionary representation suitable
for inclusion in the LJSON landmark format. Note that this enforces a
simpler representation, and as such is not suitable for
a permanent serialization of a TriMesh (to be clear,
TriMesh‘s serialized as part of a landmark set will be rebuilt
as a PointUndirectedGraph).

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
vertex_normals()

	Compute the per-vertex normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns:	normals ((n_points, 3) ndarray) –
Normal at each point.

	Raises:	ValueError –
If mesh is not 3D

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualization of the TriMesh using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the TriMesh objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_tris

	The number of triangles in the triangle list.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

TexturedTriMesh

	
class menpo.shape.TexturedTriMesh(points, tcoords, texture, trilist=None, copy=True)[source]

	Bases: TriMesh

Combines a TriMesh with a texture. Also encapsulates the texture
coordinates required to render the texture on the mesh.

	Parameters:	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	tcoords ((N, 2) ndarray) – The texture coordinates for the mesh.

	texture (Image) – The texture for the mesh.

	trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delaunay triangulation of
the points will be used instead.

	copy (bool, optional) – If False, the points, trilist and texture will not be copied on
assignment.
In general this should only be used if you know what you are doing.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=20, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8), label=None)[source]

	Visualization of the TriMesh in 2D. Currently, explicit textured TriMesh
viewing is not supported, and therefore viewing falls back to untextured
2D TriMesh viewing.

	Returns:	
	figure_id (object, optional) –
The id of the figure to be used.

	new_figure (bool, optional) –
If True, a new figure is created.

	image_view (bool, optional) –
If True the TexturedTriMesh will be viewed as if it is in the
image coordinate system.

	render_lines (bool, optional) –
If True, the edges will be rendered.

	line_colour (See Below, optional) –
The colour of the lines.
Example options:{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) –
The style of the lines.

	line_width (float, optional) –
The width of the lines.

	render_markers (bool, optional) –
If True, the markers will be rendered.

	marker_style (See Below, optional) –
The style of the markers. Example options{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) –
The size of the markers in points^2.

	marker_face_colour (See Below, optional) –
The face (filling) colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) –
The edge colour of the markers.
Example options{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) –
The width of the markers’ edge.

	render_axes (bool, optional) –
If True, the axes will be rendered.

	axes_font_name (See Below, optional) –
The font of the axes.
Example options{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) –
The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) –
The font style of the axes.

	axes_font_weight (See Below, optional) –
The font weight of the axes.
Example options{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None, optional) –
The limits of the x axis.

	axes_y_limits ((float, float) tuple or None, optional) –
The limits of the y axis.

	figure_size ((float, float) tuple or None, optional) –
The size of the figure in inches.

	label (str, optional) –
The name entry in case of a legend.

	Returns:	viewer (PointGraphViewer2d) –
The viewer object.

	Raises:	warning –
2D Viewing of Coloured TriMeshes is not supported, automatically
falls back to 2D TriMesh viewing.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=20, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8))

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters:	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points^2.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits ((float, float) tuple or None optional) – The limits of the x axis.

	axes_y_limits ((float, float) tuple or None optional) – The limits of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises:	
	ValueError –
If both with_labels and without_labels are passed.

	ValueError –
If the landmark manager doesn’t contain the provided group label.

	
as_pointgraph(copy=True)

	Converts the TriMesh to a PointUndirectedGraph.

	Parameters:	copy (bool, optional) – If True, the graph will be a copy.

	Returns:	pointgraph (PointUndirectedGraph) –
The point graph.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return the bounding box of this PointCloud as a directed graph.
The the first point (0) will be nearest the origin for an axis aligned
Pointcloud.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

	Returns:	bounding_box (PointDirectedGraph) –
The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters:	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns:	
	min_b ((n_dims,) ndarray) –
The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) –
The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns:	centre ((n_dims) ndarray) –
The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns:	centre (n_dims ndarray) –
The centre of the bounds of this PointCloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters:	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns:	distance_matrix ((n_points, n_points) ndarray) –
The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
face_normals()

	Compute the face normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns:	normals ((n_tris, 3) ndarray) –
Normal at each face.

	Raises:	ValueError –
If mesh is not 3D

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the TexturedTriMesh. This is then broadcast across the
dimensions of the mesh and returns a new mesh containing only those
points that were True in the mask.

	Parameters:	mask ((n_points,) ndarray) – 1D array of booleans

	Returns:	mesh (TexturedTriMesh) –
A new mesh that has been masked.

	
from_vector(flattened)[source]

	Builds a new TexturedTriMesh given the flattened 1D vector.
Note that the trilist, texture, and tcoords will be drawn from self.

	Parameters:	
	flattened ((N,) ndarray) – Vector representing a set of points.

	Returns –

	-------- –

	trimesh (TriMesh) – A new trimesh created from the vector with self trilist.

	
from_vector_inplace(vector)

	Updates the points of this PointCloud in-place with the reshaped points
from the provided vector. Note that the vector should have the form
[x0, y0, x1, y1,, xn, yn] for 2D.

	Parameters:	vector ((n_points,) ndarray) – The vector from which to create the points’ array.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type:	type(self)

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns:	norm (float) –
The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters:	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns:	range ((n_dims,) ndarray) –
The range of the PointCloud extent in each dimension.

	
tcoords_pixel_scaled()[source]

	Returns a PointCloud that is modified to be suitable for directly
indexing into the pixels of the texture (e.g. for manual mapping
operations). The resulting tcoords behave just like image landmarks
do.

The operations that are performed are:

	Flipping the origin from bottom-left to top-left

	Scaling the tcoords by the image shape (denormalising them)

	Permuting the axis so that

	Returns:	tcoords_scaled (PointCloud) –
A copy of the tcoords that behave like Image landmarks

Examples

Recovering pixel values for every texture coordinate:

>>> texture = texturedtrimesh.texture
>>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
>>> pixel_values_at_tcs = texture[tc_ps[: ,0], tc_ps[:, 1]]

	
tojson()

	Convert this TriMesh to a dictionary representation suitable
for inclusion in the LJSON landmark format. Note that this enforces a
simpler representation, and as such is not suitable for
a permanent serialization of a TriMesh (to be clear,
TriMesh‘s serialized as part of a landmark set will be rebuilt
as a PointUndirectedGraph).

	Returns:	json (dict) –
Dictionary with points and connectivity keys.

	
vertex_normals()

	Compute the per-vertex normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns:	normals ((n_points, 3) ndarray) –
Normal at each point.

	Raises:	ValueError –
If mesh is not 3D

	
view_widget(popup=False, browser_style='buttons', figure_size=(10, 8))

	Visualization of the TriMesh using the visualize_pointclouds
widget.

	Parameters:	
	popup (bool, optional) – If True, the widget will be rendered in a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the TriMesh objects will have
the form of plus/minus buttons or a slider.

	figure_size ((int, int) tuple, optional) – The initial size of the rendered figure.

	
has_landmarks

	Whether the object has landmarks.

	Type:	bool

	
landmarks

	The landmarks object.

	Type:	LandmarkManager

	
n_dims

	The number of dimensions in the pointcloud.

	Type:	int

	
n_landmark_groups

	The number of landmark groups on this object.

	Type:	int

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

	
n_points

	The number of points in the pointcloud.

	Type:	int

	
n_tris

	The number of triangles in the triangle list.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.shape

mean_pointcloud

	
menpo.shape.mean_pointcloud(pointclouds)[source]

	Compute the mean of a list of PointCloud objects.

	Parameters:	pointclouds (list of PointCloud) – List of point cloud objects from which we want to compute the mean.

	Returns:	mean_pointcloud (PointCloud) –
The mean point cloud.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.transform

Homogeneous Transforms

	Homogeneous

	Affine

	Similarity

	Rotation

	Translation

	Scale

	UniformScale

	NonUniformScale

Alignments

	ThinPlateSplines

	PiecewiseAffine

	AlignmentAffine

	AlignmentSimilarity

	AlignmentRotation

	AlignmentTranslation

	AlignmentUniformScale

Group Alignments

	GeneralizedProcrustesAnalysis

Composite Transforms

	TransformChain

Radial Basis Functions

	R2LogR2RBF

	R2LogRRBF

Abstract Bases

	Transform

	Transformable

	ComposableTransform

	Invertible

	Alignment

	MultipleAlignment

	DiscreteAffine

Performance Specializations

Mix-ins that provide fast vectorized varients of methods.

	VComposable

	VInvertible

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Homogeneous

	
class menpo.transform.Homogeneous(h_matrix, copy=True, skip_checks=False)[source]

	Bases: ComposableTransform, Vectorizable, VComposable, VInvertible

A simple n-dimensional homogeneous transformation.

Adds a unit homogeneous coordinate to points, performs the dot
product, re-normalizes by division by the homogeneous coordinate,
and returns the result.

Can be composed with another Homogeneous, so long as the
dimensionality matches.

	Parameters:	
	h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix defining this transform.

	copy (bool, optional) – If False avoid copying h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True avoid sanity checks on the h_matrix. Useful for
performance.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
from_vector(vector)[source]

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)[source]

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_inplace_with

	Homogeneous can swallow composition with any other Homogeneous,
subclasses will have to override and be more specific.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
h_matrix_is_mutable

	True iff set_h_matrix() is permitted on this type of
transform.
If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type:	bool

	
n_parameters

	The length of the vector that this object produces.

	Type:	int

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Affine

	
class menpo.transform.Affine(h_matrix, copy=True, skip_checks=False)[source]

	Bases: Homogeneous

Base class for all n-dimensional affine transformations. Provides
methods to break the transform down into it’s constituent
scale/rotation/translation, to view the homogeneous matrix equivalent,
and to chain this transform with other affine transformations.

	Parameters:	
	h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix of the affine transformation.

	copy (bool, optional) – If False avoid copying h_matrix for performance.

	skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for performance.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
decompose()[source]

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns:	transforms (list of DiscreteAffine) –
Equivalent to this affine transform, such that:reduce(lambda x,y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(p)[source]

	Updates this Affine in-place from the new parameters. See
from_vector for details of the parameter format

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
h_matrix_is_mutable

	True iff set_h_matrix() is permitted on this type of
transform.
If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type:	bool

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_parameters

	n_dims * (n_dims + 1) parameters - every element of the matrix bar
the homogeneous part.

	Type:	int

Examples

2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Similarity

	
class menpo.transform.Similarity(h_matrix, copy=True, skip_checks=False)[source]

	Bases: Affine

Specialist version of an Affine that is guaranteed to be
a Similarity transform.

	Parameters:	h_matrix ((D + 1, D + 1) ndarray) – The homogeneous matrix of the similarity transform.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns:	transforms (list of DiscreteAffine) –
Equivalent to this affine transform, such that:reduce(lambda x,y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(p)[source]

	Returns an instance of the transform from the given parameters,
expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Similarity: 4 parameters:

[a, b, tx, ty]

	Parameters:	p ((P,) ndarray) – The array of parameters.

	Raises:	DimensionalityError, NotImplementedError –
Only 2D transforms are supported.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_parameters

	2D Similarity: 4 parameters:

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported

	Returns:	int

	Raises:	DimensionalityError, NotImplementedError –
Only 2D transforms are supported.

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Rotation

	
class menpo.transform.Rotation(rotation_matrix, skip_checks=False)[source]

	Bases: DiscreteAffine, Similarity

Abstract n_dims rotation transform.

	Parameters:	rotation_matrix ((D, D) ndarray) – A valid, square rotation matrix

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
axis_and_angle_of_rotation()[source]

	Abstract method for computing the axis and angle of rotation.

	Returns:	
	axis ((D,) ndarray) –
The unit vector representing the axis of rotation

	angle_of_rotation (double) –
The angle in radians of the rotation about the axis. The angle is
signed in a right handed sense.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
classmethod from_2d_ccw_angle(theta, degrees=True)[source]

	Convenience constructor for 2D CCW rotations about the origin

	Parameters:	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns:	rotation (Rotation) –
A 2D rotation transform.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(p)[source]

	Returns an instance of the transform from the given parameters,
expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Rotation: 1 parameter:

[theta]

	Parameters:	p ((1,) ndarray) – The array of parameters.

	Returns:	transform (Rotation2D) –
The transform initialised to the given parameters.

	
pseudoinverse()[source]

	The inverse rotation matrix.

	Type:	(D, D) ndarray

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
rotation_matrix

	The rotation matrix.

	Type:	(D, D) ndarray

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Translation

	
class menpo.transform.Translation(translation, skip_checks=False)[source]

	Bases: DiscreteAffine, Similarity

An N-dimensional translation transform.

	Parameters:	translation ((D,) ndarray) – The translation in each axis.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
pseudoinverse()[source]

	The inverse translation (negated).

	Returns:	Translation

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_parameters

	The number of parameters: n_dims

	Type:	int

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Scale

	
menpo.transform.Scale(scale_factor, n_dims=None)[source]

	Factory function for producing Scale transforms. Zero scale factors are not
permitted.

A UniformScale will be produced if:

	A float scale_factor and a n_dims kwarg are provided

	A ndarray scale_factor with shape (n_dims,) is provided with all
elements being the same

A NonUniformScale will be provided if:

	A ndarray scale_factor with shape (n_dims,) is provided with
at least two differing scale factors.

	Parameters:	
	scale_factor (double or (D,) ndarray) – Scale for each axis.

	n_dims (int) – The dimensionality of the output transform.

	Returns:	
	scale (UniformScale or NonUniformScale) –
The correct type of scale

	Raises

	——-

	ValueError –
If any of the scale factors is zero

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

UniformScale

	
class menpo.transform.UniformScale(scale, n_dims, skip_checks=False)[source]

	Bases: DiscreteAffine, Similarity

An abstract similarity scale transform, with a single scale component
applied to all dimensions. This is abstracted out to remove unnecessary
code duplication.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
pseudoinverse()[source]

	The inverse scale.

	Type:	type(self)

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_parameters

	The number of parameters: 1

	Type:	int

	
scale

	The single scale value.

	Type:	double

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

NonUniformScale

	
class menpo.transform.NonUniformScale(scale, skip_checks=False)[source]

	Bases: DiscreteAffine, Affine

An n_dims scale transform, with a scale component for each dimension.

	Parameters:	scale ((n_dims,) ndarray) – A scale for each axis.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(vector)[source]

	Updates the NonUniformScale inplace.

	Parameters:	vector ((D,) ndarray) – The array of parameters.

	
pseudoinverse()[source]

	The inverse scale.

	Type:	NonUniformScale

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_parameters

	The number of parameters: n_dims.

	Type:	int

n_dims parameters - [scale_x, scale_y,] - The scalar values
representing the scale across each axis.

	
scale

	The scale vector.

	Type:	(D,) ndarray

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

ThinPlateSplines

	
class menpo.transform.ThinPlateSplines(source, target, kernel=None)[source]

	Bases: Alignment, Transform, Invertible

The thin plate splines (TPS) alignment between 2D source and target
landmarks.

kernel can be used to specify an alternative kernel function. If
None is supplied, the R2LogR2 kernel will be
used.

	Parameters:	
	source ((N, 2) ndarray) – The source points to apply the tps from

	target ((N, 2) ndarray) – The target points to apply the tps to

	kernel (BasisFunction, optional) – The kernel to apply.

Default: R2LogR2

	Raises:	ValueError –
TPS is only with on 2-dimensional data

	
aligned_source()

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters:	
	transform (TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters:	
	transform (TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type:	int or None

	
n_points

	The number of points on the target.

	Type:	int

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

PiecewiseAffine

	
menpo.transform.PiecewiseAffine

	alias of CachedPWA

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

AlignmentAffine

	
class menpo.transform.AlignmentAffine(source, target)[source]

	Bases: HomogFamilyAlignment, Affine

Constructs an Affine by finding the optimal affine transform to align
source to target.

	Parameters:	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

Notes

We want to find the optimal transform M which satisfies

M a = b

where a and b are the source and target homogeneous vectors
respectively.

(M a)' = b'
a' M' = b'
a a' M' = a b'

a a’ is of shape (n_dim + 1, n_dim + 1) and so can be inverted
to solve for M.

This approach is the analytical linear least squares solution to
the problem at hand. It will have a solution as long as (a a’)
is non-singular, which generally means at least 2 corresponding
points are required.

	
aligned_source()

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_non_alignment()[source]

	Returns a copy of this affine without it’s alignment nature.

	Returns:	transform (Affine) –
A version of this affine with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns:	new_transform (type(self)) –
A copy of this object

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns:	transforms (list of DiscreteAffine) –
Equivalent to this affine transform, such that:reduce(lambda x,y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(p)

	Updates this Affine in-place from the new parameters. See
from_vector for details of the parameter format

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns:	transform (type(self)) –
The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)[source]

	Updates h_matrix, optionally performing sanity checks.

Note

Updating the h_matrix on an AlignmentAffine
triggers a sync of the target.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
h_matrix_is_mutable

	True iff set_h_matrix() is permitted on this type of
transform.
If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type:	bool

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_parameters

	n_dims * (n_dims + 1) parameters - every element of the matrix bar
the homogeneous part.

	Type:	int

Examples

2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

	
n_points

	The number of points on the target.

	Type:	int

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

AlignmentSimilarity

	
class menpo.transform.AlignmentSimilarity(source, target, rotation=True)[source]

	Bases: HomogFamilyAlignment, Similarity

Infers the similarity transform relating two vectors with the same
dimensionality. This is simply the procrustes alignment of the
source to the target.

	Parameters:	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

	rotation (boolean, optional) – If False, the rotation component of the similarity transform is not
inferred.

Default: True

	
aligned_source()

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_non_alignment()[source]

	Returns a copy of this similarity without it’s alignment nature.

	Returns:	transform (Similarity) –
A version of this similarity with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns:	new_transform (type(self)) –
A copy of this object

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns:	transforms (list of DiscreteAffine) –
Equivalent to this affine transform, such that:reduce(lambda x,y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(p)[source]

	Returns an instance of the transform from the given parameters,
expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Similarity: 4 parameters:

[a, b, tx, ty]

	Parameters:	p ((P,) ndarray) – The array of parameters.

	Raises:	DimensionalityError, NotImplementedError –
Only 2D transforms are supported.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns:	transform (type(self)) –
The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_parameters

	2D Similarity: 4 parameters:

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported

	Returns:	int

	Raises:	DimensionalityError, NotImplementedError –
Only 2D transforms are supported.

	
n_points

	The number of points on the target.

	Type:	int

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

AlignmentRotation

	
class menpo.transform.AlignmentRotation(source, target)[source]

	Bases: HomogFamilyAlignment, Rotation

	
aligned_source()

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_non_alignment()[source]

	Returns a copy of this rotation without it’s alignment nature.

	Returns:	transform (Rotation) –
A version of this rotation with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
axis_and_angle_of_rotation()

	Abstract method for computing the axis and angle of rotation.

	Returns:	
	axis ((D,) ndarray) –
The unit vector representing the axis of rotation

	angle_of_rotation (double) –
The angle in radians of the rotation about the axis. The angle is
signed in a right handed sense.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns:	new_transform (type(self)) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
from_2d_ccw_angle(theta, degrees=True)

	Convenience constructor for 2D CCW rotations about the origin

	Parameters:	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns:	rotation (Rotation) –
A 2D rotation transform.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
from_vector_inplace(p)

	Returns an instance of the transform from the given parameters,
expected to be in Fortran ordering.

Supports rebuilding from 2D parameter sets.

2D Rotation: 1 parameter:

[theta]

	Parameters:	p ((1,) ndarray) – The array of parameters.

	Returns:	transform (Rotation2D) –
The transform initialised to the given parameters.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns:	transform (type(self)) –
The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_points

	The number of points on the target.

	Type:	int

	
rotation_matrix

	The rotation matrix.

	Type:	(D, D) ndarray

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

AlignmentTranslation

	
class menpo.transform.AlignmentTranslation(source, target)[source]

	Bases: HomogFamilyAlignment, Translation

	
aligned_source()

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_non_alignment()[source]

	Returns a copy of this translation without it’s alignment nature.

	Returns:	transform (Translation) –
A version of this transform with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns:	new_transform (type(self)) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns:	transform (type(self)) –
The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_parameters

	The number of parameters: n_dims

	Type:	int

	
n_points

	The number of points on the target.

	Type:	int

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

AlignmentUniformScale

	
class menpo.transform.AlignmentUniformScale(source, target)[source]

	Bases: HomogFamilyAlignment, UniformScale

	
aligned_source()

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
as_non_alignment()[source]

	Returns a copy of this uniform scale without it’s alignment nature.

	Returns:	transform (UniformScale) –
A version of this scale with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns:	vector ((N,) ndarray) –
The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns:	new_transform (type(self)) –
A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters:	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns:	transform (type(self)) –
An new instance of this class.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns:	transform (type(self)) –
The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters:	
	value (ndarray) – The new homogeneous matrix to set

	copy (bool, optional) – If False do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True skip checking. Useful for performance.

	Raises:	NotImplementedError –
If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
linear_component

	The linear component of this affine transform.

	Type:	(n_dims, n_dims) ndarray

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_parameters

	The number of parameters: 1

	Type:	int

	
n_points

	The number of points on the target.

	Type:	int

	
scale

	The single scale value.

	Type:	double

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

	
translation_component

	The translation component of this affine transform.

	Type:	(n_dims,) ndarray

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

GeneralizedProcrustesAnalysis

	
class menpo.transform.GeneralizedProcrustesAnalysis(sources, target=None)[source]

	Bases: MultipleAlignment

Class for aligning multiple source shapes between them.

After construction, the AlignmentSimilarity transforms used to map
each source optimally to the target can be found at transforms.

	Parameters:	
	sources (list of PointCloud) – List of pointclouds to be aligned.

	target (PointCloud) – The target PointCloud to align each source to.
If None, then the mean of the sources is used.

Default: None

	Raises –

	------- –

	ValueError – Need at least two sources to align

	
mean_aligned_shape()[source]

	Returns the mean of the aligned shapes.

	Type:	PointCloud

	
mean_alignment_error()[source]

	Returns the average error of the recursive procrustes alignment.

	Type:	float

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

TransformChain

	
class menpo.transform.TransformChain(transforms)[source]

	Bases: ComposableTransform

A chain of transforms that can be efficiently applied one after the
other.

This class is the natural product of composition. Note that objects may
know how to compose themselves more efficiently - such objects
implement the ComposableTransform or VComposable interfaces.

	Parameters:	transforms (list of Transform) – The list of transforms to be applied. Note that the first transform
will be applied first - the result of which is fed into the second
transform and so on until the chain is exhausted.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
composes_inplace_with

	The Transform s that this transform composes inplace
with natively (i.e. no TransformChain will be produced).

An attempt to compose inplace against any type that is not an
instance of this property on this class will result in an Exception.

	Type:	Transform or tuple of Transform s

	
composes_with

	The Transform s that this transform composes
with natively (i.e. no TransformChain will be produced).

If native composition is not possible, falls back to producing a
TransformChain.

By default, this is the same list as composes_inplace_with.

	Type:	Transform or tuple of Transform s

	
n_dims

	The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.

	Type:	int or None

	
n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type:	int or None

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

R2LogR2RBF

	
class menpo.transform.R2LogR2RBF(c)[source]

	Bases: RadialBasisFunction

The \(r^2 \log{r^2}\) basis function.

The derivative of this function is \(2 r (\log{r^2} + 1)\).

Note

\(r = \lVert x - c \rVert\)

	Parameters:	c ((n_centres, n_dims) ndarray) – The set of centers that make the basis. Usually represents a set of
source landmarks.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters:	
	transform (TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters:	
	transform (TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
n_dims

	The RBF can only be applied on points with the same dimensionality as
the centres.

	
n_dims_output

	The result of the transform has a dimension (weight) for every centre

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

R2LogRRBF

	
class menpo.transform.R2LogRRBF(c)[source]

	Bases: RadialBasisFunction

Calculates the \(r^2 \log{r}\) basis function.

The derivative of this function is \(r (1 + 2 \log{r})\).

Note

\(r = \lVert x - c \rVert\)

	Parameters:	c ((n_centres, n_dims) ndarray) – The set of centers that make the basis. Usually represents a set of
source landmarks.

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters:	
	transform (TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters:	
	transform (TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
n_dims

	The RBF can only be applied on points with the same dimensionality as
the centres.

	
n_dims_output

	The result of the transform has a dimension (weight) for every centre

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Transform

	
class menpo.transform.Transform[source]

	Bases: Copyable

Abstract representation of any spatial transform.

Provides a unified interface to apply the transform with
apply_inplace() and apply().

All Transforms support basic composition to form a TransformChain.

There are two useful forms of composition. Firstly, the mathematical
composition symbol o has the following definition:

let a(x) and b(x) be two transforms on x.
(a o b)(x) == a(b(x))

This functionality is provided by the compose_after() family of
.. method:: (a.compose_after(b)).apply(x) == a.apply(b.apply(x))

Equally useful is an inversion the order of composition - so that over
time a large chain of transforms can be built to do a useful job,
and composing on this chain adds another transform to the end (after all
other preceding transforms have been performed).

For instance, let’s say we want to rescale a PointCloud p
around it’s mean, and then translate it some place else. It would be nice
to be able to do something like:

t = Translation(-p.centre) # translate to centre
s = Scale(2.0) # rescale
move = Translate([10, 0 ,0]) # budge along the x axis
t.compose(s).compose(-t).compose(move)

In Menpo, this functionality is provided by the compose_before()
family of methods:

(a.compose_before(b)).apply(x) == b.apply(a.apply(x))

For native composition, see the ComposableTransform subclass and
the VComposable mix-in.
For inversion, see the Invertible and VInvertible mix-ins.
For alignment, see the Alignment mix-in.

	
apply(x, **kwargs)[source]

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)[source]

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
compose_after(transform)[source]

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters:	
	transform (TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
compose_before(transform)[source]

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters:	
	transform (TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
n_dims

	The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.

	Type:	int or None

	
n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type:	int or None

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Transformable

	
class menpo.transform.base.Transformable[source]

	Bases: Copyable

Interface for objects that know how be transformed by the
Transform interface.

When Transform.apply_inplace is called on an object, the
_transform_inplace() method is called, passing in the transforms’
_apply() function.

This allows for the object to define how it should transform itself.

	
_transform_inplace(transform)[source]

	Apply the given transform function to self inplace.

	Parameters:	transform (function) – Function that applies a transformation to the transformable object.

	Returns:	transformed (type(self)) –
The transformed object, having been transformed in place.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

ComposableTransform

	
class menpo.transform.base.composable.ComposableTransform[source]

	Bases: Transform

Transform subclass that enables native composition, such that
the behavior of multiple Transform s is composed together in a
natural way.

	
_compose_after_inplace(transform)[source]

	Specialised inplace composition. This should be overridden to
provide specific cases of composition as defined in
composes_inplace_with.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	
_compose_before_inplace(transform)[source]

	Specialised inplace composition. This should be overridden to
provide specific cases of composition as defined in
composes_inplace_with.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	
apply(x, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation
will be non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object or array

	
apply_inplace(x, **kwargs)

	Applies this transform to a Transformable x destructively.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters:	
	x (Transformable) – The Transformable object to be transformed.

	kwargs (dict) – Passed through to _apply().

	Returns:	transformed (type(x)) –
The transformed object

	
compose_after(transform)[source]

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied before self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)[source]

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied before self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)[source]

	A Transform that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters:	
	transform (Transform or TransformChain) – Transform to be applied after self

	Returns –

	-------- –

	transform – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)[source]

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters:	transform (composes_inplace_with) – Transform to be applied after self

	Raises:	ValueError –
If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
composes_inplace_with

	The Transform s that this transform composes inplace
with natively (i.e. no TransformChain will be produced).

An attempt to compose inplace against any type that is not an
instance of this property on this class will result in an Exception.

	Type:	Transform or tuple of Transform s

	
composes_with

	The Transform s that this transform composes
with natively (i.e. no TransformChain will be produced).

If native composition is not possible, falls back to producing a
TransformChain.

By default, this is the same list as composes_inplace_with.

	Type:	Transform or tuple of Transform s

	
n_dims

	The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.

	Type:	int or None

	
n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type:	int or None

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Invertible

	
class menpo.transform.base.invertible.Invertible[source]

	Bases: object

Mix-in for invertible transforms. Provides an interface for
taking the psuedo or true inverse of a transform.

Has to be implemented in conjunction with Transform.

	
pseudoinverse()[source]

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type:	type(self)

	
has_true_inverse

	True if the pseudoinverse is an exact inverse.

	Type:	bool

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

Alignment

	
class menpo.transform.base.alignment.Alignment(source, target)[source]

	Bases: Targetable, Viewable

Mix-in for Transform that have been constructed from an
optimisation aligning a source PointCloud to a target
PointCloud.

This is naturally an extension of the Targetable interface - we
just augment Targetable with the concept of a source, and related
methods to construct alignments between a source and a target.

Note that to inherit from Alignment, you have to be a
Transform subclass first.

	Parameters:	
	source (PointCloud) – A PointCloud that the alignment will be based from

	target (PointCloud) – A PointCloud that the alignment is targeted towards

	
aligned_source()[source]

	The result of applying self to source

	Type:	PointCloud

	
alignment_error()[source]

	The Frobenius Norm of the difference between the target and
the aligned source.

	Type:	float

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns:	type(self) –
A copy of this object

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters:	new_target (PointCloud) – The new target that this object should try and regenerate.

	
n_dims

	The number of dimensions of the target.

	Type:	int

	
n_points

	The number of points on the target.

	Type:	int

	
source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type:	PointCloud

	
target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type:	PointCloud

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

MultipleAlignment

	
class menpo.transform.groupalign.base.MultipleAlignment(sources, target=None)[source]

	Bases: object

Abstract base class for aligning multiple source shapes to a target shape.

	Parameters:	
	sources (list of PointCloud) – List of pointclouds to be aligned.

	target (PointCloud) – The target PointCloud to align each source to.
If None, then the mean of the sources is used.

Default: None

	Raises –

	------- –

	ValueError – Need at least two sources to align

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

DiscreteAffine

	
class menpo.transform.homogeneous.affine.DiscreteAffine[source]

	Bases: object

A discrete Affine transform operation (such as a Scale(),
Translation or Rotation()). Has to be able to invertable.
Make sure you inherit from DiscreteAffine first,
for optimal decompose() behavior.

	
decompose()[source]

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns:	transform (DiscreteAffine) –
Deep copy of self.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

VComposable

	
class menpo.transform.base.composable.VComposable[source]

	Bases: object

Mix-in for Vectorizable ComposableTransform s.

Use this mix-in with ComposableTransform if the
ComposableTransform in question is Vectorizable as this adds
from_vector() variants to the ComposableTransform interface.
These can be tuned for performance.

	
compose_after_from_vector_inplace(vector)[source]

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters:	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.transform

VInvertible

	
class menpo.transform.base.invertible.VInvertible[source]

	Bases: Invertible

Mix-in for Vectorizable Invertible Transform s.

Prefer this mix-in over Invertible if the Transform in
question is Vectorizable as this adds from_vector() variants
to the Invertible interface. These can be tuned for performance,
and are, for instance, needed by some of the machinery of fit.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type:	type(self)

	
pseudoinverse_vector(vector)[source]

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters:	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns:	pseudoinverse_vector ((n_parameters,) ndarray) –
The pseudoinverse of the vector provided

	
has_true_inverse

	True if the pseudoinverse is an exact inverse.

	Type:	bool

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

menpo.visualize

Abstract Classes

	Renderer

	Viewable

	LandmarkableViewable

	MatplotlibRenderer

Widgets

	visualize_images

	visualize_landmarks

	visualize_landmarkgroups

	visualize_pointclouds

	features_selection

	save_matplotlib_figure

Print Utilities

	print_dynamic

	progress_bar_str

	print_bytes

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

Renderer

	
class menpo.visualize.Renderer(figure_id, new_figure)[source]

	Bases: object

Abstract class for rendering visualizations. Framework specific
implementations of these classes are made in order to separate
implementation cleanly from the rest of the code.

It is assumed that the renderers follow some form of stateful pattern for
rendering to Figures. Therefore, the major interface for rendering involves
providing a figure_id or a bool about whether a new figure should be
used. If neither are provided then the default state of the rendering engine
is assumed to be maintained.

Providing both a figure_id and new_figure == True is not a valid
state.

	Parameters:	
	figure_id (object) – A figure id. Could be any valid object that identifies a figure in a
given framework (str, int, float, etc.).

	new_figure (bool) – Whether the rendering engine should create a new figure.

	Raises:	ValueError –
It is not valid to provide a figure id AND request a new figure to
be rendered on.

	
get_figure()[source]

	Abstract method for getting the correct figure to render on. Should
also set the correct figure_id for the figure.

	Returns:	figure (object) –
The figure object that the renderer will render on.

	
render(**kwargs)[source]

	Abstract method to be overridden by the renderer. This will implement
the actual rendering code for a given object class.

	Parameters:	kwargs (dict) – Passed through to specific rendering engine.

	Returns:	viewer (Renderer) –
Pointer to self.

	
save_figure(**kwargs)[source]

	Abstract method for saving the figure of the current figure_id to
file. It will implement the actual saving code for a given object class.

	Parameters:	kwargs (dict) – Options to be set when saving the figure to file.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

Viewable

	
class menpo.visualize.Viewable[source]

	Bases: object

Abstract interface for objects that can visualize themselves. This assumes
that the class has dimensionality as the view method checks the n_dims
property to wire up the correct view method.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

LandmarkableViewable

	
class menpo.visualize.LandmarkableViewable[source]

	Bases: object

Mixin for Landmarkable and Viewable objects. Provides a
single helper method for viewing Landmarks and self on the same figure.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

MatplotlibRenderer

	
class menpo.visualize.MatplotlibRenderer(figure_id, new_figure)[source]

	Bases: Renderer

Abstract class for rendering visualizations using Matplotlib.

	Parameters:	
	figure_id (int or None) – A figure id or None. None assumes we maintain the Matplotlib
state machine and use plt.gcf().

	new_figure (bool) – If True, it creates a new figure to render on.

	
get_figure()[source]

	Gets the figure specified by the combination of self.figure_id and
self.new_figure. If self.figure_id == None then plt.gcf()
is used. self.figure_id is also set to the correct id of the figure
if a new figure is created.

	Returns:	figure (Matplotlib figure object) –
The figure we will be rendering on.

	
render(**kwargs)

	Abstract method to be overridden by the renderer. This will implement
the actual rendering code for a given object class.

	Parameters:	kwargs (dict) – Passed through to specific rendering engine.

	Returns:	viewer (Renderer) –
Pointer to self.

	
save_figure(filename, format='png', dpi=None, face_colour='w', edge_colour='w', orientation='portrait', paper_type='letter', transparent=False, pad_inches=0.1, overwrite=False)[source]

	Method for saving the figure of the current figure_id to file.

	Parameters:	
	filename (str or file-like object) – The string path or file-like object to save the figure at/into.

	format (str) – The format to use. This must match the file path if the file path is
a str.

	dpi (int > 0 or None, optional) – The resolution in dots per inch.

	face_colour (See Below, optional) – The face colour of the figure rectangle.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of len 3

	edge_colour (See Below, optional) – The edge colour of the figure rectangle.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of len 3

	orientation ({portrait, landscape}, optional) – The page orientation.

	paper_type (See Below, optional) – The type of the paper.
Example options

{``letter``, ``legal``, ``executive``, ``ledger``,
 ``a0`` through ``a10``, ``b0` through ``b10``}

	transparent (bool, optional) – If True, the axes patches will all be transparent; the figure
patch will also be transparent unless face_colour and/or
edge_colour are specified. This is useful, for example, for
displaying a plot on top of a coloured background on a web page.
The transparency of these patches will be restored to their original
values upon exit of this function.

	pad_inches (float, optional) – Amount of padding around the figure.

	overwrite (bool, optional) – If True, the file will be overwritten if it already exists.

	
save_figure_widget(popup=True)[source]

	Method for saving the figure of the current figure_id to file using
menpo.visualize.widgets.base.save_matplotlib_figure() widget.

	Parameters:	popup (bool, optional) – If True, the widget will appear as a popup window.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

visualize_images

	
menpo.visualize.visualize_images(images, figure_size=(10, 8), popup=False, browser_style='buttons')[source]

	Widget that allows browsing through a list of Image (or subclass)
objects.

The images can have a combination of different attributes, e.g. masked or
not, landmarked or not, without multiple landmark groups and labels etc.
The widget has options tabs regarding the visualized channels, the
landmarks, the renderer (lines, markers, numbering, legend, figure, axes)
and saving the figure to file.

	Parameters:	
	images (list of Image or subclass) – The list of images to be visualized.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the images will have the form of
plus/minus buttons or a slider.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

visualize_landmarks

	
menpo.visualize.visualize_landmarks(landmarks, figure_size=(10, 8), popup=False, browser_style='buttons')[source]

	Widget that allows browsing through a list of LandmarkManager
(or subclass) objects.

The managers can have a combination of different attributes, e.g. different
landmark groups and labels etc. The widget has options tabs regarding the
landmarks, the renderer (lines, markers, numbering, legend, figure, axes)
and saving the figure to file.

	Parameters:	
	landmarks (list of LandmarkManager or subclass) – The list of landmark managers to be visualized.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the landmark managers will have the
form of plus/minus buttons or a slider.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

visualize_landmarkgroups

	
menpo.visualize.visualize_landmarkgroups(landmarkgroups, figure_size=(10, 8), popup=False, browser_style='buttons')[source]

	Widget that allows browsing through a list of LandmarkGroup
(or subclass) objects.

The landmark groups can have a combination of different attributes, e.g.
different labels, number of points etc. The widget has options tabs
regarding the landmarks, the renderer (lines, markers, numbering, legend,
figure, axes) and saving the figure to file.

	Parameters:	
	landmarkgroups (list of LandmarkGroup or subclass) – The list of landmark groups to be visualized.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the landmark managers will have the
form of plus/minus buttons or a slider.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

visualize_pointclouds

	
menpo.visualize.visualize_pointclouds(pointclouds, figure_size=(10, 8), popup=False, browser_style='buttons')[source]

	Widget that allows browsing through a list of PointCloud,
PointGraph or TriMesh or subclasses.

The widget has options tabs regarding the renderer (lines, markers, figure,
axes) and saving the figure to file.

	Parameters:	
	pointclouds (list of PointCloud or PointGraph or TriMesh or subclasses) – The list of objects to be visualized.

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	popup (bool, optional) – If True, the widget will appear as a popup window.

	browser_style ({buttons, slider}, optional) – It defines whether the selector of the objects will have the form of
plus/minus buttons or a slider.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

features_selection

	
menpo.visualize.features_selection(popup=True)[source]

	Widget that allows selecting a features function and its options. The
widget supports all features from menpo.feature and has a
preview tab. It returns a list of length 1 with the selected features
function closure.

	Parameters:	popup (bool, optional) – If True, the widget will appear as a popup window.

	Returns:	features_function (list of length 1) –
The function closure of the features function using functools.partial.
So the function can be called as:features_image = features_function[0](image)

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

save_matplotlib_figure

	
menpo.visualize.save_matplotlib_figure(renderer, popup=True)[source]

	Widget that allows to save a figure, which was generated with Matplotlib,
to file.

	Parameters:	
	renderer (MatplotlibRenderer) – The Matplotlib renderer object.

	popup (bool, optional) – If True, the widget will appear as a popup window.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

print_dynamic

	
menpo.visualize.print_dynamic(str_to_print)[source]

	Prints dynamically the provided str, i.e. the str is printed and then
the buffer gets flushed.

	Parameters:	str_to_print (str) – The string to print.

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

progress_bar_str

	
menpo.visualize.progress_bar_str(percentage, bar_length=20, bar_marker='=', show_bar=True)[source]

	Returns an str of the specified progress percentage. The percentage is
represented either in the form of a progress bar or in the form of a
percentage number. It can be combined with the print_dynamic()
function.

	Parameters:	
	percentage (float) – The progress percentage to be printed. It must be in the range
[0, 1].

	bar_length (int, optional) – Defines the length of the bar in characters.

	bar_marker (str, optional) – Defines the marker character that will be used to fill the bar.

	show_bar (bool, optional) – If True, the str includes the bar followed by the percentage,
e.g. '[=====] 50%'

If False, the str includes only the percentage,
e.g. '50%'

	Returns:	progress_str (str) –
The progress percentage string that can be printed.

	Raises:	
	ValueError –
percentage is not in the range [0, 1]

	ValueError –
bar_length must be an integer >= 1

	ValueError –
bar_marker must be a string of length 1

Examples

This for loop:

n_iters = 2000
for k in range(n_iters):
 print_dynamic(progress_bar_str(float(k) / (n_iters-1)))

prints a progress bar of the form:

[=============] 68%

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 previous |

 	Menpo 0.4.3-dirty documentation

 	The Menpo API

 	menpo.visualize

print_bytes

	
menpo.visualize.print_bytes(num)[source]

	Converts bytes to a sensible format to be printed. For example:

print_bytes(12345) returns '12.06 KB'
print_bytes(123456789) returns '117.74 MB'

	Parameters:	num (int) – The size in bytes.

	Raises:	ValueError –
num must be int >= 0

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	Menpo 0.4.3-dirty documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	_compose_after_inplace() (menpo.transform.base.composable.ComposableTransform method)

 	_compose_before_inplace() (menpo.transform.base.composable.ComposableTransform method)

 	_transform_inplace() (menpo.transform.base.Transformable method)

 	

 	_view_2d() (menpo.image.Image method)

 	

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	_view_landmarks_2d() (menpo.image.Image method)

 	

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

A

 	

 	Affine (class in menpo.transform)

 	aligned_source() (menpo.transform.AlignmentAffine method)

 	

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.base.alignment.Alignment method)

 	Alignment (class in menpo.transform.base.alignment)

 	alignment_error() (menpo.transform.AlignmentAffine method)

 	

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.base.alignment.Alignment method)

 	AlignmentAffine (class in menpo.transform)

 	AlignmentRotation (class in menpo.transform)

 	AlignmentSimilarity (class in menpo.transform)

 	AlignmentTranslation (class in menpo.transform)

 	AlignmentUniformScale (class in menpo.transform)

 	all_true() (menpo.image.BooleanImage method)

 	apply() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	

 	apply_inplace() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	as_greyscale() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_histogram() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_masked() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_non_alignment() (menpo.transform.AlignmentAffine method)

 	

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	as_PILImage() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_pointgraph() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	as_unmasked() (menpo.image.MaskedImage method)

 	as_vector() (menpo.base.Vectorizable method)

 	

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.shape.base.Shape method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	axis_and_angle_of_rotation() (menpo.transform.AlignmentRotation method)

 	

 	(menpo.transform.Rotation method)

B

 	

 	blank() (menpo.image.BooleanImage class method)

 	

 	(menpo.image.Image class method)

 	(menpo.image.MaskedImage class method)

 	BooleanImage (class in menpo.image)

 	bounding_box() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	bounds() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	

 	bounds_false() (menpo.image.BooleanImage method)

 	bounds_true() (menpo.image.BooleanImage method)

 	bu3dfe_83() (in module menpo.landmark)

 	build_mask_around_landmarks() (menpo.image.MaskedImage method)

C

 	

 	centre (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	centre() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	centre_of_bounds() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	children() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	clear() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	ColouredTriMesh (class in menpo.shape)

 	component() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.PCAModel method)

 	component_vector() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	components (menpo.model.InstanceLinearModel attribute)

 	

 	(menpo.model.LinearModel attribute)

 	(menpo.model.MeanInstanceLinearModel attribute)

 	(menpo.model.MeanLinearModel attribute)

 	(menpo.model.PCAModel attribute)

 	ComposableTransform (class in menpo.transform.base.composable)

 	compose_after() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	compose_after_from_vector_inplace() (menpo.transform.base.composable.VComposable method)

 	compose_after_inplace() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	compose_before() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	compose_before_inplace() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	

 	composes_inplace_with (menpo.transform.base.composable.ComposableTransform attribute)

 	

 	(menpo.transform.Homogeneous attribute)

 	(menpo.transform.TransformChain attribute)

 	composes_with (menpo.transform.Affine attribute)

 	

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.Homogeneous attribute)

 	(menpo.transform.NonUniformScale attribute)

 	(menpo.transform.Rotation attribute)

 	(menpo.transform.Similarity attribute)

 	(menpo.transform.TransformChain attribute)

 	(menpo.transform.Translation attribute)

 	(menpo.transform.UniformScale attribute)

 	(menpo.transform.base.composable.ComposableTransform attribute)

 	constrain_landmarks_to_bounds() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	constrain_mask_to_landmarks() (menpo.image.MaskedImage method)

 	constrain_points_to_bounds() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	constrain_to_landmarks() (menpo.image.BooleanImage method)

 	constrain_to_pointcloud() (menpo.image.BooleanImage method)

 	copy() (menpo.base.Copyable method)

 	

 	(menpo.base.Targetable method)

 	(menpo.base.Vectorizable method)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.landmark.LandmarkGroup method)

 	(menpo.landmark.LandmarkManager method)

 	(menpo.landmark.Landmarkable method)

 	(menpo.model.InstanceLinearModel method)

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.shape.base.Shape method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.Transformable method)

 	(menpo.transform.base.alignment.Alignment method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	Copyable (class in menpo.base)

 	crop() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_inplace() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_landmarks_inplace() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_landmarks_proportion_inplace() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_true_mask() (menpo.image.MaskedImage method)

D

 	

 	daisy() (in module menpo.feature)

 	data_dir_path() (in module menpo.io)

 	data_path_to() (in module menpo.io)

 	decompose() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.homogeneous.affine.DiscreteAffine method)

 	depth_of_vertex() (menpo.shape.PointTree method)

 	

 	(menpo.shape.Tree method)

 	diagonal (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	DirectedGraph (class in menpo.shape)

 	

 	DiscreteAffine (class in menpo.transform.homogeneous.affine)

 	distance_to() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	distance_to_subspace() (menpo.model.PCAModel method)

 	distance_to_subspace_vector() (menpo.model.PCAModel method)

 	dot_inplace_left() (in module menpo.math)

 	dot_inplace_right() (in module menpo.math)

E

 	

 	eigenvalue_decomposition() (in module menpo.math)

 	eigenvalues (menpo.model.PCAModel attribute)

 	eigenvalues_cumulative_ratio() (menpo.model.PCAModel method)

 	eigenvalues_ratio() (menpo.model.PCAModel method)

 	es() (in module menpo.feature)

 	export_image() (in module menpo.io)

 	

 	export_landmark_file() (in module menpo.io)

 	export_pickle() (in module menpo.io)

 	extract_channels() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	extract_patches() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	extract_patches_around_landmarks() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

F

 	

 	face_normals() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	false_indices() (menpo.image.BooleanImage method)

 	features_selection() (in module menpo.visualize)

 	features_selection_widget() (in module menpo.feature)

 	find_all_paths() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	find_path() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	

 	find_shortest_path() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	flic_pose() (in module menpo.landmark)

 	from_2d_ccw_angle() (menpo.transform.AlignmentRotation method)

 	

 	(menpo.transform.Rotation class method)

 	from_mask() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	from_vector() (menpo.base.Vectorizable method)

 	

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.shape.base.Shape method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	from_vector_inplace() (menpo.base.Vectorizable method)

 	

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.shape.base.Shape method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

G

 	

 	gaussian_filter() (in module menpo.feature)

 	gaussian_pyramid() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	GeneralizedProcrustesAnalysis (class in menpo.transform)

 	get() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	

 	get_adjacency_matrix() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	get_figure() (menpo.visualize.MatplotlibRenderer method)

 	

 	(menpo.visualize.Renderer method)

 	gradient() (in module menpo.feature)

 	

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	group_labels (menpo.landmark.LandmarkManager attribute)

H

 	

 	h_matrix_is_mutable (menpo.transform.Affine attribute)

 	

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.Homogeneous attribute)

 	h_points() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	has_cycles() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	has_landmarks (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	(menpo.landmark.LandmarkManager attribute)

 	(menpo.landmark.Landmarkable attribute)

 	(menpo.shape.ColouredTriMesh attribute)

 	(menpo.shape.PointCloud attribute)

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	(menpo.shape.base.Shape attribute)

 	has_landmarks_outside_bounds (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	

 	has_true_inverse (menpo.transform.base.invertible.Invertible attribute)

 	

 	(menpo.transform.base.invertible.VInvertible attribute)

 	height (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	hog() (in module menpo.feature)

 	Homogeneous (class in menpo.transform)

I

 	

 	ibug_close_eye_points() (in module menpo.landmark)

 	ibug_close_eye_trimesh() (in module menpo.landmark)

 	ibug_face_49() (in module menpo.landmark)

 	ibug_face_51() (in module menpo.landmark)

 	ibug_face_65_closed_mouth() (in module menpo.landmark)

 	ibug_face_66() (in module menpo.landmark)

 	ibug_face_68() (in module menpo.landmark)

 	ibug_face_68_trimesh() (in module menpo.landmark)

 	ibug_hand() (in module menpo.landmark)

 	ibug_open_eye() (in module menpo.landmark)

 	ibug_open_eye_trimesh() (in module menpo.landmark)

 	ibug_tongue() (in module menpo.landmark)

 	igo() (in module menpo.feature)

 	Image (class in menpo.image)

 	image_paths() (in module menpo.io)

 	ImageBoundaryError (class in menpo.image)

 	imm_face() (in module menpo.landmark)

 	import_builtin_asset() (in module menpo.io)

 	import_image() (in module menpo.io)

 	import_images() (in module menpo.io)

 	

 	import_landmark_file() (in module menpo.io)

 	import_landmark_files() (in module menpo.io)

 	import_pickle() (in module menpo.io)

 	import_pickles() (in module menpo.io)

 	indices() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	instance() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.PCAModel method)

 	instance_vector() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	instance_vectors() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	InstanceLinearModel (class in menpo.model)

 	inverse_noise_variance() (menpo.model.PCAModel method)

 	invert() (menpo.image.BooleanImage method)

 	invert_inplace() (menpo.image.BooleanImage method)

 	Invertible (class in menpo.transform.base.invertible)

 	is_edge() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	is_leaf() (menpo.shape.PointTree method)

 	

 	(menpo.shape.Tree method)

 	is_tree() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	items() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	iteritems() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	iterkeys() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	itervalues() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

K

 	

 	keys() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

L

 	

 	labeller() (in module menpo.landmark)

 	LabellingError (class in menpo.landmark)

 	labels (menpo.landmark.LandmarkGroup attribute)

 	landmark_file_paths() (in module menpo.io)

 	Landmarkable (class in menpo.landmark)

 	LandmarkableViewable (class in menpo.visualize)

 	LandmarkGroup (class in menpo.landmark)

 	LandmarkManager (class in menpo.landmark)

 	landmarks (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	(menpo.landmark.Landmarkable attribute)

 	(menpo.shape.ColouredTriMesh attribute)

 	(menpo.shape.PointCloud attribute)

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	(menpo.shape.base.Shape attribute)

 	

 	lbp() (in module menpo.feature)

 	leaves (menpo.shape.PointTree attribute)

 	

 	(menpo.shape.Tree attribute)

 	lfpw_face() (in module menpo.landmark)

 	linear_component (menpo.transform.Affine attribute)

 	

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.NonUniformScale attribute)

 	(menpo.transform.Rotation attribute)

 	(menpo.transform.Similarity attribute)

 	(menpo.transform.Translation attribute)

 	(menpo.transform.UniformScale attribute)

 	LinearModel (class in menpo.model)

 	lms (menpo.landmark.LandmarkGroup attribute)

 	log_gabor() (in module menpo.math)

 	ls_builtin_assets() (in module menpo.io)

 	lsp_pose() (in module menpo.landmark)

M

 	

 	mask (menpo.image.BooleanImage attribute)

 	masked_pixels() (menpo.image.MaskedImage method)

 	MaskedImage (class in menpo.image)

 	MatplotlibRenderer (class in menpo.visualize)

 	maximum_depth (menpo.shape.PointTree attribute)

 	

 	(menpo.shape.Tree attribute)

 	mean() (menpo.model.MeanInstanceLinearModel method)

 	

 	(menpo.model.PCAModel method)

 	mean_aligned_shape() (menpo.transform.GeneralizedProcrustesAnalysis method)

 	

 	mean_alignment_error() (menpo.transform.GeneralizedProcrustesAnalysis method)

 	mean_pointcloud() (in module menpo.shape)

 	MeanInstanceLinearModel (class in menpo.model)

 	MeanLinearModel (class in menpo.model)

 	menpo_src_dir_path() (in module menpo.base)

 	minimum_spanning_tree() (menpo.shape.PointUndirectedGraph method)

 	

 	(menpo.shape.UndirectedGraph method)

 	MultipleAlignment (class in menpo.transform.groupalign.base)

N

 	

 	n_active_components (menpo.model.PCAModel attribute)

 	n_channels (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	n_children() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	n_components (menpo.model.InstanceLinearModel attribute)

 	

 	(menpo.model.LinearModel attribute)

 	(menpo.model.MeanInstanceLinearModel attribute)

 	(menpo.model.MeanLinearModel attribute)

 	(menpo.model.PCAModel attribute)

 	n_dims (menpo.base.Targetable attribute)

 	

 	(menpo.image.BooleanImage attribute)

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	(menpo.landmark.LandmarkGroup attribute)

 	(menpo.landmark.LandmarkManager attribute)

 	(menpo.landmark.Landmarkable attribute)

 	(menpo.shape.ColouredTriMesh attribute)

 	(menpo.shape.PointCloud attribute)

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	(menpo.shape.base.Shape attribute)

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.R2LogR2RBF attribute)

 	(menpo.transform.R2LogRRBF attribute)

 	(menpo.transform.ThinPlateSplines attribute)

 	(menpo.transform.Transform attribute)

 	(menpo.transform.TransformChain attribute)

 	(menpo.transform.base.alignment.Alignment attribute)

 	(menpo.transform.base.composable.ComposableTransform attribute)

 	n_dims_output (menpo.transform.base.composable.ComposableTransform attribute)

 	

 	(menpo.transform.R2LogR2RBF attribute)

 	(menpo.transform.R2LogRRBF attribute)

 	(menpo.transform.ThinPlateSplines attribute)

 	(menpo.transform.Transform attribute)

 	(menpo.transform.TransformChain attribute)

 	n_edges (menpo.shape.DirectedGraph attribute)

 	

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.Tree attribute)

 	(menpo.shape.UndirectedGraph attribute)

 	n_elements (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	n_false() (menpo.image.BooleanImage method)

 	n_false_elements() (menpo.image.MaskedImage method)

 	n_false_pixels() (menpo.image.MaskedImage method)

 	n_features (menpo.model.InstanceLinearModel attribute)

 	

 	(menpo.model.LinearModel attribute)

 	(menpo.model.MeanInstanceLinearModel attribute)

 	(menpo.model.MeanLinearModel attribute)

 	(menpo.model.PCAModel attribute)

 	n_groups (menpo.landmark.LandmarkManager attribute)

 	n_labels (menpo.landmark.LandmarkGroup attribute)

 	n_landmark_groups (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	(menpo.landmark.Landmarkable attribute)

 	(menpo.shape.ColouredTriMesh attribute)

 	(menpo.shape.PointCloud attribute)

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	(menpo.shape.base.Shape attribute)

 	n_landmarks (menpo.landmark.LandmarkGroup attribute)

 	n_leaves (menpo.shape.PointTree attribute)

 	

 	(menpo.shape.Tree attribute)

 	n_neighbours() (menpo.shape.PointUndirectedGraph method)

 	

 	(menpo.shape.UndirectedGraph method)

 	n_parameters (menpo.base.Vectorizable attribute)

 	

 	(menpo.image.BooleanImage attribute)

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	(menpo.shape.ColouredTriMesh attribute)

 	(menpo.shape.PointCloud attribute)

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	(menpo.shape.base.Shape attribute)

 	(menpo.transform.Affine attribute)

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.Homogeneous attribute)

 	(menpo.transform.NonUniformScale attribute)

 	(menpo.transform.Similarity attribute)

 	(menpo.transform.Translation attribute)

 	(menpo.transform.UniformScale attribute)

 	

 	n_parent() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	n_paths() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	n_pixels (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	n_points (menpo.base.Targetable attribute)

 	

 	(menpo.shape.ColouredTriMesh attribute)

 	(menpo.shape.PointCloud attribute)

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.ThinPlateSplines attribute)

 	(menpo.transform.base.alignment.Alignment attribute)

 	n_tris (menpo.shape.ColouredTriMesh attribute)

 	

 	(menpo.shape.TexturedTriMesh attribute)

 	(menpo.shape.TriMesh attribute)

 	n_true() (menpo.image.BooleanImage method)

 	n_true_elements() (menpo.image.MaskedImage method)

 	n_true_pixels() (menpo.image.MaskedImage method)

 	n_vertices (menpo.shape.DirectedGraph attribute)

 	

 	(menpo.shape.PointDirectedGraph attribute)

 	(menpo.shape.PointGraph attribute)

 	(menpo.shape.PointTree attribute)

 	(menpo.shape.PointUndirectedGraph attribute)

 	(menpo.shape.Tree attribute)

 	(menpo.shape.UndirectedGraph attribute)

 	n_vertices_at_depth() (menpo.shape.PointTree method)

 	

 	(menpo.shape.Tree method)

 	neighbours() (menpo.shape.PointUndirectedGraph method)

 	

 	(menpo.shape.UndirectedGraph method)

 	no_op() (in module menpo.feature)

 	noise_variance() (menpo.model.PCAModel method)

 	noise_variance_ratio() (menpo.model.PCAModel method)

 	NonUniformScale (class in menpo.transform)

 	norm() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	normalize_norm_inplace() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	normalize_std_inplace() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

O

 	

 	original_variance() (menpo.model.PCAModel method)

 	orthonormalize_against_inplace() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	

 	orthonormalize_inplace() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

P

 	

 	parent() (menpo.shape.DirectedGraph method)

 	

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	PCAModel (class in menpo.model)

 	PiecewiseAffine (in module menpo.transform)

 	plot_eigenvalues() (menpo.model.PCAModel method)

 	plot_eigenvalues_cumulative_ratio() (menpo.model.PCAModel method)

 	plot_eigenvalues_ratio() (menpo.model.PCAModel method)

 	PointCloud (class in menpo.shape)

 	PointDirectedGraph (class in menpo.shape)

 	PointGraph (class in menpo.shape)

 	PointTree (class in menpo.shape)

 	PointUndirectedGraph (class in menpo.shape)

 	pop() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	popitem() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	principal_component_decomposition() (in module menpo.math)

 	print_bytes() (in module menpo.visualize)

 	

 	print_dynamic() (in module menpo.visualize)

 	progress_bar_str() (in module menpo.visualize)

 	project() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.PCAModel method)

 	project_out() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.PCAModel method)

 	project_out_vector() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	project_out_vectors() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	project_vector() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	project_vectors() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	project_whitened() (menpo.model.PCAModel method)

 	project_whitened_vector() (menpo.model.PCAModel method)

 	proportion_false() (menpo.image.BooleanImage method)

 	proportion_true() (menpo.image.BooleanImage method)

 	pseudoinverse() (menpo.transform.AlignmentAffine method)

 	

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.invertible.Invertible method)

 	(menpo.transform.base.invertible.VInvertible method)

 	pseudoinverse_vector() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	(menpo.transform.base.invertible.VInvertible method)

 	pyramid() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

R

 	

 	R2LogR2RBF (class in menpo.transform)

 	R2LogRRBF (class in menpo.transform)

 	range() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	reconstruct() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.PCAModel method)

 	reconstruct_vector() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	reconstruct_vectors() (menpo.model.InstanceLinearModel method)

 	

 	(menpo.model.LinearModel method)

 	(menpo.model.MeanInstanceLinearModel method)

 	(menpo.model.MeanLinearModel method)

 	(menpo.model.PCAModel method)

 	relative_location_edge() (menpo.shape.PointDirectedGraph method)

 	

 	(menpo.shape.PointTree method)

 	relative_locations() (menpo.shape.PointDirectedGraph method)

 	

 	(menpo.shape.PointTree method)

 	render() (menpo.visualize.MatplotlibRenderer method)

 	

 	(menpo.visualize.Renderer method)

 	

 	Renderer (class in menpo.visualize)

 	rescale() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_landmarks_to_diagonal_range() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_to_diagonal() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_to_reference_shape() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	resize() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rotate_ccw_about_centre() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	Rotation (class in menpo.transform)

 	rotation_matrix (menpo.transform.AlignmentRotation attribute)

 	

 	(menpo.transform.Rotation attribute)

S

 	

 	save_figure() (menpo.visualize.MatplotlibRenderer method)

 	

 	(menpo.visualize.Renderer method)

 	save_figure_widget() (menpo.visualize.MatplotlibRenderer method)

 	save_matplotlib_figure() (in module menpo.visualize)

 	scale (menpo.transform.AlignmentUniformScale attribute)

 	

 	(menpo.transform.NonUniformScale attribute)

 	(menpo.transform.UniformScale attribute)

 	Scale() (in module menpo.transform)

 	set_h_matrix() (menpo.transform.Affine method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	set_masked_pixels() (menpo.image.MaskedImage method)

 	set_target() (menpo.base.Targetable method)

 	

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.base.alignment.Alignment method)

 	setdefault() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	Shape (class in menpo.shape.base)

 	shape (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	

 	Similarity (class in menpo.transform)

 	source (menpo.transform.AlignmentAffine attribute)

 	

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.ThinPlateSplines attribute)

 	(menpo.transform.base.alignment.Alignment attribute)

 	stickmen_pose() (in module menpo.landmark)

 	streetscene_car_view_0() (in module menpo.landmark)

 	streetscene_car_view_1() (in module menpo.landmark)

 	streetscene_car_view_2() (in module menpo.landmark)

 	streetscene_car_view_3() (in module menpo.landmark)

 	streetscene_car_view_4() (in module menpo.landmark)

 	streetscene_car_view_5() (in module menpo.landmark)

 	streetscene_car_view_6() (in module menpo.landmark)

 	streetscene_car_view_7() (in module menpo.landmark)

T

 	

 	target (menpo.base.Targetable attribute)

 	

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.ThinPlateSplines attribute)

 	(menpo.transform.base.alignment.Alignment attribute)

 	Targetable (class in menpo.base)

 	tcoords_pixel_scaled() (menpo.shape.TexturedTriMesh method)

 	TexturedTriMesh (class in menpo.shape)

 	ThinPlateSplines (class in menpo.transform)

 	tojson() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	Transform (class in menpo.transform)

 	Transformable (class in menpo.transform.base)

 	

 	TransformChain (class in menpo.transform)

 	Translation (class in menpo.transform)

 	translation_component (menpo.transform.Affine attribute)

 	

 	(menpo.transform.AlignmentAffine attribute)

 	(menpo.transform.AlignmentRotation attribute)

 	(menpo.transform.AlignmentSimilarity attribute)

 	(menpo.transform.AlignmentTranslation attribute)

 	(menpo.transform.AlignmentUniformScale attribute)

 	(menpo.transform.NonUniformScale attribute)

 	(menpo.transform.Rotation attribute)

 	(menpo.transform.Similarity attribute)

 	(menpo.transform.Translation attribute)

 	(menpo.transform.UniformScale attribute)

 	Tree (class in menpo.shape)

 	trim_components() (menpo.model.PCAModel method)

 	TriMesh (class in menpo.shape)

 	true_indices() (menpo.image.BooleanImage method)

U

 	

 	UndirectedGraph (class in menpo.shape)

 	UniformScale (class in menpo.transform)

 	

 	update() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

V

 	

 	values() (menpo.landmark.LandmarkGroup method)

 	

 	(menpo.landmark.LandmarkManager method)

 	variance() (menpo.model.PCAModel method)

 	variance_ratio() (menpo.model.PCAModel method)

 	VComposable (class in menpo.transform.base.composable)

 	Vectorizable (class in menpo.base)

 	vertex_normals() (menpo.shape.ColouredTriMesh method)

 	

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	vertices_at_depth() (menpo.shape.PointTree method)

 	

 	(menpo.shape.Tree method)

 	

 	view_widget() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.landmark.LandmarkGroup method)

 	(menpo.landmark.LandmarkManager method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	Viewable (class in menpo.visualize)

 	VInvertible (class in menpo.transform.base.invertible)

 	visualize_images() (in module menpo.visualize)

 	visualize_landmarkgroups() (in module menpo.visualize)

 	visualize_landmarks() (in module menpo.visualize)

 	visualize_pointclouds() (in module menpo.visualize)

W

 	

 	warp_to_mask() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	warp_to_shape() (menpo.image.BooleanImage method)

 	

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	whitened_components() (menpo.model.PCAModel method)

 	

 	width (menpo.image.BooleanImage attribute)

 	

 	(menpo.image.Image attribute)

 	(menpo.image.MaskedImage attribute)

 	with_labels() (menpo.landmark.LandmarkGroup method)

 	without_labels() (menpo.landmark.LandmarkGroup method)

 Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

 _modules/menpo/shape/groupops.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.groupops

from .pointcloud import PointCloud
import numpy as np

[docs]def mean_pointcloud(pointclouds):
 r"""
 Compute the mean of a `list` of :map:`PointCloud` objects.

 Parameters

 pointclouds: `list` of :map:`PointCloud`
 List of point cloud objects from which we want to compute the mean.

 Returns

 mean_pointcloud : :map:`PointCloud`
 The mean point cloud.
 """
 return PointCloud(np.mean([pc.points for pc in pointclouds], axis=0))

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/shape/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.base

from menpo.base import Vectorizable
from menpo.landmark import Landmarkable
from menpo.transform.base import Transformable
from menpo.visualize import LandmarkableViewable, Viewable

[docs]class Shape(Vectorizable, Transformable, Landmarkable, LandmarkableViewable,
 Viewable):
 """
 Abstract representation of shape. Shapes are :map:`Transformable`,
 :map:`Vectorizable`, :map:`Landmarkable`, :map:`LandmarkableViewable` and
 :map:`Viewable`. This base class handles transforming landmarks when the
 shape is transformed. Therefore, implementations of :map:`Shape` have to
 implement the abstract :meth:`_transform_self_inplace` method that handles
 transforming the :map:`Shape` itself.
 """

 def _transform_inplace(self, transform):
 """
 Transform the landmarks and the shape itself.

 Parameters

 transform : `function`
 A function to transform the spatial data with.

 Returns

 self : `type(self)`
 A pointer to `self` (the result of :meth:`_transform_self_inplace`).
 """
 if self.has_landmarks:
 self.landmarks._transform_inplace(transform)
 return self._transform_self_inplace(transform)

 def _transform_self_inplace(self, transform):
 """
 Implement this method to transform the concrete implementation of a
 shape. This is then called by the Shape's :meth:`_transform_inplace`
 method, which will have updated the landmarks beforehand.

 Parameters

 transform : `function`
 A function to transform the spatial data with.

 Returns

 self : `type(self)`
 A pointer to `self`.
 """
 pass

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/shape/pointcloud.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.pointcloud

import numpy as np
from warnings import warn
from scipy.spatial.distance import cdist
from menpo.shape.base import Shape

[docs]class PointCloud(Shape):
 r"""
 An N-dimensional point cloud. This is internally represented as an `ndarray`
 of shape ``(n_points, n_dims)``. This class is important for dealing
 with complex functionality such as viewing and representing metadata such
 as landmarks.

 Currently only 2D and 3D pointclouds are viewable.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 copy : `bool`, optional
 If ``False``, the points will not be copied on assignment. Note that
 this will miss out on additional checks. Further note that we still
 demand that the array is C-contiguous - if it isn't, a copy will be
 generated anyway.
 In general this should only be used if you know what you are doing.
 """

 def __init__(self, points, copy=True):
 super(PointCloud, self).__init__()
 if not copy:
 if not points.flags.c_contiguous:
 warn('The copy flag was NOT honoured. A copy HAS been made. '
 'Please ensure the data you pass is C-contiguous.')
 points = np.array(points, copy=True, order='C')
 else:
 points = np.array(points, copy=True, order='C')
 self.points = points

 @property
 def n_points(self):
 r"""
 The number of points in the pointcloud.

 :type: `int`
 """
 return self.points.shape[0]

 @property
 def n_dims(self):
 r"""
 The number of dimensions in the pointcloud.

 :type: `int`
 """
 return self.points.shape[1]

[docs] def h_points(self):
 r"""
 Convert poincloud to a homogeneous array: ``(n_dims + 1, n_points)``

 :type: ``type(self)``
 """
 return np.concatenate((self.points.T, np.ones(self.n_points)[None, :]))

[docs] def centre(self):
 r"""
 The mean of all the points in this PointCloud (centre of mass).

 Returns

 centre : ``(n_dims)`` `ndarray`
 The mean of this PointCloud's points.
 """
 return np.mean(self.points, axis=0)

[docs] def centre_of_bounds(self):
 r"""
 The centre of the absolute bounds of this PointCloud. Contrast with
 :meth:`centre`, which is the mean point position.

 Returns

 centre : ``n_dims`` `ndarray`
 The centre of the bounds of this PointCloud.
 """
 min_b, max_b = self.bounds()
 return (min_b + max_b) / 2

 def _as_vector(self):
 r"""
 Returns a flattened representation of the pointcloud.
 Note that the flattened representation is of the form
 ``[x0, y0, x1, y1,, xn, yn]`` for 2D.

 Returns

 flattened : ``(n_points,)`` `ndarray`
 The flattened points.
 """
 return self.points.ravel()

[docs] def tojson(self):
 r"""
 Convert this :map:`PointCloud` to a dictionary representation suitable
 for inclusion in the LJSON landmark format.

 Returns

 json : `dict`
 Dictionary with ``points`` keys.
 """
 return {'points': self.points.tolist()}

[docs] def from_vector_inplace(self, vector):
 r"""
 Updates the points of this PointCloud in-place with the reshaped points
 from the provided vector. Note that the vector should have the form
 ``[x0, y0, x1, y1,, xn, yn]`` for 2D.

 Parameters

 vector : ``(n_points,)`` `ndarray`
 The vector from which to create the points' array.
 """
 self.points = vector.reshape([-1, self.n_dims])

 def __str__(self):
 return '{}: n_points: {}, n_dims: {}'.format(type(self).__name__,
 self.n_points,
 self.n_dims)

[docs] def bounds(self, boundary=0):
 r"""
 The minimum to maximum extent of the PointCloud. An optional boundary
 argument can be provided to expand the bounds by a constant margin.

 Parameters

 boundary : `float`
 A optional padding distance that is added to the bounds. Default
 is ``0``, meaning the max/min of tightest possible containing
 square/cube/hypercube is returned.

 Returns

 min_b : ``(n_dims,)`` `ndarray`
 The minimum extent of the :map:`PointCloud` and boundary along
 each dimension
 max_b : ``(n_dims,)`` `ndarray`
 The maximum extent of the :map:`PointCloud` and boundary along
 each dimension
 """
 min_b = np.min(self.points, axis=0) - boundary
 max_b = np.max(self.points, axis=0) + boundary
 return min_b, max_b

[docs] def range(self, boundary=0):
 r"""
 The range of the extent of the PointCloud.

 Parameters

 boundary : `float`
 A optional padding distance that is used to extend the bounds
 from which the range is computed. Default is ``0``, no extension
 is performed.

 Returns

 range : ``(n_dims,)`` `ndarray`
 The range of the :map:`PointCloud` extent in each dimension.
 """
 min_b, max_b = self.bounds(boundary)
 return max_b - min_b

[docs] def bounding_box(self):
 r"""
 Return the bounding box of this PointCloud as a directed graph.
 The the first point (0) will be nearest the origin for an axis aligned
 Pointcloud.
 In the case of an image, this ordering would appear as:

 ::

 0<--3
 | ^
 | |
 v |
 1-->2

 Returns

 bounding_box : :map:`PointDirectedGraph`
 The axis aligned bounding box of the PointCloud.
 """
 from .graph import PointDirectedGraph
 min_p, max_p = self.bounds()
 return PointDirectedGraph(np.array([min_p, [max_p[0], min_p[1]],
 max_p, [min_p[0], max_p[1]]]),
 np.array([[0, 1], [1, 2], [2, 3], [3, 0]]),
 copy=False)

[docs] def _view_2d(self, figure_id=None, new_figure=False, image_view=True,
 render_markers=True, marker_style='o', marker_size=20,
 marker_face_colour='r', marker_edge_colour='k',
 marker_edge_width=1., render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8),
 label=None, **kwargs):
 r"""
 Visualization of the PointCloud in 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointCloud will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.
 """
 from menpo.visualize.base import PointGraphViewer2d
 adjacency_array = np.empty(0)
 renderer = PointGraphViewer2d(figure_id, new_figure,
 self.points,
 adjacency_array)
 renderer.render(
 image_view=image_view, render_lines=False, line_colour='b',
 line_style='-', line_width=1., render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_axes=render_axes,
 axes_font_name=axes_font_name, axes_font_size=axes_font_size,
 axes_font_style=axes_font_style, axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits,
 figure_size=figure_size, label=label)
 return renderer

[docs] def _view_landmarks_2d(self, group=None, with_labels=None,
 without_labels=None, figure_id=None,
 new_figure=False, image_view=True, render_lines=True,
 line_colour=None, line_style='-', line_width=1,
 render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour=None,
 marker_edge_colour=None, marker_edge_width=1.,
 render_numbering=False,
 numbers_horizontal_align='center',
 numbers_vertical_align='bottom',
 numbers_font_name='sans-serif', numbers_font_size=10,
 numbers_font_style='normal',
 numbers_font_weight='normal',
 numbers_font_colour='k', render_legend=False,
 legend_title='', legend_font_name='sans-serif',
 legend_font_style='normal', legend_font_size=10,
 legend_font_weight='normal',
 legend_marker_scale=None, legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.),
 legend_border_axes_pad=None, legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None, legend_border=True,
 legend_border_padding=None, legend_shadow=False,
 legend_rounded_corners=False, render_axes=False,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None,
 figure_size=(10, 8)):
 """
 Visualize the landmarks. This method will appear on the Image as
 ``view_landmarks`` if the Image is 2D.

 Parameters

 group : `str` or``None`` optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointCloud will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None`` optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None`` optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 if not self.has_landmarks:
 raise ValueError('PointCloud does not have landmarks attached, '
 'unable to view landmarks.')
 self_view = self.view(figure_id=figure_id, new_figure=new_figure,
 image_view=image_view, figure_size=figure_size)
 landmark_view = self.landmarks[group].view(
 with_labels=with_labels, without_labels=without_labels,
 figure_id=self_view.figure_id, new_figure=False,
 image_view=image_view, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend, legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size)

 return landmark_view

 def _view_3d(self, figure_id=None, new_figure=False):
 r"""
 Visualization of the PointCloud in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.

 Returns

 viewer : PointCloudViewer3d
 The Menpo3D viewer object.
 """
 try:
 from menpo3d.visualize import PointCloudViewer3d
 return PointCloudViewer3d(figure_id, new_figure,
 self.points).render()
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)

 def _view_landmarks_3d(self, figure_id=None, new_figure=False,
 group=None):
 r"""
 Visualization of the PointCloud landmarks in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 group : `str`
 The landmark group to visualize. If ``None`` is passed, the first
 and only landmark group on the object will be visualized.

 Returns

 viewer : LandmarkViewer3d
 The Menpo3D viewer object.
 """
 try:
 from menpo3d.visualize import LandmarkViewer3d
 self_renderer = self.view(figure_id=figure_id,
 new_figure=new_figure)
 return LandmarkViewer3d(self_renderer.figure, False, self,
 self.landmarks[group]).render()
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)

[docs] def view_widget(self, popup=False, browser_style='buttons',
 figure_size=(10, 8)):
 r"""
 Visualization of the PointCloud using the :map:`visualize_pointclouds`
 widget.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will be rendered in a popup window.
 browser_style : ``{buttons, slider}``, optional
 It defines whether the selector of the PointCloud objects will have
 the form of plus/minus buttons or a slider.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 """
 from menpo.visualize import visualize_pointclouds
 visualize_pointclouds(self, popup=popup, figure_size=figure_size,
 browser_style=browser_style)

 def _transform_self_inplace(self, transform):
 self.points = transform(self.points)
 return self

[docs] def distance_to(self, pointcloud, **kwargs):
 r"""
 Returns a distance matrix between this PointCloud and another.
 By default the Euclidean distance is calculated - see
 `scipy.spatial.distance.cdist` for valid kwargs to change the metric
 and other properties.

 Parameters

 pointcloud : :map:`PointCloud`
 The second pointcloud to compute distances between. This must be
 of the same dimension as this PointCloud.

 Returns

 distance_matrix: ``(n_points, n_points)`` `ndarray`
 The symmetric pairwise distance matrix between the two PointClouds
 s.t. ``distance_matrix[i, j]`` is the distance between the i'th
 point of this PointCloud and the j'th point of the input
 PointCloud.
 """
 if self.n_dims != pointcloud.n_dims:
 raise ValueError("The two PointClouds must be of the same "
 "dimensionality.")
 return cdist(self.points, pointcloud.points, **kwargs)

[docs] def norm(self, **kwargs):
 r"""
 Returns the norm of this PointCloud. This is a translation and
 rotation invariant measure of the point cloud's intrinsic size - in
 other words, it is always taken around the point cloud's centre.

 By default, the Frobenius norm is taken, but this can be changed by
 setting kwargs - see ``numpy.linalg.norm`` for valid options.

 Returns

 norm : `float`
 The norm of this :map:`PointCloud`
 """
 return np.linalg.norm(self.points - self.centre(), **kwargs)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the PointCloud. This is then broadcast across the dimensions
 of the PointCloud and returns a new PointCloud containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointcloud : :map:`PointCloud`
 A new pointcloud that has been masked.

 Raises

 ValueError
 Mask must have same number of points as pointcloud.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this PointCloud.')
 pc = self.copy()
 pc.points = pc.points[mask, :]
 return pc

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/shape/mesh/textured.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.mesh.textured

import numpy as np

from menpo.shape import PointCloud
from menpo.transform import Scale

from ..adjacency import mask_adjacency_array, reindex_adjacency_array
from .base import TriMesh

[docs]class TexturedTriMesh(TriMesh):
 r"""
 Combines a :map:`TriMesh` with a texture. Also encapsulates the texture
 coordinates required to render the texture on the mesh.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 tcoords : ``(N, 2)`` `ndarray`
 The texture coordinates for the mesh.
 texture : :map:`Image`
 The texture for the mesh.
 trilist : ``(M, 3)`` `ndarray` or ``None``, optional
 The triangle list. If ``None``, a Delaunay triangulation of
 the points will be used instead.
 copy: `bool`, optional
 If ``False``, the points, trilist and texture will not be copied on
 assignment.
 In general this should only be used if you know what you are doing.
 """
 def __init__(self, points, tcoords, texture, trilist=None, copy=True):
 super(TexturedTriMesh, self).__init__(points, trilist=trilist,
 copy=copy)
 self.tcoords = PointCloud(tcoords, copy=copy)

 if not copy:
 self.texture = texture
 else:
 self.texture = texture.copy()

[docs] def tcoords_pixel_scaled(self):
 r"""
 Returns a :map:`PointCloud` that is modified to be suitable for directly
 indexing into the pixels of the texture (e.g. for manual mapping
 operations). The resulting tcoords behave just like image landmarks
 do.

 The operations that are performed are:

 - Flipping the origin from bottom-left to top-left
 - Scaling the tcoords by the image shape (denormalising them)
 - Permuting the axis so that

 Returns

 tcoords_scaled : :map:`PointCloud`
 A copy of the tcoords that behave like :map:`Image` landmarks

 Examples

 Recovering pixel values for every texture coordinate:

 >>> texture = texturedtrimesh.texture
 >>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
 >>> pixel_values_at_tcs = texture[tc_ps[: ,0], tc_ps[:, 1]]
 """
 scale = Scale(np.array(self.texture.shape)[::-1])
 tcoords = self.tcoords.points.copy()
 # flip the 'y' st 1 -> 0 and 0 -> 1, moving the axis to upper left
 tcoords[:, 1] = 1 - tcoords[:, 1]
 # apply the scale to get the units correct
 tcoords = scale.apply(tcoords)
 # flip axis 0 and axis 1 so indexing is as expected
 tcoords = tcoords[:, ::-1]
 return PointCloud(tcoords)

[docs] def from_vector(self, flattened):
 r"""
 Builds a new :class:`TexturedTriMesh` given the `flattened` 1D vector.
 Note that the trilist, texture, and tcoords will be drawn from self.

 Parameters

 flattened : ``(N,)`` `ndarray`
 Vector representing a set of points.

 Returns

 trimesh : :map:`TriMesh`
 A new trimesh created from the vector with ``self`` trilist.
 """
 return TexturedTriMesh(flattened.reshape([-1, self.n_dims]),
 self.tcoords.points, self.texture,
 trilist=self.trilist)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the TexturedTriMesh. This is then broadcast across the
 dimensions of the mesh and returns a new mesh containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`TexturedTriMesh`
 A new mesh that has been masked.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this '
 'TexturedTriMesh.')

 ttm = self.copy()
 if np.all(mask): # Fast path for all true
 return ttm
 else:
 # Recalculate the mask to remove isolated vertices
 isolated_mask = self._isolated_mask(mask)
 # Recreate the adjacency array with the updated mask
 masked_adj = mask_adjacency_array(isolated_mask, self.trilist)
 ttm.trilist = reindex_adjacency_array(masked_adj)
 ttm.points = ttm.points[isolated_mask, :]
 ttm.tcoords.points = ttm.tcoords.points[isolated_mask, :]
 return ttm

 def _view_3d(self, figure_id=None, new_figure=False, textured=True,
 **kwargs):
 r"""
 Visualize the :map:`TexturedTriMesh` in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 textured : `bool`, optional
 If `True`, render the texture.

 Returns

 viewer : :map:`Renderer`
 The viewer object.
 """
 if textured:
 try:
 from menpo3d.visualize import TexturedTriMeshViewer3d
 return TexturedTriMeshViewer3d(
 figure_id, new_figure, self.points,
 self.trilist, self.texture,
 self.tcoords.points).render(**kwargs)
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)
 else:
 return super(TexturedTriMesh, self).view(figure_id=figure_id,
 new_figure=new_figure,
 **kwargs)

[docs] def _view_2d(self, figure_id=None, new_figure=False, image_view=True,
 render_lines=True, line_colour='r', line_style='-',
 line_width=1., render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour='k', marker_edge_colour='k',
 marker_edge_width=1., render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8),
 label=None):
 r"""
 Visualization of the TriMesh in 2D. Currently, explicit textured TriMesh
 viewing is not supported, and therefore viewing falls back to untextured
 2D TriMesh viewing.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the TexturedTriMesh will be viewed as if it is in the
 image coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.

 Raises

 warning
 2D Viewing of Coloured TriMeshes is not supported, automatically
 falls back to 2D :map:`TriMesh` viewing.
 """
 import warnings
 warnings.warn(Warning('2D Viewing of Textured TriMeshes is not '
 'supported, falling back to TriMesh viewing.'))
 return TriMesh._view_2d(
 self, figure_id=figure_id, new_figure=new_figure,
 image_view=image_view, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_axes=render_axes,
 axes_font_name=axes_font_name, axes_font_size=axes_font_size,
 axes_font_style=axes_font_style, axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits,
 figure_size=figure_size, label=label)

 def __str__(self):
 return '{}\ntexture_shape: {}, n_texture_channels: {}'.format(
 TriMesh.__str__(self), self.texture.shape, self.texture.n_channels)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/shape/mesh/coloured.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.mesh.coloured

import numpy as np

from ..adjacency import mask_adjacency_array, reindex_adjacency_array
from .base import TriMesh

[docs]class ColouredTriMesh(TriMesh):
 r"""
 Combines a :map:`TriMesh` with a colour per vertex.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 trilist : ``(M, 3)`` `ndarray` or ``None``, optional
 The triangle list. If `None`, a Delaunay triangulation of
 the points will be used instead.
 colours : ``(N, 3)`` `ndarray`, optional
 The floating point RGB colour per vertex. If not given, grey will be
 assigned to each vertex.
 copy: `bool`, optional
 If ``False``, the points, trilist and colours will not be copied on
 assignment.
 In general this should only be used if you know what you are doing.

 Raises

 ValueError
 If the number of colour values does not match the number of vertices.
 """

 def __init__(self, points, trilist=None, colours=None, copy=True):
 TriMesh.__init__(self, points, trilist=trilist, copy=copy)
 # Handle the settings of colours, either be provided a default grey
 # set of colours, or copy the given array if necessary
 if colours is None:
 # default to grey
 colours_handle = np.ones_like(points, dtype=np.float) * 0.5
 elif not copy:
 colours_handle = colours
 else:
 colours_handle = colours.copy()

 if points.shape[0] != colours.shape[0]:
 raise ValueError('Must provide a colour per-vertex.')
 self.colours = colours_handle

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the ColouredTriMesh. This is then broadcast across the
 dimensions of the mesh and returns a new mesh containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`ColouredTriMesh`
 A new mesh that has been masked.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this '
 'ColouredTriMesh.')

 ctm = self.copy()
 if np.all(mask): # Fast path for all true
 return ctm
 else:
 # Recalculate the mask to remove isolated vertices
 isolated_mask = self._isolated_mask(mask)
 # Recreate the adjacency array with the updated mask
 masked_adj = mask_adjacency_array(isolated_mask, self.trilist)
 ctm.trilist = reindex_adjacency_array(masked_adj)
 ctm.points = ctm.points[isolated_mask, :]
 ctm.colours = ctm.colours[isolated_mask, :]
 return ctm

 def _view_3d(self, figure_id=None, new_figure=False, coloured=True,
 **kwargs):
 r"""
 Visualize the :map:`ColouredTriMesh` in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 coloured : `bool`, optional
 If `True`, render the colours.

 Returns

 viewer : :map:`Renderer`
 The viewer object.
 """
 if coloured:
 try:
 from menpo3d.visualize import ColouredTriMeshViewer3d
 return ColouredTriMeshViewer3d(
 figure_id, new_figure, self.points,
 self.trilist, self.colours).render(**kwargs)
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)
 else:
 return super(ColouredTriMesh, self).view(figure_id=figure_id,
 new_figure=new_figure,
 **kwargs)

[docs] def _view_2d(self, figure_id=None, new_figure=False, image_view=True,
 render_lines=True, line_colour='r', line_style='-',
 line_width=1., render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour='k', marker_edge_colour='k',
 marker_edge_width=1., render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8),
 label=None):
 r"""
 Visualization of the TriMesh in 2D. Currently, explicit coloured TriMesh
 viewing is not supported, and therefore viewing falls back to uncoloured
 2D TriMesh viewing.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the ColouredTriMesh will be viewed as if it is in the
 image coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.

 Raises

 warning
 2D Viewing of Coloured TriMeshes is not supported, automatically
 falls back to 2D :map:`TriMesh` viewing.
 """
 import warnings
 warnings.warn(Warning('2D Viewing of Coloured TriMeshes is not '
 'supported, falling back to TriMesh viewing.'))
 return TriMesh._view_2d(
 self, figure_id=figure_id, new_figure=new_figure,
 image_view=image_view, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_axes=render_axes,
 axes_font_name=axes_font_name, axes_font_size=axes_font_size,
 axes_font_style=axes_font_style, axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits,
 figure_size=figure_size, label=label)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/math/convolution.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.math.convolution

log_gabor filter and __frequency_butterworth_filter are derived from Matlab
scripts written by Peter Kovesi. We maintain his copyright notice below.
#
Copyright (c) 1999 Peter Kovesi
School of Computer Science & Software Engineering
The University of Western Australia
http://www.csse.uwa.edu.au/
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
The Software is provided "as is", without warranty of any kind.

import numpy as np

def __adjusted_meshgrid(shape):
 """
 Creates an adjusted meshgrid that accounts for odd image sizes. Linearly
 interpolates the values. This meshgrid assumes 'ij' indexing - which is
 due to the 1st dimension of an image being the y-dimension.

 Parameters

 shape: tuple
 Size of meshgrid, (M, N, ...). The dimensionality should not be
 swapped due to using images. Therefore, for a 2D image, the expected
 tuple is `(HEIGHT, WIDTH)`.

 Returns

 meshgrid : list of (M, N, ...) ndarrays
 The meshgrid over each dimension given by the shape.

 """
 adjust_range = []
 for dim in shape:
 adjust_range.append(np.linspace(-0.5, 0.5, dim))

 return np.meshgrid(*adjust_range, indexing='ij')

def __frequency_butterworth_filter(shape, cutoff, order):
 r"""
 Builds an N-D butterworth filter

 ..math::

 f = \frac{1.0}{1.0 + (w / cutoff)^{2n}}

 The frequency origin of the returned filter is at the corners.

 Parameters

 shape : tuple
 The size of the filter (M, N, ...)
 cutoff : double
 Cutoff frequency of the filter in the range `[0, 0.5]`
 order : positive int
 Order of the filter. The higher it is the sharper the transition

 Returns

 butterworth_filter : (M, N, ...) ndarray
 The butterworth filter for the given parameters. Will be the same
 shape as was requested.
 """
 # Dimension-free sum of squares
 grid = __adjusted_meshgrid(shape)
 grid_sq = [g ** 2 for g in grid]
 grid_sq = sum(grid_sq)

 radius = np.sqrt(grid_sq)
 return np.fft.ifftshift(1.0 / ((radius / cutoff) ** (2 * order) + 1.0))

TODO: merge the 2D and 3D versions if possible
[docs]def log_gabor(image, **kwargs):
 r"""
 Creates a log-gabor filter bank, including smoothing the images via a
 low-pass filter at the edges.

 To create a 2D filter bank, simply specify the number of phi
 orientations (orientations in the xy-plane).

 To create a 3D filter bank, you must specify both the number of
 phi (azimuth) and theta (elevation) orientations.

 This algorithm is directly derived from work by Peter Kovesi.

 Parameters

 image : ``(M, N, ...)`` `ndarray`
 Image to be convolved
 num_scales : `int`, optional
 Number of wavelet scales.

 ========== ==
 Default 2D 4
 Default 3D 4
 ========== ==
 num_phi_orientations : `int`, optional
 Number of filter orientations in the xy-plane

 ========== ==
 Default 2D 6
 Default 3D 6
 ========== ==
 num_theta_orientations : `int`, optional
 Only required for 3D. Number of filter orientations in the z-plane

 ========== ==
 Default 2D N/A
 Default 3D 4
 ========== ==
 min_wavelength : `int`, optional
 Wavelength of smallest scale filter.

 ========== ==
 Default 2D 3
 Default 3D 3
 ========== ==
 scaling_constant : `int`, optional
 Scaling factor between successive filters.

 ========== ==
 Default 2D 2
 Default 3D 2
 ========== ==
 center_sigma : `float`, optional
 Ratio of the standard deviation of the Gaussian describing the Log
 Gabor filter's transfer function in the frequency domain to the filter
 centre frequency.

 ========== ==
 Default 2D 0.65
 Default 3D 0.65
 ========== ==
 d_phi_sigma : `float`, optional
 Angular bandwidth in xy-plane

 ========== ==
 Default 2D 1.3
 Default 3D 1.5
 ========== ==
 d_theta_sigma : `float`, optional
 Only required for 3D. Angular bandwidth in z-plane

 ========== ==
 Default 2D N/A
 Default 3D 1.5
 ========== ==

 Returns

 complex_conv : ``(num_scales, num_orientations, image.shape)`` `ndarray`
 Complex valued convolution results. The real part is the
 result of convolving with the even symmetric filter, the
 imaginary part is the result from convolution with the
 odd symmetric filter.
 bandpass : ``(num_scales, image.shape)`` `ndarray`
 Bandpass images corresponding to each scale `s`
 S : ``(image.shape,)`` `ndarray`
 Convolved image

 Examples

 Return the magnitude of the convolution over the image at
 scale `s` and orientation `o`

 ::

 np.abs(complex_conv[s, o, :, :])

 Return the phase angles

 ::

 np.angle(complex_conv[s, o, :, :])

 References

 .. [1] D. J. Field, "Relations Between the Statistics of Natural Images
 and the Response Properties of Cortical Cells",
 Journal of The Optical Society of America A, Vol 4, No. 12,
 December 1987. pp 2379-2394
 """
 if len(image.shape) == 2: # 2D filter
 return __log_gabor_2d(image, **kwargs)
 elif len(image.shape) == 3: # 3D filter
 return __log_gabor_3d(image, **kwargs)
 else:
 raise ValueError("Image must be either 2D or 3D")

def __log_gabor_3d(image, num_scales=4, num_phi_orientations=6,
 num_theta_orientations=4, min_wavelength=3,
 scaling_constant=2, center_sigma=0.65, d_theta_sigma=1.5,
 d_phi_sigma=1.5):
 # Pre-compute sigma values
 theta_sigma = np.pi / num_theta_orientations / d_theta_sigma
 phi_sigma = (2 * np.pi) / num_phi_orientations / d_phi_sigma

 # Allocate space for return structures
 bandpass = np.empty([num_scales, image.shape[0], image.shape[1],
 image.shape[2]], dtype=np.complex)
 log_gabor = np.empty([num_scales, image.shape[0], image.shape[1],
 image.shape[2]])
 S = np.zeros(image.shape)
 complex_conv = np.empty([num_scales, num_theta_orientations,
 num_phi_orientations, image.shape[0],
 image.shape[1], image.shape[2]], dtype=np.complex)
 tmp_complex_conv = np.empty([num_scales, image.shape[0], image.shape[1],
 image.shape[2]], dtype=np.complex)

 # Pre-compute fourier values
 image_fft = np.fft.fftn(image)

 axis0, axis1, axis2 = __adjusted_meshgrid(image.shape)

 radius = np.sqrt(axis0 ** 2 + axis1 ** 2 + axis2 ** 2)
 theta = np.arctan2(axis0, axis1)
 # TODO: Is adding the mean REALLY a good idea?
 m_ab = np.abs(np.mean(radius))
 phi = np.arccos(axis2 / (radius + m_ab))

 radius = np.fft.ifftshift(radius)
 radius[0, 0, 0] = 1.0
 theta = np.fft.ifftshift(theta)
 phi = np.fft.ifftshift(phi)

 sin_theta = np.sin(theta)
 cos_theta = np.cos(theta)
 sin_phi = np.sin(phi)
 cos_phi = np.cos(phi)

 # Compute the lowpass filter
 butterworth_filter = __frequency_butterworth_filter(image.shape, 0.45, 15)

 # Compute radial component of filter
 for s in range(num_scales):
 wavelength = min_wavelength * scaling_constant ** s
 fo = 1.0 / wavelength

 l = np.exp((-np.log(radius / fo) ** 2) /
 (2.0 * np.log(center_sigma) ** 2))
 l = l * butterworth_filter
 l[0, 0, 0] = 0.0

 log_gabor[s, :, :, :] = l
 bandpass[s, :, :, :] = np.fft.ifft2(image_fft * l)

 # Computer angular component of filter
 for e in range(num_theta_orientations):
 # Pre-compute filter data specific to this orientation
 elevation_angle = e * np.pi / num_theta_orientations

 d_theta_sin = (sin_theta * np.cos(elevation_angle) -
 cos_theta * np.sin(elevation_angle))
 d_theta_cos = (cos_theta * np.cos(elevation_angle) +
 sin_theta * np.sin(elevation_angle))
 d_theta = np.abs(np.arctan2(d_theta_sin, d_theta_cos))

 for a in range(num_phi_orientations):
 azimuth_angle = a * 2 * np.pi / num_phi_orientations
 d_phi_sin = (sin_phi * np.cos(azimuth_angle) -
 cos_phi * np.sin(azimuth_angle))
 d_phi_cos = (cos_phi * np.cos(azimuth_angle) +
 sin_phi * np.sin(azimuth_angle))
 d_phi = np.abs(np.arctan2(d_phi_sin, d_phi_cos))

 phi_spread = (-d_phi ** 2) / (2 * phi_sigma ** 2)
 theta_spread = (-d_theta ** 2) / (2 * theta_sigma ** 2)
 spread = np.exp(phi_spread + theta_spread)

 # For each scale, multiply by the angular spread
 for s in range(0, num_scales):
 filter_bank = log_gabor[s] * spread

 shifted_filter = np.fft.fftshift(filter_bank)
 S += shifted_filter * np.conjugate(shifted_filter)

 tmp_complex_conv[s, :, :] = np.fft.ifft2(image_fft *
 filter_bank)

 complex_conv[:, e, a, :, :] = tmp_complex_conv[None, None, ...]

 # TODO: Do we need to flip S as in the 2D version?
 return complex_conv, bandpass, S

def __log_gabor_2d(image, num_scales=4, num_orientations=6,
 min_wavelength=3, scaling_constant=2, center_sigma=0.65,
 d_phi_sigma=1.3):
 # Allocate space for return structures
 bandpass = np.empty([num_scales, image.shape[0], image.shape[1]],
 dtype=np.complex)
 log_gabor = np.empty([num_scales, image.shape[0], image.shape[1]])
 S = np.zeros(image.shape)
 complex_conv = np.empty([num_scales, num_orientations, image.shape[0],
 image.shape[1]], dtype=np.complex)
 tmp_complex_conv = np.empty([num_scales, image.shape[0], image.shape[1]],
 dtype=np.complex)

 # Pre-compute phi sigma
 phi_sigma = np.pi / num_orientations / d_phi_sigma

 # Pre-compute fourier values
 image_fft = np.fft.fft2(image)

 axis0, axis1 = __adjusted_meshgrid(image.shape)

 radius = np.sqrt(axis0 ** 2 + axis1 ** 2)
 phi = np.arctan2(axis0, axis1)

 radius = np.fft.ifftshift(radius)
 radius[0][0] = 1.0
 phi = np.fft.ifftshift(phi)

 sin_phi = np.sin(phi)
 cos_phi = np.cos(phi)

 # Compute the lowpass filter
 butterworth_filter = __frequency_butterworth_filter(image.shape, 0.45, 15)

 # Compute radial component of filter
 for s in range(num_scales):
 wavelength = min_wavelength * scaling_constant ** s
 fo = 1.0 / wavelength

 l = np.exp((-(np.log(radius / fo)) ** 2) /
 (2.0 * np.log(center_sigma) ** 2))
 l = l * butterworth_filter
 l[0][0] = 0.0

 log_gabor[s, :, :] = l
 bandpass[s, :, :] = np.fft.ifft2(image_fft * l)

 # Computer angular component of filter
 for o in range(num_orientations):
 # Pre-compute filter data specific to this orientation
 filter_angle = o * np.pi / num_orientations

 ds = (sin_phi * np.cos(filter_angle) -
 cos_phi * np.sin(filter_angle))
 dc = (cos_phi * np.cos(filter_angle) +
 sin_phi * np.sin(filter_angle))

 d_phi = np.abs(np.arctan2(ds, dc))

 # Calculate the standard deviation of the angular Gaussian
 # function used to construct filters in the freq. plane.
 spread = np.exp((-d_phi ** 2.0) / (2.0 * phi_sigma ** 2))

 # For each scale, multiply by the angular spread
 for s in range(0, num_scales):
 filter_bank = log_gabor[s] * spread

 shifted_filter = np.fft.fftshift(filter_bank)
 S += shifted_filter * np.conjugate(shifted_filter)

 tmp_complex_conv[s, :, :] = np.fft.ifft2(image_fft * filter_bank)

 complex_conv[:, o, :, :] = tmp_complex_conv[None, ...]

 # TODO: Why is this done??
 return complex_conv, bandpass, np.flipud(S)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/shape/mesh/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.mesh.base

coding=utf-8
import numpy as np
from warnings import warn

Delaunay = None # expensive, from scipy.spatial

from .. import PointCloud
from ..adjacency import mask_adjacency_array, reindex_adjacency_array

from .normals import compute_normals

def trilist_to_adjacency_array(trilist):
 wrap_around_adj = np.hstack([trilist[:, -1][..., None],
 trilist[:, 0][..., None]])
 # Build the array of all pairs
 return np.concatenate([trilist[:, :2],
 trilist[:, 1:],
 wrap_around_adj])

[docs]class TriMesh(PointCloud):
 r"""
 A pointcloud with a connectivity defined by a triangle list. These are
 designed to be explicitly 2D or 3D.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 trilist : ``(M, 3)`` `ndarray` or ``None``, optional
 The triangle list. If `None`, a Delaunay triangulation of
 the points will be used instead.
 copy: `bool`, optional
 If ``False``, the points will not be copied on assignment.
 Any trilist will also not be copied.
 In general this should only be used if you know what you are doing.
 """
 def __init__(self, points, trilist=None, copy=True):
 super(TriMesh, self).__init__(points, copy=copy)
 if trilist is None:
 global Delaunay
 if Delaunay is None:
 from scipy.spatial import Delaunay # expensive
 trilist = Delaunay(points).simplices
 if not copy:
 if not trilist.flags.c_contiguous:
 warn('The copy flag was NOT honoured. A copy HAS been made. '
 'Please ensure the data you pass is C-contiguous.')
 trilist = np.array(trilist, copy=True, order='C')
 else:
 trilist = np.array(trilist, copy=True, order='C')
 self.trilist = trilist

 def __str__(self):
 return '{}, n_tris: {}'.format(PointCloud.__str__(self),
 self.n_tris)

 @property
 def n_tris(self):
 r"""
 The number of triangles in the triangle list.

 :type: `int`
 """
 return len(self.trilist)

[docs] def tojson(self):
 r"""
 Convert this :map:`TriMesh` to a dictionary representation suitable
 for inclusion in the LJSON landmark format. Note that this enforces a
 simpler representation, and as such is not suitable for
 a permanent serialization of a :map:`TriMesh` (to be clear,
 :map:`TriMesh`'s serialized as part of a landmark set will be rebuilt
 as a :map:`PointUndirectedGraph`).

 Returns

 json : `dict`
 Dictionary with ``points`` and ``connectivity`` keys.
 """
 return self.as_pointgraph().tojson()

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the TriMesh. This is then broadcast across the dimensions
 of the mesh and returns a new mesh containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`TriMesh`
 A new mesh that has been masked.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this TriMesh.')

 tm = self.copy()
 if np.all(mask): # Fast path for all true
 return tm
 else:
 # Recalculate the mask to remove isolated vertices
 isolated_mask = self._isolated_mask(mask)
 # Recreate the adjacency array with the updated mask
 masked_adj = mask_adjacency_array(isolated_mask, self.trilist)
 tm.trilist = reindex_adjacency_array(masked_adj)
 tm.points = tm.points[isolated_mask, :]
 return tm

 def _isolated_mask(self, mask):
 # Find the triangles we need to keep
 masked_adj = mask_adjacency_array(mask, self.trilist)
 # Find isolated vertices (vertices that don't exist in valid
 # triangles)
 isolated_indices = np.setdiff1d(np.nonzero(mask)[0], masked_adj)

 # Create a 'new mask' that contains the points the use asked
 # for MINUS the points that we can't create triangles for
 new_mask = mask.copy()
 new_mask[isolated_indices] = False
 return new_mask

[docs] def as_pointgraph(self, copy=True):
 """
 Converts the TriMesh to a :map:`PointUndirectedGraph`.

 Parameters

 copy : `bool`, optional
 If ``True``, the graph will be a copy.

 Returns

 pointgraph : :map:`PointUndirectedGraph`
 The point graph.
 """
 from .. import PointUndirectedGraph
 # Since we have triangles we need the last connection
 # that 'completes' the triangle
 adjacency_array = trilist_to_adjacency_array(self.trilist)
 pg = PointUndirectedGraph(self.points, adjacency_array, copy=copy)
 # This is always a copy
 pg.landmarks = self.landmarks
 return pg

[docs] def vertex_normals(self):
 r"""
 Compute the per-vertex normals from the current set of points and
 triangle list. Only valid for 3D dimensional meshes.

 Returns

 normals : ``(n_points, 3)`` `ndarray`
 Normal at each point.

 Raises

 ValueError
 If mesh is not 3D
 """
 if self.n_dims != 3:
 raise ValueError("Normals are only valid for 3D meshes")
 return compute_normals(self.points, self.trilist)[0]

[docs] def face_normals(self):
 r"""
 Compute the face normals from the current set of points and
 triangle list. Only valid for 3D dimensional meshes.

 Returns

 normals : ``(n_tris, 3)`` `ndarray`
 Normal at each face.

 Raises

 ValueError
 If mesh is not 3D
 """
 if self.n_dims != 3:
 raise ValueError("Normals are only valid for 3D meshes")
 return compute_normals(self.points, self.trilist)[1]

[docs] def _view_2d(self, figure_id=None, new_figure=False, image_view=True,
 render_lines=True, line_colour='r', line_style='-',
 line_width=1., render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour='k', marker_edge_colour='k',
 marker_edge_width=1., render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8),
 label=None):
 r"""
 Visualization of the TriMesh in 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the TriMesh will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.
 """
 from menpo.visualize import PointGraphViewer2d

 return PointGraphViewer2d(
 figure_id, new_figure, self.points,
 trilist_to_adjacency_array(self.trilist)).render(
 image_view=image_view, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_axes=render_axes,
 axes_font_name=axes_font_name, axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size,
 label=label)

 def _view_3d(self, figure_id=None, new_figure=False, **kwargs):
 r"""
 Visualization of the TriMesh in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.

 Returns

 viewer : TriMeshViewer3D
 The Menpo3D viewer object.
 """
 try:
 from menpo3d.visualize import TriMeshViewer3d
 return TriMeshViewer3d(figure_id, new_figure,
 self.points, self.trilist).render(**kwargs)
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)

[docs] def view_widget(self, popup=False, browser_style='buttons',
 figure_size=(10, 8)):
 r"""
 Visualization of the TriMesh using the :map:`visualize_pointclouds`
 widget.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will be rendered in a popup window.
 browser_style : ``{buttons, slider}``, optional
 It defines whether the selector of the TriMesh objects will have
 the form of plus/minus buttons or a slider.
 figure_size : (`int`, `int`) `tuple`, optional
 The initial size of the rendered figure.
 """
 from menpo.visualize import visualize_pointclouds
 visualize_pointclouds(self, popup=popup, figure_size=figure_size,
 browser_style=browser_style)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/math/decomposition.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.math.decomposition

from __future__ import division
import numpy as np
from .linalg import dot_inplace_right

[docs]def eigenvalue_decomposition(S, eps=10**-10):
 r"""
 Eigenvalue decomposition of a given covariance (or scatter) matrix.

 Parameters

 S : ``(N, N)`` `ndarray`
 Covariance/Scatter matrix
 eps : `float`, optional
 Small value to be used for the tolerance limit computation. The final
 limit is computed as ::

 limit = np.max(np.abs(eigenvalues)) * eps

 Returns

 pos_eigenvectors : ``(N, p)`` `ndarray`
 The matrix with the eigenvectors corresponding to positive eigenvalues.
 pos_eigenvalues : ``(p,)`` `ndarray`
 The array of positive eigenvalues.
 """
 # compute eigenvalue decomposition
 eigenvalues, eigenvectors = np.linalg.eigh(S)
 # sort eigenvalues from largest to smallest
 index = np.argsort(eigenvalues)[::-1]
 eigenvalues = eigenvalues[index]
 eigenvectors = eigenvectors[:, index]

 # set tolerance limit
 limit = np.max(np.abs(eigenvalues)) * eps

 # select positive eigenvalues
 pos_index = eigenvalues > 0.0
 pos_eigenvalues = eigenvalues[pos_index]
 pos_eigenvectors = eigenvectors[:, pos_index]
 # check they are within the expected tolerance
 index = pos_eigenvalues > limit
 pos_eigenvalues = pos_eigenvalues[index]
 pos_eigenvectors = pos_eigenvectors[:, index]

 return pos_eigenvectors, pos_eigenvalues

[docs]def principal_component_decomposition(X, whiten=False, centre=True,
 bias=False, inplace=False):
 r"""
 Apply Principal Component Analysis (PCA) on the data matrix `X`. In the case
 where the data matrix is very large, it is advisable to set
 ``inplace = True``. However, note this destructively edits the data matrix
 by subtracting the mean inplace.

 Parameters

 X : ``(n_samples, n_features)`` `ndarray`
 Training data.
 whiten : `bool`, optional
 Normalise the eigenvectors to have unit magnitude.
 centre : `bool`, optional
 Whether to centre the data matrix. If ``False``, zero will be
 subtracted.
 bias : `bool`, optional
 Whether to use a biased estimate of the number of samples. If ``False``,
 subtracts ``1`` from the number of samples.
 inplace : `bool`, optional
 Whether to do the mean subtracting inplace or not. This is crucial if
 the data matrix is greater than half the available memory size.

 Returns

 eigenvectors : ``(n_components, n_features)`` `ndarray`
 The eigenvectors of the data matrix.
 eigenvalues : ``(n_components,)`` `ndarray`
 The positive eigenvalues from the data matrix.
 mean_vector : ``(n_components,)`` `ndarray`
 The mean that was subtracted from the dataset.
 """
 n_samples, n_features = X.shape

 if bias:
 N = n_samples
 else:
 N = n_samples - 1.0

 if centre:
 # centre data
 mean_vector = np.mean(X, axis=0)
 else:
 mean_vector = np.zeros(n_features)

 # This is required if the data matrix is very large!
 if inplace:
 X -= mean_vector
 else:
 X = X - mean_vector

 if n_features < n_samples:
 # compute covariance matrix
 # S: n_features x n_features
 S = np.dot(X.T, X) / N
 # S should be perfectly symmetrical, but numerical error can creep
 # in. Enforce symmetry here to avoid creating complex
 # eigenvectors from eigendecomposition
 S = (S + S.T) / 2.0

 # perform eigenvalue decomposition
 # eigenvectors: n_features x n_features
 # eigenvalues: n_features
 eigenvectors, eigenvalues = eigenvalue_decomposition(S)

 if whiten:
 # whiten eigenvectors
 eigenvectors *= np.sqrt(1.0 / eigenvalues)

 # transpose eigenvectors
 # eigenvectors: n_samples x n_features
 eigenvectors = eigenvectors.T

 else:
 # n_features > n_samples
 # compute covariance matrix
 # S: n_samples x n_samples
 S = np.dot(X, X.T) / N
 # S should be perfectly symmetrical, but numerical error can creep
 # in. Enforce symmetry here to avoid creating complex
 # eigenvectors from eigendecomposition
 S = (S + S.T) / 2.0

 # perform eigenvalue decomposition
 # eigenvectors: n_samples x n_samples
 # eigenvalues: n_samples
 eigenvectors_s, eigenvalues = eigenvalue_decomposition(S)

 # compute final eigenvectors
 # eigenvectors: n_samples x n_features
 if whiten:
 w = (N * eigenvalues) ** -1.0
 else:
 w = np.sqrt(1.0 / (N * eigenvalues))

 dot = dot_inplace_right if inplace else np.dot
 eigenvectors = dot(eigenvectors_s.T, X)

 # whiten, and we are done.
 eigenvectors *= w[:, None]

 return eigenvectors, eigenvalues, mean_vector

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/math/linalg.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.math.linalg

def dot_inplace_left(a, b, block_size=1000):
 r"""
[docs] Inplace dot product for memory efficiency. It computes ``a * b = c``, where
 ``a`` will be replaced inplace with ``c``.

 Parameters

 a : ``(n_big, k)`` `ndarray`
 First array to dot - assumed to be large. Will be damaged by this
 function call as it is used to store the output inplace.
 b : ``(k, n_small)`` `ndarray`, ``n_small <= k``
 The second array to dot - assumed to be small. ``n_small`` must be
 smaller than ``k`` so the result can be stored within the memory space
 of ``a``.
 block_size : `int`, optional
 The size of the block of ``a`` that will be dotted against ``b`` in
 each iteration. larger block sizes increase the time performance of the
 dot product at the cost of a higher memory overhead for the operation.

 Returns

 c : ``(n_big, n_small)`` `ndarray`
 The output of the operation. Exactly the same as a memory view onto
 ``a`` (``a[:, :n_small]``) as ``a`` is modified inplace to store the
 result.
 """
 (n_big, k_a), (k_b, n_small) = a.shape, b.shape
 if k_a != k_b:
 raise ValueError('Cannot dot {} * {}'.format(a.shape, b.shape))
 if n_small > k_a:
 raise ValueError('Cannot dot inplace left - '
 'b.shape[1] ({}) > a.shape[1] '
 '({})'.format(n_small, k_a))
 for i in range(0, n_big, block_size):
 j = i + block_size
 a[i:j, :n_small] = a[i:j].dot(b)
 return a[:, :n_small]

def dot_inplace_right(a, b, block_size=1000):
 r"""

[docs] Inplace dot product for memory efficiency. It computes ``a * b = c`` where
 ``b`` will be replaced inplace with ``c``.

 Parameters

 a : ``(n_small, k)`` `ndarray`, n_small <= k
 The first array to dot - assumed to be small. ``n_small`` must be
 smaller than ``k`` so the result can be stored within the memory space
 of ``b``.
 b : ``(k, n_big)`` `ndarray`
 Second array to dot - assumed to be large. Will be damaged by this
 function call as it is used to store the output inplace.
 block_size : `int`, optional
 The size of the block of ``b`` that ``a`` will be dotted against
 in each iteration. larger block sizes increase the time performance of
 the dot product at the cost of a higher memory overhead for the
 operation.

 Returns

 c : ``(n_small, n_big)`` `ndarray`
 The output of the operation. Exactly the same as a memory view onto
 ``b`` (``b[:n_small]``) as ``b`` is modified inplace to store the
 result.
 """
 (n_small, k_a), (k_b, n_big) = a.shape, b.shape
 if k_a != k_b:
 raise ValueError('Cannot dot {} * {}'.format(a.shape, b.shape))
 if n_small > k_b:
 raise ValueError('Cannot dot inplace right - '
 'a.shape[1] ({}) > b.shape[0] '
 '({})'.format(n_small, k_b))
 for i in range(0, n_big, block_size):
 j = i + block_size
 b[:n_small, i:j] = a.dot(b[:, i:j])
 return b[:n_small]

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/shape/graph.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.shape.graph

import numpy as np

from . import PointCloud
from .adjacency import (mask_adjacency_array, mask_adjacency_array_tree,
 reindex_adjacency_array)

class Graph(object):
 r"""
 Abstract class for Graph definitions and manipulation.

 Parameters

 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The Adjacency Array of the graph, i.e. an array containing the sets of
 the graph's edges. The numbering of vertices is assumed to start from 0.

 For an undirected graph, the order of an edge's vertices doesn't matter,
 for example

 ::

 |---0---| adjacency_array = ndarray([[0, 1],
 | | [0, 2],
 | | [1, 2],
 1-------2 [1, 3],
 | | [2, 4],
 | | [3, 4],
 3-------4 [3, 5]])
 |
 5

 For a directed graph, we assume that the vertices in the first column of
 the ``adjacency_array`` are the fathers and the vertices in the second
 column of ``the adjacency_array`` are the children, for example

 ::

 |-->0<--| adjacency_array = ndarray([[1, 0],
 | | [2, 0],
 | | [1, 2],
 1<----->2 [2, 1],
 | | [1, 3],
 v v [2, 4],
 3------>4 [3, 4],
 | [3, 5]])
 v
 5

 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.

 Raises

 ValueError
 You must provide at least one edge.
 ValueError
 ``adjacency_list`` must contain the sets of connected edges and thus
 must have shape ``(n_edges, 2)``.
 ValueError
 The vertices must be numbered starting from 0.
 """

 def __init__(self, adjacency_array, copy=True):
 # check that adjacency_array has expected shape
 if adjacency_array.size == 0:
 raise ValueError('You must provide at least one edge.')
 if adjacency_array.shape[1] != 2:
 raise ValueError('Adjacency list must contain the sets of '
 'connected edges and thus must have shape '
 '(n_edges, 2).')
 # check that numbering of vertices is zero-based
 if adjacency_array.min() != 0:
 raise ValueError('The vertices must be numbered starting from 0.')

 # keep unique rows of adjacency_array
 adjacency_array = _unique_array_rows(adjacency_array)

 if copy:
 self.adjacency_array = adjacency_array.copy()
 else:
 self.adjacency_array = adjacency_array
 self.adjacency_list = self._get_adjacency_list()

 @property
 def n_edges(self):
 r"""
 Returns the number of the graph edges.

 :type: `int`
 """
 return self.adjacency_array.shape[0]

 @property
 def n_vertices(self):
 r"""
 Returns the number of the graph vertices.

 :type: `int`
 """
 return self.adjacency_array.max() + 1

 def get_adjacency_matrix(self):
 r"""
 Returns the adjacency matrix of the graph, i.e. the boolean `ndarray`
 that is ``True`` and ``False`` if there is an edge connecting the two
 vertices or not respectively.

 :type: ``(n_vertices, n_vertices,)`` `ndarray`
 """
 pass

 def _get_adjacency_list(self):
 r"""
 Returns the adjacency list of the graph, i.e. a list of length
 ``n_vertices`` that for each vertex has a list of the vertex neighbours.
 If the graph is directed, the neighbours are children.

 :type: `list` of `list` of ``len(n_vertices)``
 """
 pass

 def find_path(self, start, end, path=None):
 r"""
 Returns a list with the first path (without cycles) found from start
 vertex to end vertex.

 Parameters

 start : `int`
 The vertex from which the path starts.
 end : `int`
 The vertex from which the path ends.
 path : `list`, optional
 An existing path to append to.

 Returns

 path : `list`
 The path's vertices.
 """
 if path is None:
 path = []
 path = path + [start]
 if start == end:
 return path
 if start > self.n_vertices - 1 or start < 0:
 return None
 for v in self.adjacency_list[start]:
 if v not in path:
 newpath = self.find_path(v, end, path)
 if newpath:
 return newpath
 return None

 def find_all_paths(self, start, end, path=[]):
 r"""
 Returns a list of lists with all the paths (without cycles) found from
 start vertex to end vertex.

 Parameters

 start : `int`
 The vertex from which the paths start.
 end : `int`
 The vertex from which the paths end.
 path : `list`, optional
 An existing path to append to.

 Returns

 paths : `list` of `list`
 The list containing all the paths from start to end.
 """
 if path is None:
 path = []
 path = path + [start]
 if start == end:
 return [path]
 if start > self.n_vertices - 1 or start < 0:
 return []
 paths = []
 for v in self.adjacency_list[start]:
 if v not in path:
 newpaths = self.find_all_paths(v, end, path)
 for newpath in newpaths:
 paths.append(newpath)
 return paths

 def n_paths(self, start, end):
 r"""
 Returns the number of all the paths (without cycles) existing from
 start vertex to end vertex.

 Parameters

 start : `int`
 The vertex from which the paths start.
 end : `int`
 The vertex from which the paths end.

 Returns

 paths : `int`
 The paths' numbers.
 """
 return len(self.find_all_paths(start, end))

 def find_shortest_path(self, start, end, path=None):
 r"""
 Returns a list with the shortest path (without cycles) found from start
 vertex to end vertex.

 Parameters

 start : `int`
 The vertex from which the path starts.
 end : `int`
 The vertex from which the path ends.
 path : `list`, optional
 An existing path to append to.

 Returns

 path : `list`
 The shortest path's vertices.
 """
 if path is None:
 path = []
 path = path + [start]
 if start == end:
 return path
 if start > self.n_vertices - 1 or start < 0:
 return None
 shortest = None
 for v in self.adjacency_list[start]:
 if v not in path:
 newpath = self.find_shortest_path(v, end, path)
 if newpath:
 if not shortest or len(newpath) < len(shortest):
 shortest = newpath
 return shortest

 def has_cycles(self):
 r"""
 Checks if the graph has at least one cycle.

 Returns

 has_cycles : `bool`
 If the graph has cycles.
 """
 pass

 def is_tree(self):
 r"""
 Checks if the graph is tree.

 Returns

 is_true : `bool`
 If the graph is a tree.
 """
 return not self.has_cycles() and self.n_edges == self.n_vertices - 1

 def _check_vertex(self, vertex):
 r"""
 Checks that a given vertex is valid.

 Parameters

 vertex : `int`
 Index of a given vertex.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 if vertex > self.n_vertices - 1 or vertex < 0:
 raise ValueError('The vertex must be between '
 '0 and {}.'.format(self.n_vertices - 1))

[docs]class UndirectedGraph(Graph):
 r"""
 Class for Undirected Graph definition and manipulation.

 Parameters

 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The Adjacency Array of the graph, i.e. an array containing the sets of
 the graph's edges. The numbering of vertices is assumed to start from 0.
 For example:

 ::

 |---0---| adjacency_array = ndarray([[0, 1],
 | | [0, 2],
 | | [1, 2],
 1-------2 [1, 3],
 | | [2, 4],
 | | [3, 4],
 3-------4 [3, 5]])
 |
 5

 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.

 Raises

 ValueError
 You must provide at least one edge.
 ValueError
 Adjacency list must contain the sets of connected edges and thus must
 have shape (n_edges, 2).
 ValueError
 The vertices must be numbered starting from 0.
 """
[docs] def get_adjacency_matrix(self):
 r"""
 Returns the adjacency matrix of the graph, i.e. the boolean `ndarray`
 that is ``True`` and ``False`` if there is an edge connecting the two
 vertices or not respectively.

 :type: ``(n_vertices, n_vertices,)`` `ndarray`
 """
 adjacency_mat = np.zeros((self.n_vertices, self.n_vertices),
 dtype=np.bool)
 for e in range(self.n_edges):
 v1 = self.adjacency_array[e, 0]
 v2 = self.adjacency_array[e, 1]
 adjacency_mat[v1, v2] = True
 adjacency_mat[v2, v1] = True

 return adjacency_mat

 def _get_adjacency_list(self):
 adjacency_list = [[] for _ in range(self.n_vertices)]
 for e in range(self.n_edges):
 v1 = self.adjacency_array[e, 0]
 v2 = self.adjacency_array[e, 1]
 adjacency_list[v1].append(v2)
 adjacency_list[v2].append(v1)
 return adjacency_list

[docs] def neighbours(self, vertex):
 r"""
 Returns the neighbours of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 neighbours : `list`
 The list of neighbours.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 self._check_vertex(vertex)
 return self.adjacency_list[vertex]

[docs] def n_neighbours(self, vertex):
 r"""
 Returns the number of neighbours of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 n_neighbours : `int`
 The number of neighbours.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 self._check_vertex(vertex)
 return len(self.neighbours(vertex))

[docs] def is_edge(self, vertex_1, vertex_2):
 r"""
 Returns whether there is an edge between the provided vertices.

 Parameters

 vertex_1 : `int`
 The first selected vertex.
 vertex_2 : `int`
 The second selected vertex.

 Returns

 is_edge : `bool`
 True if there is an edge.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 self._check_vertex(vertex_1)
 self._check_vertex(vertex_2)
 return (vertex_1 in self.adjacency_list[vertex_2] or
 vertex_2 in self.adjacency_list[vertex_1])

[docs] def has_cycles(self):
 r"""
 Whether the graph has at least on cycle.

 Returns

 has_cycles : `bool`
 True if it has at least one cycle.
 """
 return _has_cycles(self.adjacency_list, False)

[docs] def minimum_spanning_tree(self, weights, root_vertex):
 r"""
 Returns the minimum spanning tree given weights to the graph's edges
 using Kruskal's algorithm.

 Parameters

 weights : ``(n_vertices, n_vertices,)`` `ndarray`
 A matrix of the same size as the adjacency matrix that attaches a
 weight to each edge of the undirected graph.
 root_vertex : `int`
 The vertex that will be set as root in the output MST.

 Returns

 mst : :map:`Tree`
 The computed minimum spanning tree.

 Raises

 ValueError
 Provided graph is not an UndirectedGraph.
 ValueError
 Asymmetric weights provided.
 """
 # compute the edges of the minimum spanning tree
 from menpo.external.PADS.MinimumSpanningTree import MinimumSpanningTree
 tree_edges = MinimumSpanningTree(self, weights)

 # Correct the tree edges so that they have the correct format
 # (i.e. ndarray of pairs in the form (parent, child)) using BFS
 tree_edges = _correct_tree_edges(tree_edges, root_vertex)

 return Tree(np.array(tree_edges), root_vertex)

 def __str__(self):
 return "Undirected graph of {} vertices and {} edges.".format(
 self.n_vertices, self.n_edges)

[docs]class DirectedGraph(Graph):
 r"""
 Class for Directed Graph definition and manipulation.

 Parameters

 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The Adjacency Array of the graph, i.e. an array containing the sets of
 the graph's edges. The numbering of vertices is assumed to start from 0.

 We assume that the vertices in the first column of the
 ``adjacency_array`` are the parents and the vertices in the second
 column of the ``adjacency_array`` are the children, for example:

 ::

 |-->0<--| adjacency_array = ndarray([[1, 0],
 | | [2, 0],
 | | [1, 2],
 1<----->2 [2, 1],
 | | [1, 3],
 v v [2, 4],
 3------>4 [3, 4],
 | [3, 5]])
 v
 5

 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.

 Raises

 ValueError
 You must provide at least one edge.
 ValueError
 Adjacency list must contain the sets of connected edges and thus must
 have shape (n_edges, 2).
 ValueError
 The vertices must be numbered starting from 0.
 """

[docs] def get_adjacency_matrix(self):
 r"""
 Returns the Adjacency Matrix of the graph, i.e. the boolean `ndarray`
 that is ``True`` and ``False`` if there is an edge connecting the two
 vertices or not respectively.

 :type: ``(n_vertices, n_vertices,)`` `ndarray`
 """
 adjacency_mat = np.zeros((self.n_vertices, self.n_vertices),
 dtype=np.bool)
 for e in range(self.n_edges):
 parent = self.adjacency_array[e, 0]
 child = self.adjacency_array[e, 1]
 adjacency_mat[parent, child] = True
 return adjacency_mat

 def _get_adjacency_list(self):
 adjacency_list = [[] for _ in range(self.n_vertices)]
 for e in range(self.n_edges):
 parent = self.adjacency_array[e, 0]
 child = self.adjacency_array[e, 1]
 adjacency_list[parent].append(child)
 return adjacency_list

[docs] def children(self, vertex):
 r"""
 Returns the children of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 children : `list`
 The list of children.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 self._check_vertex(vertex)
 return self.adjacency_list[vertex]

[docs] def n_children(self, vertex):
 r"""
 Returns the number of children of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 n_children : `int`
 The number of children.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(vertex)
 return len(self.children(vertex))

[docs] def parent(self, vertex):
 r"""
 Returns the parents of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 parent : `list`
 The list of parents.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(vertex)
 adj = self.get_adjacency_matrix()
 return list(np.where(adj[:, vertex])[0])

[docs] def n_parent(self, vertex):
 r"""
 Returns the number of parents of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 n_parent : `int`
 The number of parents.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(vertex)
 return len(self.parent(vertex))

[docs] def is_edge(self, parent, child):
 r"""
 Returns whether there is an edge between the provided vertices.

 Parameters

 parent : `int`
 The first selected vertex which is considered as the parent.

 child : `int`
 The second selected vertex which is considered as the child.

 Returns

 is_edge : `bool`
 True if there is an edge.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(parent)
 self._check_vertex(child)
 return child in self.adjacency_list[parent]

[docs] def has_cycles(self):
 r"""
 Whether the graph has at least on cycle.

 Returns

 has_cycles : `bool`
 ``True`` if it has at least one cycle.
 """
 return _has_cycles(self.adjacency_list, True)

 def __str__(self):
 return "Directed graph of {} vertices and {} edges.".format(
 self.n_vertices, self.n_edges)

[docs]class Tree(DirectedGraph):
 r"""
 Class for Tree definitions and manipulation.

 Parameters

 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The Adjacency Array of the tree, i.e. an array containing the sets of
 the tree's edges. The numbering of vertices is assumed to start from 0.

 We assume that the vertices in the first column of the
 ``adjacency_array`` are the parents and the vertices in the second
 column of the ``adjacency_array`` are the children, for example:

 ::

 0 adjacency_array = ndarray([[0, 1],
 | [0, 2],
 ___|___ [1, 3],
 1 2 [1, 4],
 | | [2, 5],
 | | [3, 6],
 3 4 5 [4, 7],
 | | | [5, 8]])
 | | |
 6 7 8

 root_vertex : `int`
 The vertex that will be considered as root.
 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.

 Raises

 ValueError
 The provided edges do not represent a tree.
 ValueError
 The root_vertex must be in the range ``[0, n_vertices - 1]``.
 """
 def __init__(self, adjacency_array, root_vertex, copy=True):
 super(Tree, self).__init__(adjacency_array, copy=copy)
 # check if provided adjacency_array represents a tree
 if not (self.is_tree() and self.n_edges == self.n_vertices - 1):
 raise ValueError('The provided edges do not represent a tree.')
 # check if root_vertex is valid
 self._check_vertex(root_vertex)

 self.root_vertex = root_vertex
 self.predecessors_list = self._get_predecessors_list()

 def _get_predecessors_list(self):
 r"""
 Returns the predecessors list of the tree, i.e. a list of length
 ``n_vertices`` that for each vertex it has its parent. The value of the
 root vertex is ``None``.

 :type: `list` of len n_vertices
 """
 predecessors_list = [None] * self.n_vertices
 for e in range(self.n_edges):
 parent = self.adjacency_array[e, 0]
 child = self.adjacency_array[e, 1]
 predecessors_list[child] = parent
 return predecessors_list

[docs] def depth_of_vertex(self, vertex):
 r"""
 Returns the depth of the specified vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 depth : `int`
 The depth of the selected vertex.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(vertex)
 parent = vertex
 depth = 0
 while not parent == self.root_vertex:
 current = parent
 parent = self.predecessors_list[current]
 depth += 1
 return depth

 @property
 def maximum_depth(self):
 r"""
 Returns the maximum depth of the tree.

 :type: `int`
 """
 all_depths = [self.depth_of_vertex(v) for v in range(self.n_vertices)]
 return np.max(all_depths)

[docs] def vertices_at_depth(self, depth):
 r"""
 Returns a list of vertices at the specified depth.

 Parameters

 depth : `int`
 The selected depth.

 Returns

 vertices : `list`
 The vertices that lie in the specified depth.
 """
 ver = []
 for v in range(self.n_vertices):
 if self.depth_of_vertex(v) == depth:
 ver.append(v)
 return ver

[docs] def n_vertices_at_depth(self, depth):
 r"""
 Returns the number of vertices at the specified depth.

 Parameters

 depth : `int`
 The selected depth.

 Returns

 n_vertices : `int`
 The number of vertices that lie in the specified depth.
 """
 n_ver = 0
 for v in range(self.n_vertices):
 if self.depth_of_vertex(v) == depth:
 n_ver += 1
 return n_ver

[docs] def is_leaf(self, vertex):
 r"""
 Returns whether the vertex is a leaf.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 is_leaf : `bool`
 If True, then selected vertex is a leaf.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(vertex)
 return len(self.children(vertex)) == 0

 @property
 def leaves(self):
 r"""
 Returns a list with the all leaves of the tree.

 :type: `list`
 """
 leaves = []
 for v in range(self.n_vertices):
 if self.is_leaf(v):
 leaves.append(v)
 return leaves

 @property
 def n_leaves(self):
 r"""
 Returns the number of leaves of the tree.

 :type: `int`
 """
 n_leaves = 0
 for v in range(self.n_vertices):
 if self.is_leaf(v):
 n_leaves += 1
 return n_leaves

[docs] def parent(self, vertex):
 r"""
 Returns the parent of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 parent : `int`
 The parent vertex.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 self._check_vertex(vertex)
 return self.predecessors_list[vertex]

 def __str__(self):
 return "Tree of depth {} with {} vertices and {} leaves.".format(
 self.maximum_depth, self.n_vertices, self.n_leaves)

[docs]class PointGraph(Graph, PointCloud):
 r"""
 Class for defining a graph with geometry.

 Parameters

 points : `ndarray`
 The array of point locations.
 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The adjacency array of the graph, i.e. an array containing the sets of
 the graph's edges. The numbering of vertices is assumed to start from 0.

 For an undirected graph, the order of an edge's vertices doesn't matter,
 for example

 ::

 |---0---| adjacency_array = ndarray([[0, 1],
 | | [0, 2],
 | | [1, 2],
 1-------2 [1, 3],
 | | [2, 4],
 | | [3, 4],
 3-------4 [3, 5]])
 |
 5

 For a directed graph, we assume that the vertices in the first column of
 the ``adjacency_array`` are the fathers and the vertices in the second
 column of the ``adjacency_array`` are the children, for example

 ::

 |-->0<--| adjacency_array = ndarray([[1, 0],
 | | [2, 0],
 | | [1, 2],
 1<----->2 [2, 1],
 | | [1, 3],
 v v [2, 4],
 3------>4 [3, 4],
 | [3, 5]])
 v
 5
 """
 def __init__(self, points, adjacency_array, copy=True):
 _check_n_points(points, adjacency_array)
 Graph.__init__(self, adjacency_array, copy=copy)
 PointCloud.__init__(self, points, copy=copy)

[docs] def tojson(self):
 r"""
 Convert this :map:`PointGraph` to a dictionary representation suitable
 for inclusion in the LJSON landmark format.

 Returns

 json : `dict`
 Dictionary with ``points`` and ``connectivity`` keys.
 """
 json_dict = PointCloud.tojson(self)
 json_dict['connectivity'] = self.adjacency_array.tolist()
 return json_dict

 def _view_2d(self, figure_id=None, new_figure=False, image_view=True,
 render_lines=True, line_colour='r',
 line_style='-', line_width=1.,
 render_markers=True, marker_style='o', marker_size=20,
 marker_face_colour='k', marker_edge_colour='k',
 marker_edge_width=1., render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8),
 label=None):
 r"""
 Visualization of the pointgraph in 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointGraph will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.
 """
 from menpo.visualize import PointGraphViewer2d
 renderer = PointGraphViewer2d(figure_id, new_figure,
 self.points, self.adjacency_array)
 renderer.render(
 image_view=image_view, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_axes=render_axes,
 axes_font_name=axes_font_name, axes_font_size=axes_font_size,
 axes_font_style=axes_font_style, axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits,
 figure_size=figure_size, label=label)
 return renderer

 def _view_3d(self, figure_id=None, new_figure=False):
 r"""
 Visualization of the TriMesh in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.

 Returns

 viewer : PointGraphViewer3d
 The Menpo3D viewer object.
 """
 try:
 from menpo3d.visualize import PointGraphViewer3d
 return PointGraphViewer3d(figure_id, new_figure, self.points,
 self.adjacency_array).render()
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)

[docs] def view_widget(self, popup=False, browser_style='buttons',
 figure_size=(10, 8)):
 r"""
 Visualization of the PointGraph using the :map:`visualize_pointclouds`
 widget.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will be rendered in a popup window.
 browser_style : ``{buttons, slider}``, optional
 It defines whether the selector of the PointGraph objects will have
 the form of plus/minus buttons or a slider.
 figure_size : (`int`, `int`) `tuple`, optional
 The initial size of the rendered figure.
 """
 from menpo.visualize import visualize_pointclouds
 visualize_pointclouds(self, popup=popup, figure_size=figure_size,
 browser_style=browser_style)

[docs]class PointUndirectedGraph(PointGraph, UndirectedGraph):
 r"""
 Class for defining an Undirected Graph with geometry.

 Parameters

 points : `ndarray`
 The array of point locations.
 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The adjacency array of the graph, i.e. an array containing the sets of
 the graph's edges. The numbering of vertices is assumed to start from 0.
 For example

 ::

 |---0---| adjacency_array = ndarray([[0, 1],
 | | [0, 2],
 | | [1, 2],
 1-------2 [1, 3],
 | | [2, 4],
 | | [3, 4],
 3-------4 [3, 5]])
 |
 5

 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.

 Raises

 ValueError
 A point for each graph vertex needs to be passed. Got ``n_points``
 points instead of ``n_vertices``.
 """
 def __init__(self, points, adjacency_array, copy=True):
 super(PointUndirectedGraph, self).__init__(points, adjacency_array,
 copy=copy)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the PointUndirectedGraph. This is then broadcast across the
 dimensions of the PointUndirectedGraph and returns a new
 PointUndirectedGraph containing only those points that were ``True`` in
 the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointgraph : :map:`PointUndirectedGraph`
 A new pointgraph that has been masked.

 Raises

 ValueError
 Mask must have same number of points as pointgraph.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this '
 'PointUndirectedGraph.')

 pg = self.copy()
 if np.all(mask): # Shortcut for all true masks
 return pg
 else:
 masked_adj = mask_adjacency_array(mask, pg.adjacency_array)
 if len(masked_adj) == 0:
 raise ValueError('The provided mask deletes all edges.')
 pg.adjacency_array = reindex_adjacency_array(masked_adj)
 pg.adjacency_list = pg._get_adjacency_list()
 pg.points = pg.points[mask, :]
 return pg

[docs]class PointDirectedGraph(PointGraph, DirectedGraph):
 r"""
 Class for defining a directed graph with geometry.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The adjacency array of the graph, i.e. an array containing the sets of
 the graph's edges. The numbering of vertices is assumed to start from 0.
 For example

 ::

 |-->0<--| adjacency_array = ndarray([[1, 0],
 | | [2, 0],
 | | [1, 2],
 1<----->2 [2, 1],
 | | [1, 3],
 v v [2, 4],
 3------>4 [3, 4],
 | [3, 5]])
 v
 5

 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.

 Raises

 ValueError
 A point for each graph vertex needs to be passed. Got {n_points} points
 instead of {n_vertices}.
 """
 def __init__(self, points, adjacency_array, copy=True):
 super(PointDirectedGraph, self).__init__(points, adjacency_array,
 copy=copy)

[docs] def relative_location_edge(self, parent, child):
 r"""
 Returns the relative location between the provided vertices. That is
 if vertex j is the parent and vertex i is its child and vector l
 denotes the coordinates of a vertex, then

 ::

 l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

 Parameters

 parent : `int`
 The first selected vertex which is considered as the parent.
 child : `int`
 The second selected vertex which is considered as the child.

 Returns

 relative_location : ``(2,)`` `ndarray`
 The relative location vector.

 Raises

 ValueError
 Vertices ``parent`` and ``child`` are not connected with an edge.
 """
 if not self.is_edge(parent, child):
 raise ValueError('Vertices {} and {} are not connected '
 'with an edge.'.format(parent, child))
 return self.points[child, ...] - self.points[parent, ...]

[docs] def relative_locations(self):
 r"""
 Returns the relative location between the vertices of each edge. If
 vertex j is the parent and vertex i is its child and vector l denotes
 the coordinates of a vertex, then:

 ::

 l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

 Returns

 relative_locations : ``(n_vertexes, 2)`` `ndarray`
 The relative locations vector.
 """
 parents = [p[0] for p in self.adjacency_array]
 children = [p[1] for p in self.adjacency_array]
 return self.points[children] - self.points[parents]

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the PointDirectedGraph. This is then broadcast across the
 dimensions of the PointDirectedGraph and returns a new
 PointDirectedGraph containing only those points that were ``True`` in
 the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointgraph : :map:`PointDirectedGraph`
 A new pointgraph that has been masked.

 Raises

 ValueError
 Mask must have same number of points as pointgraph.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this PointTree.')

 pt = self.copy()
 if np.all(mask): # Shortcut for all true masks
 return pt
 else:
 masked_adj = mask_adjacency_array_tree(
 mask, pt.adjacency_array, pt.adjacency_list,
 pt.predecessors_list, pt.root_vertex)
 if len(masked_adj) == 0:
 raise ValueError('The provided mask deletes all edges.')
 pt.adjacency_array = reindex_adjacency_array(masked_adj)
 pt.points = pt.points[mask, :]
 pt.adjacency_list = pt._get_adjacency_list()
 pt.predecessors_list = pt._get_predecessors_list()
 return pt

[docs]class PointTree(PointDirectedGraph, Tree):
 r"""
 Class for defining a Tree with geometry.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The Adjacency Array of the tree, i.e. an array containing the sets of
 the tree's edges. The numbering of vertices is assumed to start from 0.

 We assume that the vertices in the first column of the
 ``adjacency_array`` are the fathers and the vertices in the second
 column of the ``adjacency_array`` are the children, for example:

 ::

 0 adjacency_array = ndarray([[0, 1],
 | [0, 2],
 ___|___ [1, 3],
 1 2 [1, 4],
 | | [2, 5],
 | | [3, 6],
 3 4 5 [4, 7],
 | | | [5, 8]])
 | | |
 6 7 8

 root_vertex : `int`
 The root vertex of the tree.
 copy : `bool`, optional
 If ``False``, the ``adjacency_list`` will not be copied on assignment.
 """
 def __init__(self, points, adjacency_array, root_vertex, copy=True):
 super(PointDirectedGraph, self).__init__(points, adjacency_array,
 copy=copy)
 Tree.__init__(self, adjacency_array, root_vertex, copy=copy)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the PointTree. This is then broadcast across the dimensions
 of the PointTree and returns a new PointTree containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointtree : :map:`PointTree`
 A new pointtree that has been masked.

 Raises

 ValueError
 Mask must have same number of points as pointtree.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError('Mask must be a 1D boolean array of the same '
 'number of entries as points in this PointTree.')

 pt = self.copy()
 if np.all(mask): # Shortcut for all true masks
 return pt
 else:
 masked_adj = mask_adjacency_array_tree(
 mask, pt.adjacency_array, pt.adjacency_list,
 pt.predecessors_list, pt.root_vertex)
 if len(masked_adj) == 0:
 raise ValueError('The provided mask deletes all edges.')
 pt.adjacency_array = reindex_adjacency_array(masked_adj)
 pt.points = pt.points[mask, :]
 pt.adjacency_list = pt._get_adjacency_list()
 pt.predecessors_list = pt._get_predecessors_list()
 return pt

def _unique_array_rows(array):
 r"""
 Returns the unique rows of the given 2D array.

 Parameters

 array : `ndarray`
 2D array to find the unique rows inside.

 Returns

 unique_rows : `ndarray`
 The unique rows of the given 2D array
 """
 # The crazy looking method below comes from the following very clever
 # stackoverflow post
 # stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array
 tmp = array.ravel().view(np.dtype((np.void,
 array.dtype.itemsize * array.shape[1])))
 _, unique_idx = np.unique(tmp, return_index=True)
 return array[np.sort(unique_idx)]

def _check_n_points(points, adjacency_array):
 r"""
 Checks whether the points array and the ``adjacency_array`` have the same
 number of points. Thus it checks if the max index in the adjacency array
 is the same as the number of points.

 Parameters

 points : `ndarray`
 Points array to check the length of.
 adjacency_array : `int ndarray`
 The adjacency array to check the indices of.

 Raises

 ValueError
 If ``n_points != max(adjacency_array) + 1``.
 """
 if not points.shape[0] == adjacency_array.max() + 1:
 raise ValueError('A point for each graph vertex needs to be '
 'passed. Got {} points instead of {}'.format(
 points.shape[0], adjacency_array.max() + 1))

def _correct_tree_edges(edges, root_vertex):
 def _get_children(p, e):
 c = []
 for m in e:
 if m.index(p) == 0:
 c.append(m[1])
 else:
 c.append(m[0])
 return c

 output_edges = []
 vertices_to_visit = [root_vertex]
 while len(vertices_to_visit) > 0:
 # get first vertex of list and remove it
 current_vertex = vertices_to_visit.pop(0)

 # find the edges containing the vertex
 current_edges = [item for item in edges if current_vertex in item]

 # remove the edges from the edges list
 for e in current_edges:
 edges.remove(e)

 # get the list of children of the vertex
 children = _get_children(current_vertex, current_edges)

 for child in children:
 # append the edge
 output_edges.append((current_vertex, child))

 # append the child
 vertices_to_visit.append(child)
 return output_edges

def _has_cycles(adjacency_list, directed):
 r"""
 Function that checks if the provided directed graph has cycles using a depth
 first search.

 Parameters

 adjacency_array : ``(n_edges, 2,)`` `ndarray`
 The adjacency array of the directed graph.
 directed : `bool`
 Defines if the provided graph is directed or not.

 Returns

 has_cycles : `bool`
 Whether the graph has cycles.
 """
 def dfs(node, entered, exited, tree_edges, back_edges):
 if node not in entered:
 entered.add(node)
 for y in adjacency_list[node]:
 if y not in entered:
 tree_edges[y] = node
 elif (not directed and tree_edges.get(node, None) != y
 or directed and y not in exited):
 back_edges.setdefault(y, set()).add(node)
 dfs(y, entered, exited, tree_edges, back_edges)
 exited.add(node)
 return tree_edges, back_edges
 for x in range(len(adjacency_list)):
 if dfs(x, entered=set(), exited=set(), tree_edges={}, back_edges={})[1]:
 return True
 else:
 return False

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/feature/features.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.feature.features

import itertools
import numpy as np
scipy_gaussian_filter = None # expensive

from .base import ndfeature, winitfeature
from .windowiterator import WindowIterator

@ndfeature
[docs]def gradient(pixels):
 r"""
 Calculates the gradient of an input image. The image is assumed to have
 channel information on the last axis. In the case of multiple channels,
 it returns the gradient over each axis over each channel as the last axis.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.

 Returns

 gradient : ndarray, shape (X, Y, ..., Z, C * length([X, Y, ..., Z]))
 The gradient over each axis over each channel. Therefore, the
 last axis of the gradient of a 2D, single channel image, will have
 length `2`. The last axis of the gradient of a 2D, 3-channel image,
 will have length `6`, he ordering being [Rd_x, Rd_y, Gd_x, Gd_y,
 Bd_x, Bd_y].

 """
 grad_per_dim_per_channel = [np.gradient(g, edge_order=1) for g in
 np.rollaxis(pixels, -1)]
 # Flatten out the separate dims
 grad_per_channel = list(itertools.chain.from_iterable(
 grad_per_dim_per_channel))
 # Add a channel axis for broadcasting
 grad_per_channel = [g[..., None] for g in grad_per_channel]
 # Concatenate gradient list into an array (the new_image)
 return np.concatenate(grad_per_channel, axis=-1)

@ndfeature
[docs]def gaussian_filter(pixels, sigma):
 r"""
 Calculates the convolution of the input image with a multidimensional
 Gaussian filter.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 sigma : `float` or `list` of `float`
 The standard deviation for Gaussian kernel. The standard deviations of
 the Gaussian filter are given for each axis as a `list`, or as a single
 `float`, in which case it is equal for all axes.

 Returns

 output_image : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The filtered image has the same type and size as the input ``pixels``.
 """
 global scipy_gaussian_filter
 if scipy_gaussian_filter is None:
 from scipy.ndimage import gaussian_filter as scipy_gaussian_filter
 output = np.empty(pixels.shape)
 for dim in range(pixels.shape[2]):
 scipy_gaussian_filter(pixels[..., dim], sigma, output=output[..., dim])
 return output

@winitfeature
[docs]def hog(pixels, mode='dense', algorithm='dalaltriggs', num_bins=9,
 cell_size=8, block_size=2, signed_gradient=True, l2_norm_clip=0.2,
 window_height=1, window_width=1, window_unit='blocks',
 window_step_vertical=1, window_step_horizontal=1,
 window_step_unit='pixels', padding=True, verbose=False):
 r"""
 Extracts Histograms of Oriented Gradients (HOG) features from the input
 image.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 mode : {``dense``, ``sparse``}, optional
 The ``sparse`` case refers to the traditional usage of HOGs, so
 predefined parameters values are used.

 The ``sparse`` case of ``dalaltriggs`` algorithm sets
 ``window_height = window_width = block_size`` and
 ``window_step_horizontal = window_step_vertical = cell_size``.

 The ``sparse`` case of ``zhuramanan`` algorithm sets
 ``window_height = window_width = 3 * cell_size`` and
 ``window_step_horizontal = window_step_vertical = cell_size``.

 In the ``dense`` case, the user can choose values for `window_height`,
 `window_width`, `window_unit`, `window_step_vertical`,
 `window_step_horizontal`, `window_step_unit` and `padding` to customize
 the HOG calculation.
 window_height : `float`, optional
 Defines the height of the window. The metric unit is defined by
 `window_unit`.
 window_width : `float`, optional
 Defines the width of the window. The metric unit is defined by
 `window_unit`.
 window_unit : {``blocks``, ``pixels``}, optional
 Defines the metric unit of the `window_height` and `window_width`
 parameters.
 window_step_vertical : `float`, optional
 Defines the vertical step by which the window is moved, thus it
 controls the features' density. The metric unit is defined by
 `window_step_unit`.
 window_step_horizontal : `float`, optional
 Defines the horizontal step by which the window is moved, thus it
 controls the features' density. The metric unit is defined by
 `window_step_unit`.
 window_step_unit : {``pixels``, ``cells``}, optional
 Defines the metric unit of the `window_step_vertical` and
 `window_step_horizontal` parameters.
 padding : `bool`, optional
 If ``True``, the output image is padded with zeros to match the input
 image's size.
 algorithm : {``dalaltriggs``, ``zhuramanan``}, optional
 Specifies the algorithm used to compute HOGs. ``dalaltriggs`` is the
 implementation of [1] and ``zhuramanan`` is the implementation of [2].
 cell_size : `float`, optional
 Defines the cell size in pixels. This value is set to both the width
 and height of the cell. This option is valid for both algorithms.
 block_size : `float`, optional
 Defines the block size in cells. This value is set to both the width
 and height of the block. This option is valid only for the
 ``dalaltriggs`` algorithm.
 num_bins : `float`, optional
 Defines the number of orientation histogram bins. This option is
 valid only for the ``dalaltriggs`` algorithm.
 signed_gradient : `bool`, optional
 Flag that defines whether we use signed or unsigned gradient angles.
 This option is valid only for the ``dalaltriggs`` algorithm.
 l2_norm_clip : `float`, optional
 Defines the clipping value of the gradients' L2-norm. This option is
 valid only for the ``dalaltriggs`` algorithm.
 verbose : `bool`, optional
 Flag to print HOG related information.

 Returns

 hog : :map:`Image` or subclass or ``(X, Y, ..., Z, K)`` `ndarray`
 The HOG features image. It has the same type as the input ``pixels``.
 The output number of channels in the case of ``dalaltriggs`` is
 ``K = num_bins * block_size *block_size`` and ``K = 31`` in the case of
 ``zhuramanan``.

 Raises

 ValueError
 HOG features mode must be either dense or sparse
 ValueError
 Algorithm must be either dalaltriggs or zhuramanan
 ValueError
 Number of orientation bins must be > 0
 ValueError
 Cell size (in pixels) must be > 0
 ValueError
 Block size (in cells) must be > 0
 ValueError
 Value for L2-norm clipping must be > 0.0
 ValueError
 Window height must be >= block size and <= image height
 ValueError
 Window width must be >= block size and <= image width
 ValueError
 Window unit must be either pixels or blocks
 ValueError
 Horizontal window step must be > 0
 ValueError
 Vertical window step must be > 0
 ValueError
 Window step unit must be either pixels or cells

 References

 .. [1] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
 detection", Proceedings of the IEEE Conference on Computer Vision and
 Pattern Recognition (CVPR), 2005.
 .. [2] X. Zhu, D. Ramanan. "Face detection, pose estimation and landmark
 localization in the wild", Proceedings of the IEEE Conference on
 Computer Vision and Pattern Recognition (CVPR), 2012.
 """
 # Parse options
 if mode not in ['dense', 'sparse']:
 raise ValueError("HOG features mode must be either dense or sparse")
 if algorithm not in ['dalaltriggs', 'zhuramanan']:
 raise ValueError("Algorithm must be either dalaltriggs or zhuramanan")
 if num_bins <= 0:
 raise ValueError("Number of orientation bins must be > 0")
 if cell_size <= 0:
 raise ValueError("Cell size (in pixels) must be > 0")
 if block_size <= 0:
 raise ValueError("Block size (in cells) must be > 0")
 if l2_norm_clip <= 0.0:
 raise ValueError("Value for L2-norm clipping must be > 0.0")
 if mode == 'dense':
 if window_unit not in ['pixels', 'blocks']:
 raise ValueError("Window unit must be either pixels or blocks")
 window_height_temp = window_height
 window_width_temp = window_width
 if window_unit == 'blocks':
 window_height_temp = window_height * block_size * cell_size
 window_width_temp = window_width * block_size * cell_size
 if (window_height_temp < block_size * cell_size or
 window_height_temp > pixels.shape[0]):
 raise ValueError("Window height must be >= block size and <= "
 "image height")
 if (window_width_temp < block_size*cell_size or
 window_width_temp > pixels.shape[1]):
 raise ValueError("Window width must be >= block size and <= "
 "image width")
 if window_step_horizontal <= 0:
 raise ValueError("Horizontal window step must be > 0")
 if window_step_vertical <= 0:
 raise ValueError("Vertical window step must be > 0")
 if window_step_unit not in ['pixels', 'cells']:
 raise ValueError("Window step unit must be either pixels or cells")

 # Correct input image_data
 pixels = np.asfortranarray(pixels)
 pixels *= 255.

 # Dense case
 if mode == 'dense':
 # Iterator parameters
 if algorithm == 'dalaltriggs':
 algorithm = 1
 if window_unit == 'blocks':
 block_in_pixels = cell_size * block_size
 window_height = np.uint32(window_height * block_in_pixels)
 window_width = np.uint32(window_width * block_in_pixels)
 if window_step_unit == 'cells':
 window_step_vertical = np.uint32(window_step_vertical *
 cell_size)
 window_step_horizontal = np.uint32(window_step_horizontal *
 cell_size)
 elif algorithm == 'zhuramanan':
 algorithm = 2
 if window_unit == 'blocks':
 block_in_pixels = 3 * cell_size
 window_height = np.uint32(window_height * block_in_pixels)
 window_width = np.uint32(window_width * block_in_pixels)
 if window_step_unit == 'cells':
 window_step_vertical = np.uint32(window_step_vertical *
 cell_size)
 window_step_horizontal = np.uint32(window_step_horizontal *
 cell_size)
 iterator = WindowIterator(pixels, window_height, window_width,
 window_step_horizontal,
 window_step_vertical, padding)
 # Sparse case
 else:
 # Create iterator
 if algorithm == 'dalaltriggs':
 algorithm = 1
 window_size = cell_size * block_size
 step = cell_size
 else:
 algorithm = 2
 window_size = 3 * cell_size
 step = cell_size
 iterator = WindowIterator(pixels, window_size, window_size, step,
 step, False)
 # Print iterator's info
 if verbose:
 print(iterator)
 # Compute HOG
 return iterator.HOG(algorithm, num_bins, cell_size, block_size,
 signed_gradient, l2_norm_clip, verbose)

@ndfeature
[docs]def igo(pixels, double_angles=False, verbose=False):
 r"""
 Extracts Image Gradient Orientation (IGO) features from the input image.
 The output image has ``N * C`` number of channels, where ``N`` is the
 number of channels of the original image and ``C = 2`` or ``C = 4``
 depending on whether double angles are used.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 double_angles : `bool`, optional
 Assume that ``phi`` represents the gradient orientations.

 If this flag is ``False``, the features image is the concatenation of
 ``cos(phi)`` and ``sin(phi)``, thus 2 channels.

 If ``True``, the features image is the concatenation of
 ``cos(phi)``, ``sin(phi)``, ``cos(2 * phi)``, ``sin(2 * phi)``, thus 4
 channels.
 verbose : `bool`, optional
 Flag to print IGO related information.

 Returns

 igo : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The IGO features image. It has the same type and shape as the input
 ``pixels``. The output number of channels depends on the
 ``double_angles`` flag.

 Raises

 ValueError
 Image has to be 2D in order to extract IGOs.

 References

 .. [1] G. Tzimiropoulos, S. Zafeiriou and M. Pantic, "Subspace learning
 from image gradient orientations", IEEE Transactions on Pattern Analysis
 and Machine Intelligence, vol. 34, num. 12, p. 2454--2466, 2012.
 """
 # check number of dimensions
 if len(pixels.shape) != 3:
 raise ValueError('IGOs only work on 2D images. Expects image data '
 'to be 3D, shape + channels.')
 # feature channels per image channel
 feat_channels = 2
 if double_angles:
 feat_channels = 4
 # compute gradients
 grad = gradient(pixels)
 # compute angles
 grad_orient = np.angle(grad[..., ::2] + 1j * grad[..., 1::2])
 # compute igo image
 igo_pixels = np.empty((pixels.shape[0], pixels.shape[1],
 pixels.shape[-1] * feat_channels))
 igo_pixels[..., ::feat_channels] = np.cos(grad_orient)
 igo_pixels[..., 1::feat_channels] = np.sin(grad_orient)
 if double_angles:
 igo_pixels[..., 2::feat_channels] = np.cos(2 * grad_orient)
 igo_pixels[..., 3::feat_channels] = np.sin(2 * grad_orient)

 # print information
 if verbose:
 info_str = "IGO Features:\n"
 info_str = "{} - Input image is {}W x {}H with {} channels.\n".format(
 info_str, pixels.shape[1], pixels.shape[0],
 pixels.shape[2])
 if double_angles:
 info_str = "{} - Double angles are enabled.\n".format(info_str)
 else:
 info_str = "{} - Double angles are disabled.\n".format(info_str)
 info_str = "{}Output image size {}W x {}H x {}.".format(
 info_str, igo_pixels.shape[1], igo_pixels.shape[0],
 igo_pixels.shape[2])
 print(info_str)
 return igo_pixels

@ndfeature
[docs]def es(pixels, verbose=False):
 r"""
 Extracts Edge Structure (ES) features from the input image. The output image
 has ``N * C`` number of channels, where ``N`` is the number of channels of
 the original image and ``C = 2``.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 verbose : `bool`, optional
 Flag to print ES related information.

 Returns

 es : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The ES features image. It has the same type and shape as the input
 ``pixels``. The output number of channels is ``C = 2``.

 Raises

 ValueError
 Image has to be 2D in order to extract ES features.

 References

 .. [1] T. Cootes, C. Taylor, "On representing edge structure for model
 matching", Proceedings of the IEEE Conference on Computer Vision and
 Pattern Recognition (CVPR), 2001.
 """
 # check number of dimensions
 if len(pixels.shape) != 3:
 raise ValueError('ES features only work on 2D images. Expects '
 'image data to be 3D, shape + channels.')
 # feature channels per image channel
 feat_channels = 2
 # compute gradients
 grad = gradient(pixels)
 # compute magnitude
 grad_abs = np.abs(grad[..., ::2] + 1j * grad[..., 1::2])
 # compute es image
 grad_abs = grad_abs + np.median(grad_abs)
 es_pixels = np.empty((pixels.shape[0], pixels.shape[1],
 pixels.shape[-1] * feat_channels))
 es_pixels[..., ::feat_channels] = grad[..., ::2] / grad_abs
 es_pixels[..., 1::feat_channels] = grad[..., 1::2] / grad_abs
 # print information
 if verbose:
 info_str = "ES Features:\n"
 info_str = "{} - Input image is {}W x {}H with {} channels.\n".format(
 info_str, pixels.shape[1], pixels.shape[0],
 pixels.shape[2])
 info_str = "{}Output image size {}W x {}H x {}.".format(
 info_str, es_pixels.shape[1], es_pixels.shape[0],
 es_pixels.shape[2])
 print(info_str)
 return es_pixels

@ndfeature
[docs]def daisy(pixels, step=1, radius=15, rings=2, histograms=2, orientations=8,
 normalization='l1', sigmas=None, ring_radii=None, verbose=False):
 r"""
 Extracts Daisy features from the input image. The output image has ``N * C``
 number of channels, where ``N`` is the number of channels of the original
 image and ``C`` is the feature channels determined by the input options.
 Specifically, ``C = (rings * histograms + 1) * orientations``.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 step : `int`, optional
 The sampling step that defines the density of the output image.
 radius : `int`, optional
 The radius (in pixels) of the outermost ring.
 rings : `int`, optional
 The number of rings to be used.
 histograms : `int`, optional
 The number of histograms sampled per ring.
 orientations : `int`, optional
 The number of orientations (bins) per histogram.
 normalization : ['l1', 'l2', 'daisy', None], optional
 It defines how to normalize the descriptors
 If 'l1' then L1-normalization is applied at each descriptor.
 If 'l2' then L2-normalization is applied at each descriptor.
 If 'daisy' then L2-normalization is applied at individual histograms.
 If None then no normalization is employed.
 sigmas : `list` of `float` or ``None``, optional
 Standard deviation of spatial Gaussian smoothing for the centre
 histogram and for each ring of histograms. The `list` of sigmas should
 be sorted from the centre and out. I.e. the first sigma value defines
 the spatial smoothing of the centre histogram and the last sigma value
 defines the spatial smoothing of the outermost ring. Specifying sigmas
 overrides the `rings` parameter by setting ``rings = len(sigmas) - 1``.
 ring_radii : `list` of `float` or ``None``, optional
 Radius (in pixels) for each ring. Specifying `ring_radii` overrides the
 `rings` and `radius` parameters by setting ``rings = len(ring_radii)``
 and ``radius = ring_radii[-1]``.

 If both sigmas and ring_radii are given, they must satisfy ::

 len(ring_radii) == len(sigmas) + 1

 since no radius is needed for the centre histogram.
 verbose : `bool`
 Flag to print Daisy related information.

 Returns

 daisy : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The ES features image. It has the same type and shape as the input
 ``pixels``. The output number of channels is
 ``C = (rings * histograms + 1) * orientations``.

 Raises

 ValueError
 len(sigmas)-1 != len(ring_radii)
 ValueError
 Invalid normalization method.

 References

 .. [1] E. Tola, V. Lepetit and P. Fua, "Daisy: An efficient dense descriptor
 applied to wide-baseline stereo", IEEE Transactions on Pattern Analysis
 and Machine Intelligence, vol. 32, num. 5, p. 815-830, 2010.
 """
 from menpo.external.skimage._daisy import _daisy

 # Parse options
 if sigmas is not None and ring_radii is not None \
 and len(sigmas) - 1 != len(ring_radii):
 raise ValueError('`len(sigmas)-1 != len(ring_radii)`')
 if ring_radii is not None:
 rings = len(ring_radii)
 radius = ring_radii[-1]
 if sigmas is not None:
 rings = len(sigmas) - 1
 if sigmas is None:
 sigmas = [radius * (i + 1) / float(2 * rings) for i in range(rings)]
 if ring_radii is None:
 ring_radii = [radius * (i + 1) / float(rings) for i in range(rings)]
 if normalization is None:
 normalization = 'off'
 if normalization not in ['l1', 'l2', 'daisy', 'off']:
 raise ValueError('Invalid normalization method.')

 # Compute daisy features
 daisy_descriptor = _daisy(pixels, step=step, radius=radius, rings=rings,
 histograms=histograms, orientations=orientations,
 normalization=normalization, sigmas=sigmas,
 ring_radii=ring_radii)

 # print information
 if verbose:
 info_str = "Daisy Features:\n"
 info_str = "{} - Input image is {}W x {}H with {} channels.\n".format(
 info_str, pixels.shape[1], pixels.shape[0], pixels.shape[2])
 info_str = "{} - Sampling step is {}.\n".format(info_str, step)
 info_str = "{} - Radius of {} pixels, {} rings and {} histograms " \
 "with {} orientations.\n".format(
 info_str, radius, rings, histograms, orientations)
 if not normalization == 'off':
 info_str = "{} - Using {} normalization.\n".format(info_str,
 normalization)
 else:
 info_str = "{} - No normalization emplyed.\n".format(info_str)
 info_str = "{}Output image size {}W x {}H x {}.".format(
 info_str, daisy_descriptor.shape[1], daisy_descriptor.shape[0],
 daisy_descriptor.shape[2])
 print(info_str)

 return daisy_descriptor

@winitfeature
[docs]def lbp(pixels, radius=None, samples=None, mapping_type='riu2',
 window_step_vertical=1, window_step_horizontal=1,
 window_step_unit='pixels', padding=True, verbose=False,
 skip_checks=False):
 r"""
 Extracts Local Binary Pattern (LBP) features from the input image. The
 output image has ``N * C`` number of channels, where ``N`` is the number of
 channels of the original image and ``C`` is the number of radius/samples
 values combinations that are used in the LBP computation.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 radius : `int` or `list` of `int` or ``None``, optional
 It defines the radius of the circle (or circles) at which the sampling
 points will be extracted. The radius (or radii) values must be greater
 than zero. There must be a radius value for each samples value, thus
 they both need to have the same length. If ``None``, then
 ``[1, 2, 3, 4]`` is used.
 samples : `int` or `list` of `int` or ``None``, optional
 It defines the number of sampling points that will be extracted at each
 circle. The samples value (or values) must be greater than zero. There
 must be a samples value for each radius value, thus they both need to
 have the same length. If ``None``, then ``[8, 8, 8, 8]`` is used.
 mapping_type : {``u2``, ``ri``, ``riu2``, ``none``}, optional
 It defines the mapping type of the LBP codes. Select ``u2`` for
 uniform-2 mapping, ``ri`` for rotation-invariant mapping, ``riu2`` for
 uniform-2 and rotation-invariant mapping and ``none`` to use no mapping
 and only the decimal values instead.
 window_step_vertical : `float`, optional
 Defines the vertical step by which the window is moved, thus it controls
 the features density. The metric unit is defined by `window_step_unit`.
 window_step_horizontal : `float`, optional
 Defines the horizontal step by which the window is moved, thus it
 controls the features density. The metric unit is defined by
 `window_step_unit`.
 window_step_unit : {``pixels``, ``window``}, optional
 Defines the metric unit of the `window_step_vertical` and
 `window_step_horizontal` parameters.
 padding : `bool`, optional
 If ``True``, the output image is padded with zeros to match the input
 image's size.
 verbose : `bool`, optional
 Flag to print LBP related information.
 skip_checks : `bool`, optional
 If ``True``, do not perform any validation of the parameters.

 Returns

 lbp : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The ES features image. It has the same type and shape as the input
 ``pixels``. The output number of channels is
 ``C = len(radius) * len(samples)``.

 Raises

 ValueError
 Radius and samples must both be either integers or lists
 ValueError
 Radius and samples must have the same length
 ValueError
 Radius must be > 0
 ValueError
 Radii must be > 0
 ValueError
 Samples must be > 0
 ValueError
 Mapping type must be u2, ri, riu2 or none
 ValueError
 Horizontal window step must be > 0
 ValueError
 Vertical window step must be > 0
 ValueError
 Window step unit must be either pixels or window

 References

 .. [1] T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale
 and rotation invariant texture classification with local binary
 patterns", IEEE Transactions on Pattern Analysis and Machine
 Intelligence, vol. 24, num. 7, p. 971-987, 2002.
 """
 if radius is None:
 radius = range(1, 5)
 if samples is None:
 samples = [8]*4

 if not skip_checks:
 # Check parameters
 if ((isinstance(radius, int) and isinstance(samples, list)) or
 (isinstance(radius, list) and isinstance(samples, int))):
 raise ValueError("Radius and samples must both be either integers "
 "or lists")
 elif isinstance(radius, list) and isinstance(samples, list):
 if len(radius) != len(samples):
 raise ValueError("Radius and samples must have the same "
 "length")

 if isinstance(radius, int) and radius < 1:
 raise ValueError("Radius must be > 0")
 elif isinstance(radius, list) and sum(r < 1 for r in radius) > 0:
 raise ValueError("Radii must be > 0")

 if isinstance(samples, int) and samples < 1:
 raise ValueError("Samples must be > 0")
 elif isinstance(samples, list) and sum(s < 1 for s in samples) > 0:
 raise ValueError("Samples must be > 0")

 if mapping_type not in ['u2', 'ri', 'riu2', 'none']:
 raise ValueError("Mapping type must be u2, ri, riu2 or "
 "none")

 if window_step_horizontal <= 0:
 raise ValueError("Horizontal window step must be > 0")

 if window_step_vertical <= 0:
 raise ValueError("Vertical window step must be > 0")

 if window_step_unit not in ['pixels', 'window']:
 raise ValueError("Window step unit must be either pixels or "
 "window")

 # Correct input image_data
 pixels = np.asfortranarray(pixels)

 # Parse options
 radius = np.asfortranarray(radius)
 samples = np.asfortranarray(samples)
 window_height = np.uint32(2 * radius.max() + 1)
 window_width = window_height
 if window_step_unit == 'window':
 window_step_vertical = np.uint32(window_step_vertical * window_height)
 window_step_horizontal = np.uint32(window_step_horizontal *
 window_width)
 if mapping_type == 'u2':
 mapping_type = 1
 elif mapping_type == 'ri':
 mapping_type = 2
 elif mapping_type == 'riu2':
 mapping_type = 3
 else:
 mapping_type = 0

 # Create iterator object
 iterator = WindowIterator(pixels, window_height, window_width,
 window_step_horizontal, window_step_vertical,
 padding)

 # Print iterator's info
 if verbose:
 print(iterator)

 # Compute LBP
 return iterator.LBP(radius, samples, mapping_type, verbose)

@ndfeature
[docs]def no_op(pixels):
 r"""
 A no operation feature - does nothing but return a copy of the pixels
 passed in.

 Parameters

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 Either the image object itself or an array with the pixels. The last
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.

 Returns

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 A copy of the image that was passed in.
 """
 return pixels.copy()

[docs]def features_selection_widget(popup=True):
 r"""
 Widget that allows for easy selection of a features function and its
 options. It also has a 'preview' tab for visual inspection. It returns a
 `list` of length 1 with the selected features function closure.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.

 Returns

 features_function : `list` of length ``1``
 The function closure of the features function using `functools.partial`.
 So the function can be called as: ::

 features_image = features_function[0](image)

 Examples

 The widget can be invoked as ::

 from menpo.feature import features_selection_widget
 features_fun = features_selection_widget()

 And the returned function can be used as ::

 import menpo.io as mio
 image = mio.import_builtin_asset.lenna_png()
 features_image = features_fun[0](image)
 """
 from menpo.visualize.widgets import features_selection

 return features_selection(popup=popup)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/index.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 All modules for which code is available

		_abcoll

		abc

		menpo.base

		menpo.feature.features

		menpo.image.base

		menpo.image.boolean

		menpo.image.masked

		menpo.io.input.base

		menpo.io.output.base

		menpo.landmark.base

		menpo.landmark.exceptions

		menpo.landmark.labels

		menpo.math.convolution

		menpo.math.decomposition

		menpo.math.linalg

		menpo.model.base

		menpo.model.instancebacked

		menpo.model.linear

		menpo.model.pca

		menpo.shape.base

		menpo.shape.graph

		menpo.shape.groupops

		menpo.shape.mesh.base

		menpo.shape.mesh.coloured

		menpo.shape.mesh.textured

		menpo.shape.pointcloud

		menpo.transform.base

		menpo.transform.base.alignment

		menpo.transform.base.composable

		menpo.transform.base.invertible

		menpo.transform.groupalign.base

		menpo.transform.groupalign.procrustes

		menpo.transform.homogeneous.affine

		menpo.transform.homogeneous.base

		menpo.transform.homogeneous.rotation

		menpo.transform.homogeneous.scale

		menpo.transform.homogeneous.similarity

		menpo.transform.homogeneous.translation

		menpo.transform.piecewiseaffine.base

		menpo.transform.rbf

		menpo.transform.thinplatesplines

		menpo.visualize.base

		menpo.visualize.text_utils

		menpo.visualize.viewmatplotlib

		menpo.visualize.widgets.base

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/_abcoll.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for _abcoll

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

DON'T USE THIS MODULE DIRECTLY! The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues. Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
 "Sized", "Container", "Callable",
 "Set", "MutableSet",
 "Mapping", "MutableMapping",
 "MappingView", "KeysView", "ItemsView", "ValuesView",
 "Sequence", "MutableSequence",
]

ONE-TRICK PONIES

def _hasattr(C, attr):
 try:
 return any(attr in B.__dict__ for B in C.__mro__)
 except AttributeError:
 # Old-style class
 return hasattr(C, attr)

class Hashable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __hash__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Hashable:
 try:
 for B in C.__mro__:
 if "__hash__" in B.__dict__:
 if B.__dict__["__hash__"]:
 return True
 break
 except AttributeError:
 # Old-style class
 if getattr(C, "__hash__", None):
 return True
 return NotImplemented

class Iterable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __iter__(self):
 while False:
 yield None

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterable:
 if _hasattr(C, "__iter__"):
 return True
 return NotImplemented

Iterable.register(str)

class Iterator(Iterable):

 @abstractmethod
 def next(self):
 'Return the next item from the iterator. When exhausted, raise StopIteration'
 raise StopIteration

 def __iter__(self):
 return self

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterator:
 if _hasattr(C, "next") and _hasattr(C, "__iter__"):
 return True
 return NotImplemented

class Sized:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __len__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Sized:
 if _hasattr(C, "__len__"):
 return True
 return NotImplemented

class Container:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __contains__(self, x):
 return False

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Container:
 if _hasattr(C, "__contains__"):
 return True
 return NotImplemented

class Callable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __call__(self, *args, **kwds):
 return False

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Callable:
 if _hasattr(C, "__call__"):
 return True
 return NotImplemented

SETS

class Set(Sized, Iterable, Container):
 """A set is a finite, iterable container.

 This class provides concrete generic implementations of all
 methods except for __contains__, __iter__ and __len__.

 To override the comparisons (presumably for speed, as the
 semantics are fixed), all you have to do is redefine __le__ and
 then the other operations will automatically follow suit.
 """

 def __le__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 if len(self) > len(other):
 return False
 for elem in self:
 if elem not in other:
 return False
 return True

 def __lt__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) < len(other) and self.__le__(other)

 def __gt__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return other.__lt__(self)

 def __ge__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return other.__le__(self)

 def __eq__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) == len(other) and self.__le__(other)

 def __ne__(self, other):
 return not (self == other)

 @classmethod
 def _from_iterable(cls, it):
 '''Construct an instance of the class from any iterable input.

 Must override this method if the class constructor signature
 does not accept an iterable for an input.
 '''
 return cls(it)

 def __and__(self, other):
 if not isinstance(other, Iterable):
 return NotImplemented
 return self._from_iterable(value for value in other if value in self)

 def isdisjoint(self, other):
 'Return True if two sets have a null intersection.'
 for value in other:
 if value in self:
 return False
 return True

 def __or__(self, other):
 if not isinstance(other, Iterable):
 return NotImplemented
 chain = (e for s in (self, other) for e in s)
 return self._from_iterable(chain)

 def __sub__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return self._from_iterable(value for value in self
 if value not in other)

 def __xor__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return (self - other) | (other - self)

 # Sets are not hashable by default, but subclasses can change this
 __hash__ = None

 def _hash(self):
 """Compute the hash value of a set.

 Note that we don't define __hash__: not all sets are hashable.
 But if you define a hashable set type, its __hash__ should
 call this function.

 This must be compatible __eq__.

 All sets ought to compare equal if they contain the same
 elements, regardless of how they are implemented, and
 regardless of the order of the elements; so there's not much
 freedom for __eq__ or __hash__. We match the algorithm used
 by the built-in frozenset type.
 """
 MAX = sys.maxint
 MASK = 2 * MAX + 1
 n = len(self)
 h = 1927868237 * (n + 1)
 h &= MASK
 for x in self:
 hx = hash(x)
 h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167
 h &= MASK
 h = h * 69069 + 907133923
 h &= MASK
 if h > MAX:
 h -= MASK + 1
 if h == -1:
 h = 590923713
 return h

Set.register(frozenset)

class MutableSet(Set):
 """A mutable set is a finite, iterable container.

 This class provides concrete generic implementations of all
 methods except for __contains__, __iter__, __len__,
 add(), and discard().

 To override the comparisons (presumably for speed, as the
 semantics are fixed), all you have to do is redefine __le__ and
 then the other operations will automatically follow suit.
 """

 @abstractmethod
 def add(self, value):
 """Add an element."""
 raise NotImplementedError

 @abstractmethod
 def discard(self, value):
 """Remove an element. Do not raise an exception if absent."""
 raise NotImplementedError

 def remove(self, value):
 """Remove an element. If not a member, raise a KeyError."""
 if value not in self:
 raise KeyError(value)
 self.discard(value)

 def pop(self):
 """Return the popped value. Raise KeyError if empty."""
 it = iter(self)
 try:
 value = next(it)
 except StopIteration:
 raise KeyError
 self.discard(value)
 return value

 def clear(self):
 """This is slow (creates N new iterators!) but effective."""
 try:
 while True:
 self.pop()
 except KeyError:
 pass

 def __ior__(self, it):
 for value in it:
 self.add(value)
 return self

 def __iand__(self, it):
 for value in (self - it):
 self.discard(value)
 return self

 def __ixor__(self, it):
 if it is self:
 self.clear()
 else:
 if not isinstance(it, Set):
 it = self._from_iterable(it)
 for value in it:
 if value in self:
 self.discard(value)
 else:
 self.add(value)
 return self

 def __isub__(self, it):
 if it is self:
 self.clear()
 else:
 for value in it:
 self.discard(value)
 return self

MutableSet.register(set)

MAPPINGS

class Mapping(Sized, Iterable, Container):

 """A Mapping is a generic container for associating key/value
 pairs.

 This class provides concrete generic implementations of all
 methods except for __getitem__, __iter__, and __len__.

 """

 @abstractmethod
 def __getitem__(self, key):
 raise KeyError

 def get(self, key, default=None):
 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.'
 try:
 return self[key]
 except KeyError:
 return default

 def __contains__(self, key):
 try:
 self[key]
 except KeyError:
 return False
 else:
 return True

 def iterkeys(self):
 'D.iterkeys() -> an iterator over the keys of D'
 return iter(self)

 def itervalues(self):
 'D.itervalues() -> an iterator over the values of D'
 for key in self:
 yield self[key]

 def iteritems(self):
 'D.iteritems() -> an iterator over the (key, value) items of D'
 for key in self:
 yield (key, self[key])

 def keys(self):
 "D.keys() -> list of D's keys"
 return list(self)

 def items(self):
 "D.items() -> list of D's (key, value) pairs, as 2-tuples"
 return [(key, self[key]) for key in self]

 def values(self):
 "D.values() -> list of D's values"
 return [self[key] for key in self]

 # Mappings are not hashable by default, but subclasses can change this
 __hash__ = None

 def __eq__(self, other):
 if not isinstance(other, Mapping):
 return NotImplemented
 return dict(self.items()) == dict(other.items())

 def __ne__(self, other):
 return not (self == other)

class MappingView(Sized):

 def __init__(self, mapping):
 self._mapping = mapping

 def __len__(self):
 return len(self._mapping)

 def __repr__(self):
 return '{0.__class__.__name__}({0._mapping!r})'.format(self)

class KeysView(MappingView, Set):

 @classmethod
 def _from_iterable(self, it):
 return set(it)

 def __contains__(self, key):
 return key in self._mapping

 def __iter__(self):
 for key in self._mapping:
 yield key

class ItemsView(MappingView, Set):

 @classmethod
 def _from_iterable(self, it):
 return set(it)

 def __contains__(self, item):
 key, value = item
 try:
 v = self._mapping[key]
 except KeyError:
 return False
 else:
 return v == value

 def __iter__(self):
 for key in self._mapping:
 yield (key, self._mapping[key])

class ValuesView(MappingView):

 def __contains__(self, value):
 for key in self._mapping:
 if value == self._mapping[key]:
 return True
 return False

 def __iter__(self):
 for key in self._mapping:
 yield self._mapping[key]

class MutableMapping(Mapping):

 """A MutableMapping is a generic container for associating
 key/value pairs.

 This class provides concrete generic implementations of all
 methods except for __getitem__, __setitem__, __delitem__,
 __iter__, and __len__.

 """

 @abstractmethod
 def __setitem__(self, key, value):
 raise KeyError

 @abstractmethod
 def __delitem__(self, key):
 raise KeyError

 __marker = object()

 def pop(self, key, default=__marker):
 '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
 If key is not found, d is returned if given, otherwise KeyError is raised.
 '''
 try:
 value = self[key]
 except KeyError:
 if default is self.__marker:
 raise
 return default
 else:
 del self[key]
 return value

 def popitem(self):
 '''D.popitem() -> (k, v), remove and return some (key, value) pair
 as a 2-tuple; but raise KeyError if D is empty.
 '''
 try:
 key = next(iter(self))
 except StopIteration:
 raise KeyError
 value = self[key]
 del self[key]
 return key, value

 def clear(self):
 'D.clear() -> None. Remove all items from D.'
 try:
 while True:
 self.popitem()
 except KeyError:
 pass

 def update(*args, **kwds):
 ''' D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
 If E present and has a .keys() method, does: for k in E: D[k] = E[k]
 If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
 In either case, this is followed by: for k, v in F.items(): D[k] = v
 '''
 if len(args) > 2:
 raise TypeError("update() takes at most 2 positional "
 "arguments ({} given)".format(len(args)))
 elif not args:
 raise TypeError("update() takes at least 1 argument (0 given)")
 self = args[0]
 other = args[1] if len(args) >= 2 else ()

 if isinstance(other, Mapping):
 for key in other:
 self[key] = other[key]
 elif hasattr(other, "keys"):
 for key in other.keys():
 self[key] = other[key]
 else:
 for key, value in other:
 self[key] = value
 for key, value in kwds.items():
 self[key] = value

 def setdefault(self, key, default=None):
 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
 try:
 return self[key]
 except KeyError:
 self[key] = default
 return default

MutableMapping.register(dict)

SEQUENCES

class Sequence(Sized, Iterable, Container):
 """All the operations on a read-only sequence.

 Concrete subclasses must override __new__ or __init__,
 __getitem__, and __len__.
 """

 @abstractmethod
 def __getitem__(self, index):
 raise IndexError

 def __iter__(self):
 i = 0
 try:
 while True:
 v = self[i]
 yield v
 i += 1
 except IndexError:
 return

 def __contains__(self, value):
 for v in self:
 if v == value:
 return True
 return False

 def __reversed__(self):
 for i in reversed(range(len(self))):
 yield self[i]

 def index(self, value):
 '''S.index(value) -> integer -- return first index of value.
 Raises ValueError if the value is not present.
 '''
 for i, v in enumerate(self):
 if v == value:
 return i
 raise ValueError

 def count(self, value):
 'S.count(value) -> integer -- return number of occurrences of value'
 return sum(1 for v in self if v == value)

Sequence.register(tuple)
Sequence.register(basestring)
Sequence.register(buffer)
Sequence.register(xrange)

class MutableSequence(Sequence):

 """All the operations on a read-only sequence.

 Concrete subclasses must provide __new__ or __init__,
 __getitem__, __setitem__, __delitem__, __len__, and insert().

 """

 @abstractmethod
 def __setitem__(self, index, value):
 raise IndexError

 @abstractmethod
 def __delitem__(self, index):
 raise IndexError

 @abstractmethod
 def insert(self, index, value):
 'S.insert(index, object) -- insert object before index'
 raise IndexError

 def append(self, value):
 'S.append(object) -- append object to the end of the sequence'
 self.insert(len(self), value)

 def reverse(self):
 'S.reverse() -- reverse *IN PLACE*'
 n = len(self)
 for i in range(n//2):
 self[i], self[n-i-1] = self[n-i-1], self[i]

 def extend(self, values):
 'S.extend(iterable) -- extend sequence by appending elements from the iterable'
 for v in values:
 self.append(v)

 def pop(self, index=-1):
 '''S.pop([index]) -> item -- remove and return item at index (default last).
 Raise IndexError if list is empty or index is out of range.
 '''
 v = self[index]
 del self[index]
 return v

 def remove(self, value):
 '''S.remove(value) -- remove first occurrence of value.
 Raise ValueError if the value is not present.
 '''
 del self[self.index(value)]

 def __iadd__(self, values):
 self.extend(values)
 return self

MutableSequence.register(list)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/abc.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for abc

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""

import types

from _weakrefset import WeakSet

Instance of old-style class
class _C: pass
_InstanceType = type(_C())

def abstractmethod(funcobj):
 """A decorator indicating abstract methods.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract methods are overridden.
 The abstract methods can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C:
 __metaclass__ = ABCMeta
 @abstractmethod
 def my_abstract_method(self, ...):
 ...
 """
 funcobj.__isabstractmethod__ = True
 return funcobj

class abstractproperty(property):
 """A decorator indicating abstract properties.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract properties are overridden.
 The abstract properties can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C:
 __metaclass__ = ABCMeta
 @abstractproperty
 def my_abstract_property(self):
 ...

 This defines a read-only property; you can also define a read-write
 abstract property using the 'long' form of property declaration:

 class C:
 __metaclass__ = ABCMeta
 def getx(self): ...
 def setx(self, value): ...
 x = abstractproperty(getx, setx)
 """
 __isabstractmethod__ = True

class ABCMeta(type):

 """Metaclass for defining Abstract Base Classes (ABCs).

 Use this metaclass to create an ABC. An ABC can be subclassed
 directly, and then acts as a mix-in class. You can also register
 unrelated concrete classes (even built-in classes) and unrelated
 ABCs as 'virtual subclasses' -- these and their descendants will
 be considered subclasses of the registering ABC by the built-in
 issubclass() function, but the registering ABC won't show up in
 their MRO (Method Resolution Order) nor will method
 implementations defined by the registering ABC be callable (not
 even via super()).

 """

 # A global counter that is incremented each time a class is
 # registered as a virtual subclass of anything. It forces the
 # negative cache to be cleared before its next use.
 _abc_invalidation_counter = 0

 def __new__(mcls, name, bases, namespace):
 cls = super(ABCMeta, mcls).__new__(mcls, name, bases, namespace)
 # Compute set of abstract method names
 abstracts = set(name
 for name, value in namespace.items()
 if getattr(value, "__isabstractmethod__", False))
 for base in bases:
 for name in getattr(base, "__abstractmethods__", set()):
 value = getattr(cls, name, None)
 if getattr(value, "__isabstractmethod__", False):
 abstracts.add(name)
 cls.__abstractmethods__ = frozenset(abstracts)
 # Set up inheritance registry
 cls._abc_registry = WeakSet()
 cls._abc_cache = WeakSet()
 cls._abc_negative_cache = WeakSet()
 cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
 return cls

 def register(cls, subclass):
 """Register a virtual subclass of an ABC."""
 if not isinstance(subclass, (type, types.ClassType)):
 raise TypeError("Can only register classes")
 if issubclass(subclass, cls):
 return # Already a subclass
 # Subtle: test for cycles *after* testing for "already a subclass";
 # this means we allow X.register(X) and interpret it as a no-op.
 if issubclass(cls, subclass):
 # This would create a cycle, which is bad for the algorithm below
 raise RuntimeError("Refusing to create an inheritance cycle")
 cls._abc_registry.add(subclass)
 ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache

 def _dump_registry(cls, file=None):
 """Debug helper to print the ABC registry."""
 print >> file, "Class: %s.%s" % (cls.__module__, cls.__name__)
 print >> file, "Inv.counter: %s" % ABCMeta._abc_invalidation_counter
 for name in sorted(cls.__dict__.keys()):
 if name.startswith("_abc_"):
 value = getattr(cls, name)
 print >> file, "%s: %r" % (name, value)

 def __instancecheck__(cls, instance):
 """Override for isinstance(instance, cls)."""
 # Inline the cache checking when it's simple.
 subclass = getattr(instance, '__class__', None)
 if subclass is not None and subclass in cls._abc_cache:
 return True
 subtype = type(instance)
 # Old-style instances
 if subtype is _InstanceType:
 subtype = subclass
 if subtype is subclass or subclass is None:
 if (cls._abc_negative_cache_version ==
 ABCMeta._abc_invalidation_counter and
 subtype in cls._abc_negative_cache):
 return False
 # Fall back to the subclass check.
 return cls.__subclasscheck__(subtype)
 return (cls.__subclasscheck__(subclass) or
 cls.__subclasscheck__(subtype))

 def __subclasscheck__(cls, subclass):
 """Override for issubclass(subclass, cls)."""
 # Check cache
 if subclass in cls._abc_cache:
 return True
 # Check negative cache; may have to invalidate
 if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
 # Invalidate the negative cache
 cls._abc_negative_cache = WeakSet()
 cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
 elif subclass in cls._abc_negative_cache:
 return False
 # Check the subclass hook
 ok = cls.__subclasshook__(subclass)
 if ok is not NotImplemented:
 assert isinstance(ok, bool)
 if ok:
 cls._abc_cache.add(subclass)
 else:
 cls._abc_negative_cache.add(subclass)
 return ok
 # Check if it's a direct subclass
 if cls in getattr(subclass, '__mro__', ()):
 cls._abc_cache.add(subclass)
 return True
 # Check if it's a subclass of a registered class (recursive)
 for rcls in cls._abc_registry:
 if issubclass(subclass, rcls):
 cls._abc_cache.add(subclass)
 return True
 # Check if it's a subclass of a subclass (recursive)
 for scls in cls.__subclasses__():
 if issubclass(subclass, scls):
 cls._abc_cache.add(subclass)
 return True
 # No dice; update negative cache
 cls._abc_negative_cache.add(subclass)
 return False

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/image/masked.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.image.masked

from __future__ import division
from warnings import warn
import numpy as np
binary_erosion = None # expensive, from scipy.ndimage

from menpo.visualize.base import ImageViewer
gradient = None # avoid circular reference, from menpo.feature

from .base import Image
from .boolean import BooleanImage

[docs]class MaskedImage(Image):
 r"""
 Represents an `n`-dimensional `k`-channel image, which has a mask.
 Images can be masked in order to identify a region of interest. All
 images implicitly have a mask that is defined as the the entire image.
 The mask is an instance of :map:`BooleanImage`.

 Parameters

 image_data : ``(M, N ..., Q, C)`` `ndarray`
 The pixel data for the image, where the last axis represents the
 number of channels.
 mask : ``(M, N)`` `bool ndarray` or :map:`BooleanImage`, optional
 A binary array representing the mask. Must be the same
 shape as the image. Only one mask is supported for an image (so the
 mask is applied to every channel equally).
 copy: `bool`, optional
 If ``False``, the ``image_data`` will not be copied on assignment. If a
 mask is provided, this also won't be copied. In general this should only
 be used if you know what you are doing.

 Raises

 ValueError
 Mask is not the same shape as the image
 """
 def __init__(self, image_data, mask=None, copy=True):
 super(MaskedImage, self).__init__(image_data, copy=copy)
 if mask is not None:
 # Check if we need to create a BooleanImage or not
 if not isinstance(mask, BooleanImage):
 # So it's a numpy array.
 mask_image = BooleanImage(mask, copy=copy)
 else:
 # It's a BooleanImage object.
 if copy:
 mask = mask.copy()
 mask_image = mask
 if mask_image.shape == self.shape:
 self.mask = mask_image
 else:
 raise ValueError("Trying to construct a Masked Image of "
 "shape {} with a Mask of differing "
 "shape {}".format(self.shape,
 mask.shape))
 else:
 # no mask provided - make the default.
 self.mask = BooleanImage.blank(self.shape, fill=True)

[docs] def as_unmasked(self, copy=True):
 r"""
 Return a copy of this image without the masking behavior.

 By default the mask is simply discarded. In the future more options
 may be possible.

 Parameters

 copy : `bool`, optional
 If ``False``, the produced :map:`Image` will share pixels with
 ``self``. Only suggested to be used for performance.

 Returns

 image : :map:`Image`
 An image with the same pixels and landmarks as this one, but with
 no mask.
 """
 img = Image(self.pixels, copy=copy)
 img.landmarks = self.landmarks
 return img

 @classmethod
[docs] def blank(cls, shape, n_channels=1, fill=0, dtype=np.float, mask=None):
 r"""
 Returns a blank image

 Parameters

 shape : `tuple` or `list`
 The shape of the image. Any floating point values are rounded up
 to the nearest integer.
 n_channels: `int`, optional
 The number of channels to create the image with.
 fill : `int`, optional
 The value to fill all pixels with.
 dtype: `numpy datatype`, optional
 The datatype of the image.
 mask: ``(M, N)`` `bool ndarray` or :map:`BooleanImage`
 An optional mask that can be applied to the image. Has to have a
 shape equal to that of the image.

 Notes

 Subclasses of :map:`MaskedImage` need to overwrite this method and
 explicitly call this superclass method

 ::

 super(SubClass, cls).blank(shape,**kwargs)

 in order to appropriately propagate the subclass type to ``cls``.

 Returns

 blank_image : :class:`MaskedImage`
 A new masked image of the requested size.
 """
 # Ensure that the '+' operator means concatenate tuples
 shape = tuple(np.ceil(shape).astype(np.int))
 if fill == 0:
 pixels = np.zeros(shape + (n_channels,), dtype=dtype)
 else:
 pixels = np.ones(shape + (n_channels,), dtype=dtype) * fill
 return cls(pixels, copy=False, mask=mask)

[docs] def n_true_pixels(self):
 r"""
 The number of ``True`` values in the mask.

 :type: `int`
 """
 return self.mask.n_true()

[docs] def n_false_pixels(self):
 r"""
 The number of ``False`` values in the mask.

 :type: `int`
 """
 return self.mask.n_false()

[docs] def n_true_elements(self):
 r"""
 The number of ``True`` elements of the image over all the channels.

 :type: `int`
 """
 return self.n_true_pixels() * self.n_channels

[docs] def n_false_elements(self):
 r"""
 The number of ``False`` elements of the image over all the channels.

 :type: `int`
 """
 return self.n_false_pixels() * self.n_channels

[docs] def indices(self):
 r"""
 Return the indices of all true pixels in this image.

 :type: ``(n_dims, n_true_pixels)`` `ndarray`
 """
 return self.mask.true_indices()

[docs] def masked_pixels(self):
 r"""
 Get the pixels covered by the `True` values in the mask.

 :type: ``(mask.n_true, n_channels)`` `ndarray`
 """
 if self.mask.all_true():
 return self.pixels
 return self.pixels[self.mask.mask]

[docs] def set_masked_pixels(self, pixels, copy=True):
 r"""
 Update the masked pixels only to new values.

 Parameters

 pixels: `ndarray`
 The new pixels to set.
 copy: `bool`, optional
 If ``False`` a copy will be avoided in assignment. This can only
 happen if the mask is all ``True`` - in all other cases it will
 raise a warning.

 Raises

 Warning
 If the ``copy=False`` flag cannot be honored.
 """
 if self.mask.all_true():
 # reshape the vector into the image again
 pixels = pixels.reshape(self.shape + (self.n_channels,))
 if not copy:
 if not pixels.flags.c_contiguous:
 warn('The copy flag was NOT honoured. A copy HAS been '
 'made. Copy can only be avoided if MaskedImage has '
 'an all_true mask and the pixels provided are '
 'C-contiguous.')
 pixels = pixels.copy()
 else:
 pixels = pixels.copy()
 self.pixels = pixels
 else:
 self.pixels[self.mask.mask] = pixels
 # oh dear, couldn't avoid a copy. Did the user try to?
 if not copy:
 warn('The copy flag was NOT honoured. A copy HAS been made. '
 'copy can only be avoided if MaskedImage has an all_true '
 'mask.')

 def __str__(self):
 return ('{} {}D MaskedImage with {} channels. '
 'Attached mask {:.1%} true'.format(
 self._str_shape, self.n_dims, self.n_channels,
 self.mask.proportion_true()))

 def _as_vector(self, keep_channels=False):
 r"""
 Convert image to a vectorized form. Note that the only pixels
 returned here are from the masked region on the image.

 Parameters

 keep_channels : `bool`, optional

 ========== =================================
 Value Return shape
 ========== =================================
 ``True`` ``(mask.n_true, n_channels)``
 ``False`` ``(mask.n_true * n_channels,)``
 ========== =================================

 Returns

 vectorized_image : (shape given by ``keep_channels``) `ndarray`
 Vectorized image
 """
 if keep_channels:
 return self.masked_pixels().reshape([-1, self.n_channels])
 else:
 return self.masked_pixels().ravel()

[docs] def from_vector(self, vector, n_channels=None):
 r"""
 Takes a flattened vector and returns a new image formed by reshaping
 the vector to the correct pixels and channels. Note that the only
 region of the image that will be filled is the masked region.

 On masked images, the vector is always copied.

 The ``n_channels`` argument is useful for when we want to add an extra
 channel to an image but maintain the shape. For example, when
 calculating the gradient.

 Note that landmarks are transferred in the process.

 Parameters

 vector : ``(n_pixels,)``
 A flattened vector of all pixels and channels of an image.
 n_channels : `int`, optional
 If given, will assume that vector is the same shape as this image,
 but with a possibly different number of channels.

 Returns

 image : :class:`MaskedImage`
 New image of same shape as this image and the number of
 specified channels.
 """
 # This is useful for when we want to add an extra channel to an image
 # but maintain the shape. For example, when calculating the gradient
 n_channels = self.n_channels if n_channels is None else n_channels
 # Creates zeros of size (M x N x ... x n_channels)
 if self.mask.all_true():
 # we can just reshape the array!
 image_data = vector.reshape((self.shape + (n_channels,)))
 else:
 image_data = np.zeros(self.shape + (n_channels,))
 pixels_per_channel = vector.reshape((-1, n_channels))
 image_data[self.mask.mask] = pixels_per_channel
 new_image = MaskedImage(image_data, mask=self.mask)
 new_image.landmarks = self.landmarks
 return new_image

[docs] def from_vector_inplace(self, vector, copy=True):
 r"""
 Takes a flattened vector and updates this image by reshaping
 the vector to the correct pixels and channels. Note that the only
 region of the image that will be filled is the masked region.

 Parameters

 vector : ``(n_parameters,)``
 A flattened vector of all pixels and channels of an image.
 copy : `bool`, optional
 If ``False``, the vector will be set as the pixels with no copy
 made.
 If ``True`` a copy of the vector is taken.

 Raises

 Warning
 If ``copy=False`` cannot be honored.
 """
 self.set_masked_pixels(vector.reshape((-1, self.n_channels)),
 copy=copy)

[docs] def _view_2d(self, figure_id=None, new_figure=False, channels=None,
 masked=True, interpolation="bilinear", alpha=1.,
 render_axes=False, axes_font_name='sans-serif',
 axes_font_size=10, axes_font_style='normal',
 axes_font_weight='normal', axes_x_limits=None,
 axes_y_limits=None, figure_size=(10, 8)):
 r"""
 View the image using the default image viewer. This method will appear
 on the Image as ``view`` if the Image is 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 masked : `bool`, optional
 If ``True``, only the masked pixels will be rendered.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated.
 Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36,
 hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
 bessel, mitchell, sinc, lanczos}

 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.

 Raises

 ValueError
 If Image is not 2D
 """
 mask = self.mask.mask if masked else None
 pixels_to_view = self.pixels
 return ImageViewer(figure_id, new_figure, self.n_dims,
 pixels_to_view, channels=channels,
 mask=mask).render(render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 figure_size=figure_size,
 interpolation=interpolation,
 alpha=alpha)

[docs] def _view_landmarks_2d(self, channels=None, masked=True, group=None,
 with_labels=None, without_labels=None,
 figure_id=None, new_figure=False,
 interpolation='bilinear', alpha=1.,
 render_lines=True, line_colour=None, line_style='-',
 line_width=1, render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour=None,
 marker_edge_colour=None, marker_edge_width=1.,
 render_numbering=False,
 numbers_horizontal_align='center',
 numbers_vertical_align='bottom',
 numbers_font_name='sans-serif', numbers_font_size=10,
 numbers_font_style='normal',
 numbers_font_weight='normal',
 numbers_font_colour='k', render_legend=False,
 legend_title='', legend_font_name='sans-serif',
 legend_font_style='normal', legend_font_size=10,
 legend_font_weight='normal',
 legend_marker_scale=None,
 legend_location=2, legend_bbox_to_anchor=(1.05, 1.),
 legend_border_axes_pad=None, legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None, legend_border=True,
 legend_border_padding=None, legend_shadow=False,
 legend_rounded_corners=False, render_axes=False,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None,
 figure_size=(10, 8)):
 """
 Visualize the landmarks. This method will appear on the Image as
 ``view_landmarks`` if the Image is 2D.

 Parameters

 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 masked : `bool`, optional
 If ``True``, only the masked pixels will be rendered.
 group : `str` or``None`` optionals
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated. Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None`` optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None`` optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 from menpo.visualize import view_image_landmarks
 return view_image_landmarks(
 self, channels, masked, group, with_labels, without_labels,
 figure_id, new_figure, interpolation, alpha, render_lines,
 line_colour, line_style, line_width, render_markers, marker_style,
 marker_size, marker_face_colour, marker_edge_colour,
 marker_edge_width, render_numbering, numbers_horizontal_align,
 numbers_vertical_align, numbers_font_name, numbers_font_size,
 numbers_font_style, numbers_font_weight, numbers_font_colour,
 render_legend, legend_title, legend_font_name, legend_font_style,
 legend_font_size, legend_font_weight, legend_marker_scale,
 legend_location, legend_bbox_to_anchor, legend_border_axes_pad,
 legend_n_columns, legend_horizontal_spacing,
 legend_vertical_spacing, legend_border, legend_border_padding,
 legend_shadow, legend_rounded_corners, render_axes, axes_font_name,
 axes_font_size, axes_font_style, axes_font_weight, axes_x_limits,
 axes_y_limits, figure_size)

[docs] def crop_inplace(self, min_indices, max_indices,
 constrain_to_boundary=True):
 r"""
 Crops this image using the given minimum and maximum indices.
 Landmarks are correctly adjusted so they maintain their position
 relative to the newly cropped image.

 Parameters

 min_indices: ``(n_dims,)`` `ndarray`
 The minimum index over each dimension.
 max_indices: ``(n_dims,)`` `ndarray`
 The maximum index over each dimension.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.

 Returns

 cropped_image : `type(self)`
 This image, but cropped.

 Raises

 ValueError
 ``min_indices`` and ``max_indices`` both have to be of length
 ``n_dims``. All ``max_indices`` must be greater than
 ``min_indices``.
 :map`ImageBoundaryError`
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 # crop our image
 super(MaskedImage, self).crop_inplace(
 min_indices, max_indices,
 constrain_to_boundary=constrain_to_boundary)
 # crop our mask
 self.mask.crop_inplace(min_indices, max_indices,
 constrain_to_boundary=constrain_to_boundary)
 return self

[docs] def crop_to_true_mask(self, boundary=0, constrain_to_boundary=True):
 r"""
 Crop this image to be bounded just the `True` values of it's mask.

 Parameters

 boundary: `int`, optional
 An extra padding to be added all around the true mask region.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image. Note that
 is only possible if ``boundary != 0``.

 Raises

 ImageBoundaryError
 Raised if 11constrain_to_boundary=False`1, and an attempt is
 made to crop the image in a way that violates the image bounds.
 """
 min_indices, max_indices = self.mask.bounds_true(
 boundary=boundary, constrain_to_bounds=False)
 # no point doing the bounds check twice - let the crop do it only.
 self.crop_inplace(min_indices, max_indices,
 constrain_to_boundary=constrain_to_boundary)

[docs] def warp_to_mask(self, template_mask, transform, warp_landmarks=False,
 order=1, mode='constant', cval=0.):
 r"""
 Warps this image into a different reference space.

 Parameters

 template_mask : :map:`BooleanImage`
 Defines the shape of the result, and what pixels should be sampled.
 transform : :map:`Transform`
 Transform **from the template space back to this image**.
 Defines, for each pixel location on the template, which pixel
 location should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as ``self``, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 warped_image : ``type(self)``
 A copy of this image, warped.
 """
 # call the super variant and get ourselves a MaskedImage back
 # with a blank mask
 warped_image = Image.warp_to_mask(self, template_mask, transform,
 warp_landmarks=warp_landmarks,
 order=order, mode=mode, cval=cval)
 warped_mask = self.mask.warp_to_mask(template_mask, transform,
 warp_landmarks=warp_landmarks,
 mode=mode, cval=cval)
 warped_image.mask = warped_mask
 return warped_image

[docs] def warp_to_shape(self, template_shape, transform, warp_landmarks=False,
 order=1, mode='constant', cval=0.):
 """
 Return a copy of this :map:`MaskedImage` warped into a different
 reference space.

 Parameters

 template_shape : `tuple` or `ndarray`
 Defines the shape of the result, and what pixel indices should be
 sampled (all of them).
 transform : :map:`Transform`
 Transform **from the template_shape space back to this image**.
 Defines, for each index on template_shape, which pixel location
 should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 warped_image : :map:`MaskedImage`
 A copy of this image, warped.
 """
 # call the super variant and get ourselves an Image back
 warped_image = Image.warp_to_shape(self, template_shape, transform,
 warp_landmarks=warp_landmarks,
 order=order, mode=mode, cval=cval)
 # warp the mask separately and reattach.
 mask = self.mask.warp_to_shape(template_shape, transform,
 warp_landmarks=warp_landmarks,
 mode=mode, cval=cval)
 # efficiently turn the Image into a MaskedImage, attaching the
 # landmarks
 masked_warped_image = MaskedImage(warped_image.pixels, mask=mask,
 copy=False)
 masked_warped_image.landmarks = warped_image.landmarks
 return masked_warped_image

[docs] def normalize_std_inplace(self, mode='all', limit_to_mask=True):
 r"""
 Normalizes this image such that it's pixel values have zero mean and
 unit variance.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 limit_to_mask : `bool`, optional
 If ``True``, the normalization is only performed wrt the masked
 pixels.
 If ``False``, the normalization is wrt all pixels, regardless of
 their masking value.
 """
 self._normalize_inplace(np.std, mode=mode,
 limit_to_mask=limit_to_mask)

[docs] def normalize_norm_inplace(self, mode='all', limit_to_mask=True,
 **kwargs):
 r"""
 Normalizes this image such that it's pixel values have zero mean and
 its norm equals 1.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 limit_to_mask : `bool`, optional
 If ``True``, the normalization is only performed wrt the masked
 pixels.
 If ``False``, the normalization is wrt all pixels, regardless of
 their masking value.
 """

 def scale_func(pixels, axis=None):
 return np.linalg.norm(pixels, axis=axis, **kwargs)

 self._normalize_inplace(scale_func, mode=mode,
 limit_to_mask=limit_to_mask)

 def _normalize_inplace(self, scale_func, mode='all', limit_to_mask=True):
 if limit_to_mask:
 pixels = self.as_vector(keep_channels=True)
 else:
 pixels = Image.as_vector(self, keep_channels=True)
 if mode == 'all':
 centered_pixels = pixels - np.mean(pixels)
 scale_factor = scale_func(centered_pixels)

 elif mode == 'per_channel':
 centered_pixels = pixels - np.mean(pixels, axis=0)
 scale_factor = scale_func(centered_pixels, axis=0)
 else:
 raise ValueError("mode has to be 'all' or 'per_channel' - '{}' "
 "was provided instead".format(mode))

 if np.any(scale_factor == 0):
 raise ValueError("Image has 0 variance - can't be "
 "normalized")
 else:
 normalized_pixels = centered_pixels / scale_factor

 if limit_to_mask:
 self.from_vector_inplace(normalized_pixels.flatten())
 else:
 Image.from_vector_inplace(self,
 normalized_pixels.flatten())

[docs] def gradient(self, nullify_values_at_mask_boundaries=False):
 r"""
 Returns a :map:`MaskedImage` which is the gradient of this one. In the
 case of multiple channels, it returns the gradient over each axis over
 each channel as a flat list.

 Parameters

 nullify_values_at_mask_boundaries : `bool`, optional
 If ``True`` a one pixel boundary is set to 0 around the edge of
 the ``True`` mask region. This is useful in situations where
 there is absent data in the image which will cause erroneous
 gradient settings.

 Returns

 gradient : :map:`MaskedImage`
 The gradient over each axis over each channel. Therefore, the
 gradient of a 2D, single channel image, will have length `2`.
 The length of a 2D, 3-channel image, will have length `6`.
 """
 global binary_erosion, gradient
 if gradient is None:
 from menpo.feature import gradient # avoid circular reference
 # use the feature to take the gradient as normal
 grad_image = gradient(self)
 if nullify_values_at_mask_boundaries:
 if binary_erosion is None:
 from scipy.ndimage import binary_erosion # expensive
 # Erode the edge of the mask in by one pixel
 eroded_mask = binary_erosion(self.mask.mask, iterations=1)

 # replace the eroded mask with the diff between the two
 # masks. This is only true in the region we want to nullify.
 np.logical_and(~eroded_mask, self.mask.mask, out=eroded_mask)
 # nullify all the boundary values in the grad image
 grad_image.pixels[eroded_mask] = 0.0
 return grad_image

[docs] def constrain_mask_to_landmarks(self, group=None, label=None,
 trilist=None):
 r"""
 Restricts this image's mask to be equal to the convex hull around the
 landmarks chosen. This is not a per-pixel convex hull, but is instead
 estimated by a triangulation of the points that contain the convex
 hull.

 Parameters

 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 label: `str`, optional
 The label of of the landmark manager that you wish to use. If no
 label is passed, the convex hull of all landmarks is used.
 trilist: ``(t, 3)`` `ndarray`, optional
 Triangle list to be used on the landmarked points in selecting
 the mask region. If None defaults to performing Delaunay
 triangulation on the points.
 """
 self.mask.constrain_to_pointcloud(self.landmarks[group][label],
 trilist=trilist)

[docs] def build_mask_around_landmarks(self, patch_size, group=None, label=None):
 r"""
 Restricts this images mask to be patches around each landmark in
 the chosen landmark group. This is useful for visualizing patch
 based methods.

 Parameters

 patch_shape : `tuple`
 The size of the patch. Any floating point values are rounded up
 to the nearest integer.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 label: `str`, optional
 The label of of the landmark manager that you wish to use. If no
 label is passed, the convex hull of all landmarks is used.
 """
 pc = self.landmarks[group][label]
 patch_size = np.ceil(patch_size)
 patch_half_size = patch_size / 2
 mask = np.zeros(self.shape)
 max_x = self.shape[0] - 1
 max_y = self.shape[1] - 1

 for i, point in enumerate(pc.points):
 start = np.floor(point - patch_half_size).astype(int)
 finish = np.floor(point + patch_half_size).astype(int)
 x, y = np.mgrid[start[0]:finish[0], start[1]:finish[1]]
 # deal with boundary cases
 x[x > max_x] = max_x
 y[y > max_y] = max_y
 x[x < 0] = 0
 y[y < 0] = 0
 mask[x.flatten(), y.flatten()] = True

 self.mask = BooleanImage(mask)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.base

import abc
import os.path

To debug the Copyable interface, simply uncomment lines 11-23 below and the
four lines in the copy() method.
Then you can call print_copyable_log() to see exactly what types have been
skipped in copying and why.

from collections import defaultdict
alien_copies = defaultdict(set)
non_copies = defaultdict(set)
#
#
def print_copyable_log():
print('Has .copy() but not Copyable:')
for k, v in alien_copies.iteritems():
print(' {:15}| {}'.format(k, ', '.join(v)))
#
print('\nNo .copy() (shallow copied):')
for k, v in non_copies.iteritems():
print(' {:15}| {}'.format(k, ', '.join(v)))

[docs]class Copyable(object):
 """
 Efficient copying of classes containing numpy arrays.

 Interface that provides a single method for copying classes very
 efficiently.
 """

[docs] def copy(self):
 r"""
 Generate an efficient copy of this object.

 Note that Numpy arrays and other :map:`Copyable` objects on ``self``
 will be deeply copied. Dictionaries and sets will be shallow copied,
 and everything else will be assigned (no copy will be made).

 Classes that store state other than numpy arrays and immutable types
 should overwrite this method to ensure all state is copied.

 Returns

 ``type(self)``
 A copy of this object

 """
 # print('copy called on {}'.format(type(self).__name__))
 new = self.__class__.__new__(self.__class__)
 for k, v in self.__dict__.iteritems():
 try:
 new.__dict__[k] = v.copy()
 # if not isinstance(v, Copyable):
 # alien_copies[type(v).__name__].add(type(self).__name__)
 except AttributeError:
 new.__dict__[k] = v
 # non_copies[type(v).__name__].add(type(self).__name__)
 return new

[docs]class Vectorizable(Copyable):
 """
 Flattening of rich objects to vectors and rebuilding them back.

 Interface that provides methods for 'flattening' an object into a
 vector, and restoring from the same vectorized form. Useful for
 statistical analysis of objects, which commonly requires the data
 to be provided as a single vector.
 """

 __metaclass__ = abc.ABCMeta

 @property
 def n_parameters(self):
 r"""The length of the vector that this object produces.

 :type: `int`
 """
 return (self.as_vector()).shape[0]

[docs] def as_vector(self, **kwargs):
 """
 Returns a flattened representation of the object as a single
 vector.

 Returns

 vector : (N,) ndarray
 The core representation of the object, flattened into a
 single vector. Note that this is always a view back on to the
 original object, but is not writable.
 """
 v = self._as_vector(**kwargs)
 v.flags.writeable = False
 return v

 @abc.abstractmethod
 def _as_vector(self, **kwargs):
 """
 Returns a flattened representation of the object as a single
 vector.

 Returns

 vector : ``(n_parameters,)`` `ndarray`
 The core representation of the object, flattened into a
 single vector.
 """

 @abc.abstractmethod
[docs] def from_vector_inplace(self, vector):
 """Update the state of this object from a vector form.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of this object
 """

[docs] def from_vector(self, vector):
 """Build a new instance of the object from it's vectorized state.

 ``self`` is used to fill out the missing state required to
 rebuild a full object from it's standardized flattened state. This
 is the default implementation, which is which is a ``deepcopy`` of the
 object followed by a call to :meth:`from_vector_inplace()`. This method
 can be overridden for a performance benefit if desired.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of the object.

 Returns

 object : ``type(self)``
 An new instance of this class.
 """
 new = self.copy()
 new.from_vector_inplace(vector)
 return new

[docs]class Targetable(Copyable):
 """Interface for objects that can produce a target :map:`PointCloud`.

 This could for instance be the result of an alignment or a generation of a
 :map:`PointCloud` instance from a shape model.

 Implementations must define sensible behavior for:

 - what a target is: see :attr:`target`
 - how to set a target: see :meth:`set_target`
 - how to update the object after a target is set:
 see :meth:`_sync_state_from_target`
 - how to produce a new target after the changes:
 see :meth:`_new_target_from_state`

 Note that :meth:`_sync_target_from_state` needs to be triggered as
 appropriate by subclasses e.g. when :map:`from_vector_inplace` is
 called. This will in turn trigger :meth:`_new_target_from_state`, which each
 subclass must implement.
 """
 __metaclass__ = abc.ABCMeta

 @property
 def n_dims(self):
 r"""The number of dimensions of the :attr:`target`.

 :type: `int`
 """
 return self.target.n_dims

 @property
 def n_points(self):
 r"""The number of points on the :attr:`target`.

 :type: `int`
 """
 return self.target.n_points

 @abc.abstractproperty
 def target(self):
 r"""The current :map:`PointCloud` that this object produces.

 :type: :map:`PointCloud`
 """

[docs] def set_target(self, new_target):
 r"""
 Update this object so that it attempts to recreate the ``new_target``.

 Parameters

 new_target : :map:`PointCloud`
 The new target that this object should try and regenerate.
 """
 self._target_setter_with_verification(new_target) # trigger the update
 self._sync_state_from_target() # and a sync

 def _target_setter_with_verification(self, new_target):
 r"""Updates the target, checking it is sensible, without triggering a
 sync.

 Should be called by :meth:`_sync_target_from_state` once it has
 generated a suitable target representation.

 Parameters

 new_target : :map:`PointCloud`
 The new target that should be set.
 """
 self._verify_target(new_target)
 self._target_setter(new_target)

 def _verify_target(self, new_target):
 r"""Performs sanity checks to ensure that the new target is valid.

 This includes checking the dimensionality matches and the number of
 points matches the current target's values.

 Parameters

 new_target : :map:`PointCloud`
 The target that needs to be verified.

 Raises

 ValueError
 If the ``new_target`` has differing ``n_points`` or ``n_dims`` to
 ``self``.
 """
 # If the target is None (i.e. on construction) then dodge the
 # verification
 if self.target is None:
 return
 if new_target.n_dims != self.target.n_dims:
 raise ValueError(
 "The current target is {}D, the new target is {}D - new "
 "target has to have the same dimensionality as the "
 "old".format(self.target.n_dims, new_target.n_dims))
 elif new_target.n_points != self.target.n_points:
 raise ValueError(
 "The current target has {} points, the new target has {} "
 "- new target has to have the same number of points as the"
 " old".format(self.target.n_points, new_target.n_points))

 @abc.abstractmethod
 def _target_setter(self, new_target):
 r"""Sets the target to the new value.

 Does no synchronization. Note that it is advisable that
 :meth:`_target_setter_with_verification` is called from
 subclasses instead of this.

 Parameters

 new_target : :map:`PointCloud`
 The new target that will be set.
 """

 def _sync_target_from_state(self):
 new_target = self._new_target_from_state()
 self._target_setter_with_verification(new_target)

 @abc.abstractmethod
 def _new_target_from_state(self):
 r"""Generate a new target that is correct after changes to the object.

 Returns

 object : ``type(self)``
 """
 pass

 @abc.abstractmethod
 def _sync_state_from_target(self):
 r"""Synchronizes the object state to be correct after changes to the
 target.

 Called automatically from the target setter. This is called after the
 target is updated - only handle synchronization here.
 """
 pass

[docs]def menpo_src_dir_path():
 r"""The path to the top of the menpo Python package.

 Useful for locating where the data folder is stored.

 Returns

 path : ``pathlib.Path``
 The full path to the top of the Menpo package
 """
 from pathlib import Path # to avoid cluttering the menpo.base namespace
 return Path(os.path.abspath(__file__)).parent

class MenpoDeprecationWarning(Warning):
 r"""
 A warning that functionality in Menpo will be deprecated in a future major
 release.
 """
 pass

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/image/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.image.base

from __future__ import division
from warnings import warn

import numpy as np
import scipy.linalg
import PIL.Image as PILImage

from menpo.base import Vectorizable
from menpo.landmark import Landmarkable
from menpo.transform import (Translation, NonUniformScale,
 AlignmentUniformScale, Affine, Rotation)
from menpo.visualize.base import ImageViewer, LandmarkableViewable, Viewable
from .interpolation import scipy_interpolation, cython_interpolation
from .extract_patches import extract_patches_cython

[docs]class ImageBoundaryError(ValueError):
 r"""
 Exception that is thrown when an attempt is made to crop an image beyond
 the edge of it's boundary.

 Parameters

 requested_min : ``(d,)`` `ndarray`
 The per-dimension minimum index requested for the crop
 requested_max : ``(d,)`` `ndarray`
 The per-dimension maximum index requested for the crop
 snapped_min : ``(d,)`` `ndarray`
 The per-dimension minimum index that could be used if the crop was
 constrained to the image boundaries.
 requested_max : ``(d,)`` `ndarray`
 The per-dimension maximum index that could be used if the crop was
 constrained to the image boundaries.
 """

 def __init__(self, requested_min, requested_max, snapped_min,
 snapped_max):
 super(ImageBoundaryError, self).__init__()
 self.requested_min = requested_min
 self.requested_max = requested_max
 self.snapped_min = snapped_min
 self.snapped_max = snapped_max

def indices_for_image_of_shape(shape):
 r"""
 The indices of all pixels in an image with a given shape (without
 channel information).

 Parameters

 shape : ``(n_dims, n_pixels)`` `ndarray`
 The shape of the image.

 Returns

 indices : `ndarray`
 The indices of all the pixels in the image.
 """
 return np.indices(shape).reshape([len(shape), -1]).T

[docs]class Image(Vectorizable, Landmarkable, Viewable, LandmarkableViewable):
 r"""
 An n-dimensional image.

 Images are n-dimensional homogeneous regular arrays of data. Each
 spatially distinct location in the array is referred to as a `pixel`.
 At a pixel, ``k`` distinct pieces of information can be stored. Each
 datum at a pixel is refereed to as being in a `channel`. All pixels in
 the image have the same number of channels, and all channels have the
 same data-type (`float64`).

 Parameters

 image_data : ``(M, N ..., Q, C)`` `ndarray`
 Array representing the image pixels, with the last axis being
 channels.
 copy : `bool`, optional
 If ``False``, the ``image_data`` will not be copied on assignment.
 Note that this will miss out on additional checks. Further note that we
 still demand that the array is C-contiguous - if it isn't, a copy will
 be generated anyway.
 In general, this should only be used if you know what you are doing.

 Raises

 Warning
 If ``copy=False`` cannot be honoured
 ValueError
 If the pixel array is malformed
 """

 def __init__(self, image_data, copy=True):
 super(Image, self).__init__()
 if not copy:
 if not image_data.flags.c_contiguous:
 image_data = np.array(image_data, copy=True, order='C')
 warn('The copy flag was NOT honoured. A copy HAS been made. '
 'Please ensure the data you pass is C-contiguous.')
 else:
 image_data = np.array(image_data, copy=True, order='C')
 # Degenerate case whereby we can just put the extra axis
 # on ourselves
 if image_data.ndim == 2:
 image_data = image_data[..., None]
 if image_data.ndim < 2:
 raise ValueError(
 "Pixel array has to be 2D (2D shape, implicitly "
 "1 channel) or 3D+ (2D+ shape, n_channels) "
 " - a {}D array "
 "was provided".format(image_data.ndim))
 self.pixels = image_data

[docs] def as_masked(self, mask=None, copy=True):
 r"""
 Return a copy of this image with an attached mask behavior.

 A custom mask may be provided, or ``None``. See the :map:`MaskedImage`
 constructor for details of how the kwargs will be handled.

 Parameters

 mask : ``(self.shape)`` `ndarray` or :map:`BooleanImage`
 A mask to attach to the newly generated masked image.
 copy : `bool`, optional
 If ``False``, the produced :map:`MaskedImage` will share pixels with
 ``self``. Only suggested to be used for performance.

 Returns

 masked_image : :map:`MaskedImage`
 An image with the same pixels and landmarks as this one, but with
 a mask.
 """
 from menpo.image import MaskedImage
 img = MaskedImage(self.pixels, mask=mask, copy=copy)
 img.landmarks = self.landmarks
 return img

 @classmethod
[docs] def blank(cls, shape, n_channels=1, fill=0, dtype=np.float):
 r"""
 Returns a blank image.

 Parameters

 shape : `tuple` or `list`
 The shape of the image. Any floating point values are rounded up
 to the nearest integer.
 n_channels : `int`, optional
 The number of channels to create the image with.
 fill : `int`, optional
 The value to fill all pixels with.
 dtype : numpy data type, optional
 The data type of the image.

 Returns

 blank_image : :map:`Image`
 A new image of the requested size.
 """
 # Ensure that the '+' operator means concatenate tuples
 shape = tuple(np.ceil(shape).astype(np.int))
 if fill == 0:
 pixels = np.zeros(shape + (n_channels,), dtype=dtype)
 else:
 pixels = np.ones(shape + (n_channels,), dtype=dtype) * fill
 # We know there is no need to copy
 return cls(pixels, copy=False)

 @property
 def n_dims(self):
 r"""
 The number of dimensions in the image. The minimum possible ``n_dims``
 is 2.

 :type: `int`
 """
 return len(self.shape)

 @property
 def n_pixels(self):
 r"""
 Total number of pixels in the image ``(prod(shape),)``

 :type: `int`
 """
 return self.pixels[..., 0].size

 @property
 def n_elements(self):
 r"""
 Total number of data points in the image
 ``(prod(shape), n_channels)``

 :type: `int`
 """
 return self.pixels.size

 @property
 def n_channels(self):
 """
 The number of channels on each pixel in the image.

 :type: `int`
 """
 return self.pixels.shape[-1]

 @property
 def width(self):
 r"""
 The width of the image.

 This is the width according to image semantics, and is thus the size
 of the **second** dimension.

 :type: `int`
 """
 return self.pixels.shape[1]

 @property
 def height(self):
 r"""
 The height of the image.

 This is the height according to image semantics, and is thus the size
 of the **first** dimension.

 :type: `int`
 """
 return self.pixels.shape[0]

 @property
 def shape(self):
 r"""
 The shape of the image
 (with ``n_channel`` values at each point).

 :type: `tuple`
 """
 return self.pixels.shape[:-1]

 @property
 def diagonal(self):
 r"""
 The diagonal size of this image

 :type: `float`
 """
 return np.sqrt(np.sum(np.array(self.shape) ** 2))

 @property
 def centre(self):
 r"""
 The geometric centre of the Image - the subpixel that is in the
 middle.

 Useful for aligning shapes and images.

 :type: (``n_dims``,) `ndarray`
 """
 # noinspection PyUnresolvedReferences
 return np.array(self.shape, dtype=np.double) / 2

 @property
 def _str_shape(self):
 if self.n_dims > 2:
 return ' x '.join(str(dim) for dim in self.shape)
 elif self.n_dims == 2:
 return '{}W x {}H'.format(self.width, self.height)

[docs] def indices(self):
 r"""
 Return the indices of all pixels in this image.

 :type: (``n_dims``, ``n_pixels``) ndarray

 """
 return indices_for_image_of_shape(self.shape)

 def _as_vector(self, keep_channels=False):
 r"""
 The vectorized form of this image.

 Parameters

 keep_channels : `bool`, optional

 ========== =============================
 Value Return shape
 ========== =============================
 `False` ``(n_pixels * n_channels,)``
 `True` ``(n_pixels, n_channels)``
 ========== =============================

 Returns

 vec : (See ``keep_channels`` above) `ndarray`
 Flattened representation of this image, containing all pixel
 and channel information.
 """
 if keep_channels:
 return self.pixels.reshape([-1, self.n_channels])
 else:
 return self.pixels.ravel()

[docs] def from_vector(self, vector, n_channels=None, copy=True):
 r"""
 Takes a flattened vector and returns a new image formed by reshaping
 the vector to the correct pixels and channels.

 The `n_channels` argument is useful for when we want to add an extra
 channel to an image but maintain the shape. For example, when
 calculating the gradient.

 Note that landmarks are transferred in the process.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 A flattened vector of all pixels and channels of an image.
 n_channels : `int`, optional
 If given, will assume that vector is the same shape as this image,
 but with a possibly different number of channels.
 copy : `bool`, optional
 If ``False``, the vector will not be copied in creating the new
 image.

 Returns

 image : :map:`Image`
 New image of same shape as this image and the number of
 specified channels.

 Raises

 Warning
 If the ``copy=False`` flag cannot be honored
 """
 # This is useful for when we want to add an extra channel to an image
 # but maintain the shape. For example, when calculating the gradient
 n_channels = self.n_channels if n_channels is None else n_channels
 image_data = vector.reshape(self.shape + (n_channels,))
 new_image = Image(image_data, copy=copy)
 new_image.landmarks = self.landmarks
 return new_image

[docs] def from_vector_inplace(self, vector, copy=True):
 r"""
 Takes a flattened vector and update this image by
 reshaping the vector to the correct dimensions.

 Parameters

 vector : ``(n_pixels,)`` `bool ndarray`
 A vector vector of all the pixels of a :map:`BooleanImage`.
 copy: `bool`, optional
 If ``False``, the vector will be set as the pixels. If ``True``, a
 copy of the vector is taken.

 Raises

 Warning
 If ``copy=False`` flag cannot be honored

 Note

 For :map:`BooleanImage` this is rebuilding a boolean image **itself**
 from boolean values. The mask is in no way interpreted in performing
 the operation, in contrast to :map:`MaskedImage`, where only the masked
 region is used in :meth:`from_vector_inplace` and :meth:`as_vector`.
 """
 image_data = vector.reshape(self.pixels.shape)
 if not copy:
 if not image_data.flags.c_contiguous:
 warn('The copy flag was NOT honoured. A copy HAS been made. '
 'Please ensure the data you pass is C-contiguous.')
 image_data = np.array(image_data, copy=True, order='C')
 else:
 image_data = np.array(image_data, copy=True, order='C')
 self.pixels = image_data

[docs] def extract_channels(self, channels):
 r"""
 A copy of this image with only the specified channels.

 Parameters

 channels : `int` or `[int]`
 The channel index or `list` of channel indices to retain.

 Returns

 image : `type(self)`
 A copy of this image with only the channels requested.
 """
 copy = self.copy()
 if not isinstance(channels, list):
 channels = [channels] # ensure we don't remove the channel axis
 copy.pixels = self.pixels[..., channels]
 return copy

[docs] def as_histogram(self, keep_channels=True, bins='unique'):
 r"""
 Histogram binning of the values of this image.

 Parameters

 keep_channels : `bool`, optional
 If set to ``False``, it returns a single histogram for all the
 channels of the image. If set to ``True``, it returns a `list` of
 histograms, one for each channel.
 bins : ``{unique}``, positive `int` or sequence of scalars, optional
 If set equal to ``'unique'``, the bins of the histograms are centred
 on the unique values of each channel. If set equal to a positive
 `int`, then this is the number of bins. If set equal to a
 sequence of scalars, these will be used as bins centres.

 Returns

 hist : `ndarray` or `list` with ``n_channels`` `ndarrays` inside
 The histogram(s). If ``keep_channels=False``, then hist is an
 `ndarray`. If ``keep_channels=True``, then hist is a `list` with
 ``len(hist)=n_channels``.
 bin_edges : `ndarray` or `list` with `n_channels` `ndarrays` inside
 An array or a list of arrays corresponding to the above histograms
 that store the bins' edges.

 Raises

 ValueError
 Bins can be either 'unique', positive int or a sequence of scalars.

 Examples

 Visualizing the histogram when a list of array bin edges is provided:

 >>> hist, bin_edges = image.as_histogram()
 >>> for k in range(len(hist)):
 >>> plt.subplot(1,len(hist),k)
 >>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
 >>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
 >>> plt.bar(centre, hist[k], align='center', width=width)
 """
 # parse options
 if isinstance(bins, str):
 if bins == 'unique':
 bins = 0
 else:
 raise ValueError("Bins can be either 'unique', positive int or"
 "a sequence of scalars.")
 elif isinstance(bins, int) and bins < 1:
 raise ValueError("Bins can be either 'unique', positive int or a "
 "sequence of scalars.")
 # compute histogram
 vec = self.as_vector(keep_channels=keep_channels)
 if len(vec.shape) == 1 or vec.shape[1] == 1:
 if bins == 0:
 bins = np.unique(vec)
 hist, bin_edges = np.histogram(vec, bins=bins)
 else:
 hist = []
 bin_edges = []
 num_bins = bins
 for ch in range(vec.shape[1]):
 if bins == 0:
 num_bins = np.unique(vec[:, ch])
 h_tmp, c_tmp = np.histogram(vec[:, ch], bins=num_bins)
 hist.append(h_tmp)
 bin_edges.append(c_tmp)
 return hist, bin_edges

[docs] def _view_2d(self, figure_id=None, new_figure=False, channels=None,
 interpolation='bilinear', alpha=1., render_axes=False,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8)):
 r"""
 View the image using the default image viewer. This method will appear
 on the Image as ``view`` if the Image is 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated.
 Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36,
 hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
 bessel, mitchell, sinc, lanczos}

 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.

 Returns

 viewer : `ImageViewer`
 The image viewing object.
 """
 return ImageViewer(figure_id, new_figure, self.n_dims,
 self.pixels, channels=channels).render(
 interpolation=interpolation, alpha=alpha,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size)

[docs] def view_widget(self, popup=False, browser_style='buttons',
 figure_size=(10, 8)):
 r"""
 Visualizes the image object using the :map:`visualize_images` widget.
 Currently only supports the rendering of 2D images.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : ``{buttons, slider}``, optional
 It defines whether the selector of the images will have the form of
 plus/minus buttons or a slider.
 figure_size : (`int`, `int`) `tuple`, optional
 The initial size of the rendered figure.
 """
 from menpo.visualize import visualize_images
 visualize_images(self, figure_size=figure_size, popup=popup,
 browser_style=browser_style)

[docs] def _view_landmarks_2d(self, channels=None, group=None,
 with_labels=None, without_labels=None,
 figure_id=None, new_figure=False,
 interpolation='bilinear', alpha=1.,
 render_lines=True, line_colour=None, line_style='-',
 line_width=1, render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour=None,
 marker_edge_colour=None, marker_edge_width=1.,
 render_numbering=False,
 numbers_horizontal_align='center',
 numbers_vertical_align='bottom',
 numbers_font_name='sans-serif', numbers_font_size=10,
 numbers_font_style='normal',
 numbers_font_weight='normal',
 numbers_font_colour='k', render_legend=False,
 legend_title='', legend_font_name='sans-serif',
 legend_font_style='normal', legend_font_size=10,
 legend_font_weight='normal',
 legend_marker_scale=None,
 legend_location=2, legend_bbox_to_anchor=(1.05, 1.),
 legend_border_axes_pad=None, legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None, legend_border=True,
 legend_border_padding=None, legend_shadow=False,
 legend_rounded_corners=False, render_axes=False,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None,
 figure_size=(10, 8)):
 """
 Visualize the landmarks. This method will appear on the Image as
 ``view_landmarks`` if the Image is 2D.

 Parameters

 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 group : `str` or``None`` optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated. Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : (`float`, `float`) `tuple` or ``None`` optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) `tuple` or ``None`` optional
 The limits of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 from menpo.visualize import view_image_landmarks
 return view_image_landmarks(
 self, channels, False, group, with_labels, without_labels,
 figure_id, new_figure, interpolation, alpha, render_lines,
 line_colour, line_style, line_width, render_markers, marker_style,
 marker_size, marker_face_colour, marker_edge_colour,
 marker_edge_width, render_numbering, numbers_horizontal_align,
 numbers_vertical_align, numbers_font_name, numbers_font_size,
 numbers_font_style, numbers_font_weight, numbers_font_colour,
 render_legend, legend_title, legend_font_name, legend_font_style,
 legend_font_size, legend_font_weight, legend_marker_scale,
 legend_location, legend_bbox_to_anchor, legend_border_axes_pad,
 legend_n_columns, legend_horizontal_spacing,
 legend_vertical_spacing, legend_border, legend_border_padding,
 legend_shadow, legend_rounded_corners, render_axes, axes_font_name,
 axes_font_size, axes_font_style, axes_font_weight, axes_x_limits,
 axes_y_limits, figure_size)

[docs] def gradient(self, **kwargs):
 r"""
 Returns an :map:`Image` which is the gradient of this one. In the case
 of multiple channels, it returns the gradient over each axis over
 each channel as a flat `list`.

 Returns

 gradient : :map:`Image`
 The gradient over each axis over each channel. Therefore, the
 gradient of a 2D, single channel image, will have length `2`.
 The length of a 2D, 3-channel image, will have length `6`.
 """
 from menpo.feature import gradient as grad_feature
 return grad_feature(self)

[docs] def crop_inplace(self, min_indices, max_indices,
 constrain_to_boundary=True):
 r"""
 Crops this image using the given minimum and maximum indices.
 Landmarks are correctly adjusted so they maintain their position
 relative to the newly cropped image.

 Parameters

 min_indices : ``(n_dims,)`` `ndarray`
 The minimum index over each dimension.
 max_indices : ``(n_dims,)`` `ndarray`
 The maximum index over each dimension.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.

 Returns

 cropped_image : `type(self)`
 This image, cropped.

 Raises

 ValueError
 ``min_indices`` and ``max_indices`` both have to be of length
 ``n_dims``. All ``max_indices`` must be greater than
 ``min_indices``.
 :map:`ImageBoundaryError`
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 min_indices = np.floor(min_indices)
 max_indices = np.ceil(max_indices)
 if not (min_indices.size == max_indices.size == self.n_dims):
 raise ValueError(
 "Both min and max indices should be 1D numpy arrays of"
 " length n_dims ({})".format(self.n_dims))
 elif not np.all(max_indices > min_indices):
 raise ValueError("All max indices must be greater that the min "
 "indices")
 min_bounded = self.constrain_points_to_bounds(min_indices)
 max_bounded = self.constrain_points_to_bounds(max_indices)
 all_max_bounded = np.all(min_bounded == min_indices)
 all_min_bounded = np.all(max_bounded == max_indices)
 if not (constrain_to_boundary or all_max_bounded or all_min_bounded):
 # points have been constrained and the user didn't want this -
 raise ImageBoundaryError(min_indices, max_indices,
 min_bounded, max_bounded)
 slices = [slice(int(min_i), int(max_i))
 for min_i, max_i in
 zip(list(min_bounded), list(max_bounded))]
 self.pixels = self.pixels[slices].copy()
 # update all our landmarks
 lm_translation = Translation(-min_bounded)
 lm_translation.apply_inplace(self.landmarks)
 return self

[docs] def crop(self, min_indices, max_indices,
 constrain_to_boundary=False):
 r"""
 Return a cropped copy of this image using the given minimum and
 maximum indices. Landmarks are correctly adjusted so they maintain
 their position relative to the newly cropped image.

 Parameters

 min_indices : ``(n_dims,)`` `ndarray`
 The minimum index over each dimension.
 max_indices : ``(n_dims,)`` `ndarray`
 The maximum index over each dimension.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.

 Returns

 cropped_image : `type(self)`
 A new instance of self, but cropped.

 Raises

 ValueError
 ``min_indices`` and ``max_indices`` both have to be of length
 ``n_dims``. All ``max_indices`` must be greater than
 ``min_indices``.
 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 cropped_image = self.copy()
 return cropped_image.crop_inplace(
 min_indices, max_indices,
 constrain_to_boundary=constrain_to_boundary)

[docs] def crop_to_landmarks_inplace(self, group=None, label=None, boundary=0,
 constrain_to_boundary=True):
 r"""
 Crop this image to be bounded around a set of landmarks with an
 optional ``n_pixel`` boundary

 Parameters

 group : `str`, optional
 The key of the landmark set that should be used. If ``None``
 and if there is only one set of landmarks, this set will be used.
 label : `str`, optional
 The label of of the landmark manager that you wish to use. If
 ``None`` all landmarks in the group are used.
 boundary : `int`, optional
 An extra padding to be added all around the landmarks bounds.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.

 Returns

 image : :map:`Image`
 This image, cropped to its landmarks.

 Raises

 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 pc = self.landmarks[group][label]
 min_indices, max_indices = pc.bounds(boundary=boundary)
 return self.crop_inplace(min_indices, max_indices,
 constrain_to_boundary=constrain_to_boundary)

[docs] def crop_to_landmarks_proportion_inplace(self, boundary_proportion,
 group=None, label=None,
 minimum=True,
 constrain_to_boundary=True):
 r"""
 Crop this image to be bounded around a set of landmarks with a
 border proportional to the landmark spread or range.

 Parameters

 boundary_proportion : `float`
 Additional padding to be added all around the landmarks
 bounds defined as a proportion of the landmarks range. See
 the minimum parameter for a definition of how the range is
 calculated.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``
 and if there is only one set of landmarks, this set will be used.
 label : `str`, optional
 The label of of the landmark manager that you wish to use. If
 ``None`` all landmarks in the group are used.
 minimum : `bool`, optional
 If ``True`` the specified proportion is relative to the minimum
 value of the landmarks' per-dimension range; if ``False`` w.r.t. the
 maximum value of the landmarks' per-dimension range.
 constrain_to_boundary : `bool`, optional
 If ``True``, the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.

 Returns

 image : :map:`Image`
 This image, cropped to its landmarks with a border proportional to
 the landmark spread or range.

 Raises

 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 pc = self.landmarks[group][label]
 if minimum:
 boundary = boundary_proportion * np.min(pc.range())
 else:
 boundary = boundary_proportion * np.max(pc.range())
 return self.crop_to_landmarks_inplace(
 group=group, label=label, boundary=boundary,
 constrain_to_boundary=constrain_to_boundary)

[docs] def constrain_points_to_bounds(self, points):
 r"""
 Constrains the points provided to be within the bounds of this image.

 Parameters

 points : ``(d,)`` `ndarray`
 Points to be snapped to the image boundaries.

 Returns

 bounded_points : ``(d,)`` `ndarray`
 Points snapped to not stray outside the image edges.
 """
 bounded_points = points.copy()
 # check we don't stray under any edges
 bounded_points[bounded_points < 0] = 0
 # check we don't stray over any edges
 shape = np.array(self.shape)
 over_image = (shape - bounded_points) < 0
 bounded_points[over_image] = shape[over_image]
 return bounded_points

[docs] def extract_patches(self, patch_centers, patch_size=(16, 16),
 sample_offsets=None, as_single_array=False):
 r"""
 Extract a set of patches from an image. Given a set of patch centers and
 a patch size, patches are extracted from within the image, centred
 on the given coordinates. Sample offsets denote a set of offsets to
 extract from within a patch. This is very useful if you want to extract
 a dense set of features around a set of landmarks and simply sample the
 same grid of patches around the landmarks.

 If sample offsets are used, to access the offsets for each patch you
 need to slice the resulting list. So for 2 offsets, the first centers
 offset patches would be ``patches[:2]``.

 Currently only 2D images are supported.

 Parameters

 patch_centers : :map:`PointCloud`
 The centers to extract patches around.
 patch_size : `tuple` or `ndarray`, optional
 The size of the patch to extract
 sample_offsets : :map:`PointCloud`, optional
 The offsets to sample from within a patch. So (0, 0) is the centre
 of the patch (no offset) and (1, 0) would be sampling the patch
 from 1 pixel up the first axis away from the centre.
 as_single_array : `bool`, optional
 If ``True``, an ``(n_center * n_offset, self.shape...)``
 `ndarray`, thus a single numpy array is returned containing each
 patch. If ``False``, a `list` of :map:`Image` objects is returned
 representing each patch.

 Returns

 patches : `list` or `ndarray`
 Returns the extracted patches. Returns a list if
 ``as_single_array=True`` and an `ndarray` if
 ``as_single_array=False``.

 Raises

 ValueError
 If image is not 2D
 """
 if self.n_dims != 2:
 raise ValueError('Only two dimensional patch extraction is '
 'currently supported.')

 if sample_offsets is None:
 sample_offsets_arr = np.zeros([1, 2], dtype=np.int64)
 else:
 sample_offsets_arr = np.require(sample_offsets.points,
 dtype=np.int64)

 single_array = extract_patches_cython(self.pixels,
 patch_centers.points,
 np.asarray(patch_size,
 dtype=np.int64),
 sample_offsets_arr)

 if as_single_array:
 return single_array
 else:
 return [Image(p, copy=False) for p in single_array]

[docs] def extract_patches_around_landmarks(
 self, group=None, label=None, patch_size=(16, 16),
 sample_offsets=None, as_single_array=False):
 r"""
 Extract patches around landmarks existing on this image. Provided the
 group label and optionally the landmark label extract a set of patches.

 See `extract_patches` for more information.

 Currently only 2D images are supported.

 Parameters

 group : `str` or ``None`` optional
 The landmark group to use as patch centres.
 label : `str` or ``None`` optional
 The landmark label within the group to use as centres.
 patch_size : `tuple` or `ndarray`, optional
 The size of the patch to extract
 sample_offsets : :map:`PointCloud`, optional
 The offsets to sample from within a patch. So (0,0) is the centre
 of the patch (no offset) and (1, 0) would be sampling the patch
 from 1 pixel up the first axis away from the centre.
 as_single_array : `bool`, optional
 If ``True``, an ``(n_center * n_offset, self.shape...)``
 `ndarray`, thus a single numpy array is returned containing each
 patch. If ``False``, a `list` of :map:`Image` objects is returned
 representing each patch.

 Returns

 patches : `list` or `ndarray`
 Returns the extracted patches. Returns a list if
 ``as_single_array=True`` and an `ndarray` if
 ``as_single_array=False``.

 Raises

 ValueError
 If image is not 2D
 """
 return self.extract_patches(self.landmarks[group][label],
 patch_size=patch_size,
 sample_offsets=sample_offsets,
 as_single_array=as_single_array)

[docs] def warp_to_mask(self, template_mask, transform, warp_landmarks=False,
 order=1, mode='constant', cval=0.):
 r"""
 Return a copy of this image warped into a different reference space.

 Note that warping into a mask is slower than warping into a full image.
 If you don't need a non-linear mask, consider :meth:``warp_to_shape``
 instead.

 Parameters

 template_mask : :map:`BooleanImage`
 Defines the shape of the result, and what pixels should be sampled.
 transform : :map:`Transform`
 Transform **from the template space back to this image**.
 Defines, for each pixel location on the template, which pixel
 location should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as ``self``, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 warped_image : :map:`MaskedImage`
 A copy of this image, warped.
 """
 if self.n_dims != transform.n_dims:
 raise ValueError(
 "Trying to warp a {}D image with a {}D transform "
 "(they must match)".format(self.n_dims, transform.n_dims))
 template_points = template_mask.true_indices()
 points_to_sample = transform.apply(template_points)
 # we want to sample each channel in turn, returning a vector of
 # sampled pixels. Store those in a (n_pixels, n_channels) array.
 sampled_pixel_values = scipy_interpolation(
 self.pixels, points_to_sample, order=order, mode=mode, cval=cval)
 # set any nan values to 0
 sampled_pixel_values[np.isnan(sampled_pixel_values)] = 0
 # build a warped version of the image
 warped_image = self._build_warped_to_mask(template_mask,
 sampled_pixel_values)
 if warp_landmarks and self.has_landmarks:
 warped_image.landmarks = self.landmarks
 transform.pseudoinverse().apply_inplace(warped_image.landmarks)
 if hasattr(self, 'path'):
 warped_image.path = self.path
 return warped_image

 def _build_warped_to_mask(self, template_mask, sampled_pixel_values):
 r"""
 Builds the warped image from the template mask and sampled pixel values.
 Overridden for :map:`BooleanImage` as we can't use the usual
 :meth:`from_vector_inplace` method. All other :map:`Image` classes
 share the :map:`Image` implementation.

 Parameters

 template_mask : :map:`BooleanImage` or 2D `bool ndarray`
 Mask for warping.
 sampled_pixel_values : ``(n_true_pixels_in_mask,)`` `ndarray`
 Sampled value to rebuild the masked image from.
 """
 from menpo.image import MaskedImage
 warped_image = MaskedImage.blank(template_mask.shape,
 n_channels=self.n_channels,
 mask=template_mask)
 warped_image.from_vector_inplace(sampled_pixel_values.ravel())
 return warped_image

[docs] def warp_to_shape(self, template_shape, transform, warp_landmarks=False,
 order=1, mode='constant', cval=0.):
 """
 Return a copy of this image warped into a different reference space.

 Parameters

 template_shape : `tuple` or `ndarray`
 Defines the shape of the result, and what pixel indices should be
 sampled (all of them).
 transform : :map:`Transform`
 Transform **from the template_shape space back to this image**.
 Defines, for each index on template_shape, which pixel location
 should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 warped_image : `type(self)`
 A copy of this image, warped.
 """
 if (isinstance(transform, Affine) and order in range(4) and
 self.n_dims == 2):
 # skimage has an optimised Cython interpolation for 2D affine
 # warps
 sampled = cython_interpolation(self.pixels, template_shape,
 transform, order=order,
 mode=mode, cval=cval)
 else:
 template_points = indices_for_image_of_shape(template_shape)
 points_to_sample = transform.apply(template_points)
 # we want to sample each channel in turn, returning a vector of
 # sampled pixels. Store those in a (n_pixels, n_channels) array.
 sampled = scipy_interpolation(self.pixels, points_to_sample,
 order=order, mode=mode, cval=cval)
 # set any nan values to 0
 sampled[np.isnan(sampled)] = 0
 # build a warped version of the image
 warped_pixels = sampled.reshape(template_shape + (self.n_channels,))
 warped_image = Image(warped_pixels, copy=False)

 # warp landmarks if requested.
 if warp_landmarks and self.has_landmarks:
 warped_image.landmarks = self.landmarks
 transform.pseudoinverse().apply_inplace(warped_image.landmarks)
 if hasattr(self, 'path'):
 warped_image.path = self.path
 return warped_image

[docs] def rescale(self, scale, round='ceil', order=1):
 r"""
 Return a copy of this image, rescaled by a given factor.
 Landmarks are rescaled appropriately.

 Parameters

 scale : `float` or `tuple` of `floats`
 The scale factor. If a tuple, the scale to apply to each dimension.
 If a single `float`, the scale will be applied uniformly across
 each dimension.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 Returns

 rescaled_image : ``type(self)``
 A copy of this image, rescaled.

 Raises

 ValueError:
 If less scales than dimensions are provided.
 If any scale is less than or equal to 0.
 """
 # Pythonic way of converting to list if we are passed a single float
 try:
 if len(scale) < self.n_dims:
 raise ValueError(
 'Must provide a scale per dimension.'
 '{} scales were provided, {} were expected.'.format(
 len(scale), self.n_dims
)
)
 except TypeError: # Thrown when len() is called on a float
 scale = [scale] * self.n_dims

 # Make sure we have a numpy array
 scale = np.asarray(scale)
 for s in scale:
 if s <= 0:
 raise ValueError('Scales must be positive floats.')

 transform = NonUniformScale(scale)
 # use the scale factor to make the template mask bigger
 # while respecting the users rounding preference.
 template_shape = round_image_shape(transform.apply(self.shape),
 round)
 # due to image indexing, we can't just apply the pseudoinverse
 # transform to achieve the scaling we want though!
 # Consider a 3x rescale on a 2x4 image. Looking at each dimension:
 # H 2 -> 6 so [0-1] -> [0-5] = 5/1 = 5x
 # W 4 -> 12 [0-3] -> [0-11] = 11/3 = 3.67x
 # => need to make the correct scale per dimension!
 shape = np.array(self.shape, dtype=np.float)
 # scale factors = max_index_after / current_max_index
 # (note that max_index = length - 1, as 0 based)
 scale_factors = (scale * shape - 1) / (shape - 1)
 inverse_transform = NonUniformScale(scale_factors).pseudoinverse()
 # for rescaling we enforce that mode is nearest to avoid num. errors
 return self.warp_to_shape(template_shape, inverse_transform,
 warp_landmarks=True, order=order,
 mode='nearest')

[docs] def rescale_to_diagonal(self, diagonal, round='ceil'):
 r"""
 Return a copy of this image, rescaled so that the it's diagonal is a
 new size.

 Parameters

 diagonal: `int`
 The diagonal size of the new image.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.

 Returns

 rescaled_image : type(self)
 A copy of this image, rescaled.
 """
 return self.rescale(diagonal / self.diagonal, round=round)

[docs] def rescale_to_reference_shape(self, reference_shape, group=None,
 label=None, round='ceil', order=1):
 r"""
 Return a copy of this image, rescaled so that the scale of a
 particular group of landmarks matches the scale of the passed
 reference landmarks.

 Parameters

 reference_shape: :map:`PointCloud`
 The reference shape to which the landmarks scale will be matched
 against.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 label : `str`, optional
 The label of of the landmark manager that you wish to use. If
 ``None`` all landmarks in the group are used.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 Returns

 rescaled_image : ``type(self)``
 A copy of this image, rescaled.
 """
 pc = self.landmarks[group][label]
 scale = AlignmentUniformScale(pc, reference_shape).as_vector().copy()
 return self.rescale(scale, round=round, order=order)

[docs] def rescale_landmarks_to_diagonal_range(self, diagonal_range, group=None,
 label=None, round='ceil', order=1):
 r"""
 Return a copy of this image, rescaled so that the diagonal_range of the
 bounding box containing its landmarks matches the specified
 diagonal_range range.

 Parameters

 diagonal_range: ``(n_dims,)`` `ndarray`
 The diagonal_range range that we want the landmarks of the returned
 image to have.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``
 and if there is only one set of landmarks, this set will be used.
 label: `str`, optional
 The label of of the landmark manager that you wish to use. If
 ``None`` all landmarks in the group are used.
 round : ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 Returns

 rescaled_image : ``type(self)``
 A copy of this image, rescaled.
 """
 x, y = self.landmarks[group][label].range()
 scale = diagonal_range / np.sqrt(x ** 2 + y ** 2)
 return self.rescale(scale, round=round, order=order)

[docs] def resize(self, shape, order=1):
 r"""
 Return a copy of this image, resized to a particular shape.
 All image information (landmarks, and mask in the case of
 :map:`MaskedImage`) is resized appropriately.

 Parameters

 shape : `tuple`
 The new shape to resize to.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 Returns

 resized_image : ``type(self)``
 A copy of this image, resized.

 Raises

 ValueError:
 If the number of dimensions of the new shape does not match
 the number of dimensions of the image.
 """
 shape = np.asarray(shape, dtype=np.float)
 if len(shape) != self.n_dims:
 raise ValueError(
 'Dimensions must match.'
 '{} dimensions provided, {} were expected.'.format(
 shape.shape, self.n_dims))
 scales = shape / self.shape
 # Have to round the shape when scaling to deal with floating point
 # errors. For example, if we want (250, 250), we need to ensure that
 # we get (250, 250) even if the number we obtain is 250 to some
 # floating point inaccuracy.
 return self.rescale(scales, round='round', order=order)

[docs] def rotate_ccw_about_centre(self, theta, degrees=True, cval=0):
 r"""
 Return a rotation of this image clockwise about its centre.

 Parameters

 theta : `float`
 The angle of rotation about the origin.
 degrees : `bool`, optional
 If ``True``, `theta` is interpreted as a degree. If ``False``,
 ``theta`` is interpreted as radians.
 cval : ``float``, optional
 The value to be set outside the rotated image boundaries.

 Returns

 rotated_image : ``type(self)``
 The rotated image.
 """
 if self.n_dims != 2:
 raise ValueError('Image rotation is presently only supported on '
 '2D images')
 # create a translation that moves the centre of the image to the origin
 t = Translation(self.centre)
 r = Rotation.from_2d_ccw_angle(theta, degrees=degrees)
 r_about_centre = t.pseudoinverse().compose_before(r).compose_before(t)
 return self.warp_to_shape(self.shape, r_about_centre.pseudoinverse(),
 warp_landmarks=True, cval=cval)

[docs] def pyramid(self, n_levels=3, downscale=2):
 r"""
 Return a rescaled pyramid of this image. The first image of the
 pyramid will be the original, unmodified, image, and counts as level 1.

 Parameters

 n_levels : `int`, optional
 Total number of levels in the pyramid, including the original
 unmodified image
 downscale : `float`, optional
 Downscale factor.

 Yields

 image_pyramid: `generator`
 Generator yielding pyramid layers as :map:`Image` objects.
 """
 image = self
 yield image
 for _ in range(n_levels - 1):
 image = image.rescale(1.0 / downscale)
 yield image

[docs] def gaussian_pyramid(self, n_levels=3, downscale=2, sigma=None):
 r"""
 Return the gaussian pyramid of this image. The first image of the
 pyramid will be the original, unmodified, image, and counts as level 1.

 Parameters

 n_levels : `int`, optional
 Total number of levels in the pyramid, including the original
 unmodified image
 downscale : `float`, optional
 Downscale factor.
 sigma : `float`, optional
 Sigma for gaussian filter. Default is ``downscale / 3.`` which
 corresponds to a filter mask twice the size of the scale factor
 that covers more than 99% of the gaussian distribution.

 Yields

 image_pyramid: `generator`
 Generator yielding pyramid layers as :map:`Image` objects.
 """
 from menpo.feature import gaussian_filter
 if sigma is None:
 sigma = downscale / 3.
 image = self
 yield image
 for level in range(n_levels - 1):
 image = gaussian_filter(image, sigma).rescale(1.0 / downscale)
 yield image

[docs] def as_greyscale(self, mode='luminosity', channel=None):
 r"""
 Returns a greyscale version of the image. If the image does *not*
 represent a 2D RGB image, then the ``luminosity`` mode will fail.

 Parameters

 mode : ``{average, luminosity, channel}``, optional
 ============== ===
 mode Greyscale Algorithm
 ============== ===
 average Equal average of all channels
 luminosity Calculates the luminance using the CCIR 601 formula:
 | .. math:: Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'
 channel A specific channel is chosen as the intensity value.
 ============== ===

 channel: `int`, optional
 The channel to be taken. Only used if mode is ``channel``.

 Returns

 greyscale_image : :map:`MaskedImage`
 A copy of this image in greyscale.
 """
 greyscale = self.copy()
 if mode == 'luminosity':
 if self.n_dims != 2:
 raise ValueError("The 'luminosity' mode only works on 2D RGB"
 "images. {} dimensions found, "
 "2 expected.".format(self.n_dims))
 elif self.n_channels != 3:
 raise ValueError("The 'luminosity' mode only works on RGB"
 "images. {} channels found, "
 "3 expected.".format(self.n_channels))

 # Invert the transformation matrix to get more precise values
 T = scipy.linalg.inv(np.array([[1.0, 0.956, 0.621],
 [1.0, -0.272, -0.647],
 [1.0, -1.106, 1.703]]))
 coef = T[0, :]
 pixels = np.dot(greyscale.pixels, coef.T)
 elif mode == 'average':
 pixels = np.mean(greyscale.pixels, axis=-1)
 elif mode == 'channel':
 if channel is None:
 raise ValueError("For the 'channel' mode you have to provide"
 " a channel index")
 pixels = greyscale.pixels[..., channel].copy()
 else:
 raise ValueError("Unknown mode {} - expected 'luminosity', "
 "'average' or 'channel'.".format(mode))

 greyscale.pixels = pixels[..., None]
 return greyscale

[docs] def as_PILImage(self):
 r"""
 Return a PIL copy of the image. Depending on the image data type,
 different operations are performed:

 ========= ===
 dtype Processing
 ========= ===
 uint8 No processing, directly converted to PIL
 bool Scale by 255, convert to uint8
 float32 Scale by 255, convert to uint8
 float64 Scale by 255, convert to uint8
 OTHER Raise ValueError
 ========= ===

 Image must only have 1 or 3 channels and be 2 dimensional.
 Non `uint8` images must be in the rage ``[0, 1]`` to be converted.

 Returns

 pil_image : `PILImage`
 PIL copy of image

 Raises

 ValueError
 If image is not 2D and 1 channel or 3 channels.
 ValueError
 If pixels data type is not `float32`, `float64`, `bool` or `uint8`
 ValueError
 If pixels data type is `float32` or `float64` and the pixel
 range is outside of ``[0, 1]``
 """
 if self.n_dims != 2 or self.n_channels not in [1, 3]:
 raise ValueError(
 'Can only convert greyscale or RGB 2D images. '
 'Received a {} channel {}D image.'.format(self.n_channels,
 self.n_dims))

 # Slice off the channel for greyscale images
 pixels = self.pixels[..., 0] if self.n_channels == 1 else self.pixels
 if pixels.dtype in [np.float64, np.float32, np.bool]: # Type check
 if np.any((self.pixels < 0) | (self.pixels > 1)): # Range check
 raise ValueError('Pixel values are outside the range '
 '[0, 1] - ({}, {}).'.format(self.pixels.min(),
 self.pixels.max()))
 else:
 pixels = (pixels * 255).astype(np.uint8)
 if pixels.dtype != np.uint8:
 raise ValueError('Unexpected data type - {}.'.format(pixels.dtype))
 return PILImage.fromarray(pixels)

 def __str__(self):
 return ('{} {}D Image with {} channel{}'.format(
 self._str_shape, self.n_dims, self.n_channels,
 's' * (self.n_channels > 1)))

 @property
 def has_landmarks_outside_bounds(self):
 """
 Indicates whether there are landmarks located outside the image bounds.

 :type: `bool`
 """
 if self.landmarks.has_landmarks:
 for l_group in self.landmarks:
 pc = self.landmarks[l_group].lms.points
 if np.any(np.logical_or(self.shape - pc < 1, pc < 0)):
 return True
 return False

[docs] def constrain_landmarks_to_bounds(self):
 r"""
 Move landmarks that are located outside the image bounds on the bounds.
 """
 if self.has_landmarks_outside_bounds:
 for l_group in self.landmarks:
 l = self.landmarks[l_group]
 for k in range(l.lms.points.shape[1]):
 tmp = l.lms.points[:, k]
 tmp[tmp < 0] = 0
 tmp[tmp > self.shape[k] - 1] = self.shape[k] - 1
 l.lms.points[:, k] = tmp
 self.landmarks[l_group] = l

[docs] def normalize_std_inplace(self, mode='all', **kwargs):
 r"""
 Normalizes this image such that its pixel values have zero mean and
 unit variance.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 """
 self._normalize_inplace(np.std, mode=mode)

[docs] def normalize_norm_inplace(self, mode='all', **kwargs):
 r"""
 Normalizes this image such that its pixel values have zero mean and
 its norm equals 1.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 """
 def scale_func(pixels, axis=None):
 return np.linalg.norm(pixels, axis=axis, **kwargs)

 self._normalize_inplace(scale_func, mode=mode)

 def _normalize_inplace(self, scale_func, mode='all'):
 pixels = self.as_vector(keep_channels=True)
 if mode == 'all':
 centered_pixels = pixels - np.mean(pixels)
 scale_factor = scale_func(centered_pixels)

 elif mode == 'per_channel':
 centered_pixels = pixels - np.mean(pixels, axis=0)
 scale_factor = scale_func(centered_pixels, axis=0)
 else:
 raise ValueError("mode has to be 'all' or 'per_channel' - '{}' "
 "was provided instead".format(mode))

 if np.any(scale_factor == 0):
 raise ValueError("Image has 0 variance - can't be "
 "normalized")
 else:
 self.from_vector_inplace(centered_pixels / scale_factor)

def round_image_shape(shape, round):
 if round not in ['ceil', 'round', 'floor']:
 raise ValueError('round must be either ceil, round or floor')
 # Ensure that the '+' operator means concatenate tuples
 return tuple(getattr(np, round)(shape).astype(np.int))

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/image/boolean.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.image.boolean

from warnings import warn
import numpy as np

from .base import Image

[docs]class BooleanImage(Image):
 r"""
 A mask image made from binary pixels. The region of the image that is
 left exposed by the mask is referred to as the 'masked region'. The
 set of 'masked' pixels is those pixels corresponding to a ``True`` value in
 the mask.

 Parameters

 mask_data : ``(M, N, ..., L)`` `ndarray`
 The binary mask data. Note that there is no channel axis - a 2D Mask
 Image is built from just a 2D numpy array of mask_data.
 Automatically coerced in to boolean values.
 copy: `bool`, optional
 If ``False``, the image_data will not be copied on assignment. Note that
 if the array you provide is not boolean, there **will still be copy**.
 In general this should only be used if you know what you are doing.
 """

 def __init__(self, mask_data, copy=True):
 # Add a channel dimension. We do this little reshape trick to add
 # the axis because this maintains C-contiguous'ness
 mask_data = mask_data.reshape(mask_data.shape + (1,))
 # If we are trying not to copy, but the data we have isn't boolean,
 # then unfortunately, we forced to copy anyway!
 if mask_data.dtype != np.bool:
 mask_data = np.array(mask_data, dtype=np.bool, copy=True,
 order='C')
 if not copy:
 warn('The copy flag was NOT honoured. A copy HAS been made. '
 'Please ensure the data you pass is C-contiguous.')
 super(BooleanImage, self).__init__(mask_data, copy=copy)

[docs] def as_masked(self, mask=None, copy=True):
 r"""
 Impossible for a :map:`BooleanImage` to be transformed to a
 :map:`MaskedImage`.
 """
 raise NotImplementedError("as_masked cannot be invoked on a "
 "BooleanImage.")

 @classmethod
[docs] def blank(cls, shape, fill=True, round='ceil', **kwargs):
 r"""
 Returns a blank :map:`BooleanImage` of the requested shape

 Parameters

 shape : `tuple` or `list`
 The shape of the image. Any floating point values are rounded
 according to the ``round`` kwarg.
 fill : `bool`, optional
 The mask value to be set everywhere.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.

 Returns

 blank_image : :map:`BooleanImage`
 A blank mask of the requested size

 """
 from .base import round_image_shape
 shape = round_image_shape(shape, round)
 if fill:
 mask = np.ones(shape, dtype=np.bool)
 else:
 mask = np.zeros(shape, dtype=np.bool)
 return cls(mask, copy=False)

 @property
 def mask(self):
 r"""
 Returns the pixels of the mask with no channel axis. This is what
 should be used to mask any k-dimensional image.

 :type: ``(M, N, ..., L)``, `bool ndarray`
 """
 return self.pixels[..., 0]

[docs] def n_true(self):
 r"""
 The number of ``True`` values in the mask.

 :type: `int`
 """
 return np.sum(self.pixels)

[docs] def n_false(self):
 r"""
 The number of ``False`` values in the mask.

 :type: `int`
 """
 return self.n_pixels - self.n_true()

[docs] def all_true(self):
 r"""
 ``True`` iff every element of the mask is ``True``.

 :type: `bool`
 """
 return np.all(self.pixels)

[docs] def proportion_true(self):
 r"""
 The proportion of the mask which is ``True``.

 :type: `float`
 """
 return (self.n_true() * 1.0) / self.n_pixels

[docs] def proportion_false(self):
 r"""
 The proportion of the mask which is ``False``

 :type: `float`
 """
 return (self.n_false() * 1.0) / self.n_pixels

[docs] def true_indices(self):
 r"""
 The indices of pixels that are ``True``.

 :type: ``(n_dims, n_true)`` `ndarray`
 """
 if self.all_true():
 return self.indices()
 else:
 # Ignore the channel axis
 return np.vstack(np.nonzero(self.pixels[..., 0])).T

[docs] def false_indices(self):
 r"""
 The indices of pixels that are ``Flase``.

 :type: ``(n_dims, n_false)`` `ndarray`
 """
 # Ignore the channel axis
 return np.vstack(np.nonzero(~self.pixels[..., 0])).T

 def __str__(self):
 return ('{} {}D mask, {:.1%} '
 'of which is True'.format(self._str_shape, self.n_dims,
 self.proportion_true()))

[docs] def from_vector(self, vector, copy=True):
 r"""
 Takes a flattened vector and returns a new :map:`BooleanImage` formed
 by reshaping the vector to the correct dimensions. Note that this is
 rebuilding a boolean image **itself** from boolean values. The mask
 is in no way interpreted in performing the operation, in contrast to
 :map:`MaskedImage`, where only the masked region is used in
 :meth:`from_vector` and :meth`as_vector`. Any image landmarks are
 transferred in the process.

 Parameters

 vector : ``(n_pixels,)`` `bool ndarray`
 A flattened vector of all the pixels of a :map:`BooleanImage`.
 copy : `bool`, optional
 If ``False``, no copy of the vector will be taken.

 Returns

 image : :map:`BooleanImage`
 New BooleanImage of same shape as this image

 Raises

 Warning
 If ``copy=False`` cannot be honored.
 """
 mask = BooleanImage(vector.reshape(self.shape), copy=copy)
 mask.landmarks = self.landmarks
 return mask

[docs] def invert_inplace(self):
 r"""
 Inverts this Boolean Image inplace.
 """
 self.pixels = ~self.pixels

[docs] def invert(self):
 r"""
 Returns a copy of this boolean image, which is inverted.

 Returns

 inverted : :map:`BooleanImage`
 A copy of this boolean mask, where all ``True`` values are ``False``
 and all ``False`` values are ``True``.
 """
 inverse = self.copy()
 inverse.invert_inplace()
 return inverse

[docs] def bounds_true(self, boundary=0, constrain_to_bounds=True):
 r"""
 Returns the minimum to maximum indices along all dimensions that the
 mask includes which fully surround the ``True`` mask values. In the case
 of a 2D Image for instance, the min and max define two corners of a
 rectangle bounding the True pixel values.

 Parameters

 boundary : `int`, optional
 A number of pixels that should be added to the extent. A
 negative value can be used to shrink the bounds in.
 constrain_to_bounds: `bool`, optional
 If ``True``, the bounding extent is snapped to not go beyond
 the edge of the image. If ``False``, the bounds are left unchanged.

 Returns

 min_b : ``(D,)`` `ndarray`
 The minimum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 max_b : ``(D,)`` `ndarray`
 The maximum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 """
 mpi = self.true_indices()
 maxes = np.max(mpi, axis=0) + boundary
 mins = np.min(mpi, axis=0) - boundary
 if constrain_to_bounds:
 maxes = self.constrain_points_to_bounds(maxes)
 mins = self.constrain_points_to_bounds(mins)
 return mins, maxes

[docs] def bounds_false(self, boundary=0, constrain_to_bounds=True):
 r"""
 Returns the minimum to maximum indices along all dimensions that the
 mask includes which fully surround the False mask values. In the case
 of a 2D Image for instance, the min and max define two corners of a
 rectangle bounding the False pixel values.

 Parameters

 boundary : `int` >= 0, optional
 A number of pixels that should be added to the extent. A
 negative value can be used to shrink the bounds in.
 constrain_to_bounds: `bool`, optional
 If ``True``, the bounding extent is snapped to not go beyond
 the edge of the image. If ``False``, the bounds are left unchanged.

 Returns

 min_b : ``(D,)`` `ndarray`
 The minimum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 max_b : ``(D,)`` `ndarray`
 The maximum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 """
 return self.invert().bounds_true(
 boundary=boundary, constrain_to_bounds=constrain_to_bounds)

 # noinspection PyMethodOverriding

[docs] def warp_to_mask(self, template_mask, transform, warp_landmarks=True,
 mode='constant', cval=0.):
 r"""
 Return a copy of this :map:`BooleanImage` warped into a different
 reference space.

 Note that warping into a mask is slower than warping into a full image.
 If you don't need a non-linear mask, consider warp_to_shape instead.

 Parameters

 template_mask : :map:`BooleanImage`
 Defines the shape of the result, and what pixels should be
 sampled.
 transform : :map:`Transform`
 Transform **from the template space back to this image**.
 Defines, for each pixel location on the template, which pixel
 location should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 mode : ``{constant, nearest, reflect or wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 warped_image : :map:`BooleanImage`
 A copy of this image, warped.
 """
 # enforce the order as 0, for this boolean data, then call super
 return Image.warp_to_mask(self, template_mask, transform,
 warp_landmarks=warp_landmarks,
 order=0, mode=mode, cval=cval)

 # noinspection PyMethodOverriding

[docs] def warp_to_shape(self, template_shape, transform, warp_landmarks=True,
 mode='constant', cval=0., order=None):
 """
 Return a copy of this :map:`BooleanImage` warped into a different
 reference space.

 Note that the order keyword argument is in fact ignored, as any order
 other than 0 makes no sense on a binary image. The keyword argument is
 present only for compatibility with the :map:`Image` warp_to_shape API.

 Parameters

 template_shape : ``(n_dims,)`` `tuple` or `ndarray`
 Defines the shape of the result, and what pixel indices should be
 sampled (all of them).
 transform : :map:`Transform`
 Transform **from the template_shape space back to this image**.
 Defines, for each index on template_shape, which pixel location
 should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 mode : ``{constant, nearest, reflect or wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 warped_image : :map:`BooleanImage`
 A copy of this image, warped.
 """
 # call the super variant and get ourselves an Image back
 # note that we force the use of order=0 for BooleanImages.
 warped = Image.warp_to_shape(self, template_shape, transform,
 warp_landmarks=warp_landmarks,
 order=0, mode=mode, cval=cval)
 # unfortunately we can't escape copying here, let BooleanImage
 # convert us to np.bool
 boolean_image = BooleanImage(warped.pixels.reshape(template_shape))
 if warped.has_landmarks:
 boolean_image.landmarks = warped.landmarks
 if hasattr(warped, 'path'):
 boolean_image.path = warped.path
 return boolean_image

 def _build_warped_to_mask(self, template_mask, sampled_pixel_values,
 **kwargs):
 r"""
 Builds the warped image from the template mask and sampled pixel values.
 """
 # start from a copy of the template_mask
 warped_img = template_mask.copy()
 if warped_img.all_true():
 # great, just reshape the sampled_pixel_values
 warped_img.pixels = sampled_pixel_values.reshape(
 warped_img.shape + (1,))
 else:
 # we have to fill out mask with the sampled mask..
 warped_img.pixels[warped_img.mask] = sampled_pixel_values
 return warped_img

[docs] def constrain_to_landmarks(self, group=None, label=None, trilist=None):
 r"""
 Restricts this mask to be equal to the convex hull around the
 landmarks chosen. This is not a per-pixel convex hull, but instead
 relies on a triangulated approximation.

 Parameters

 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 label: `str`, optional
 The label of of the landmark manager that you wish to use. If no
 label is passed, the convex hull of all landmarks is used.
 trilist: ``(t, 3)`` `ndarray`, optional
 Triangle list to be used on the landmarked points in selecting
 the mask region. If ``None``, defaults to performing Delaunay
 triangulation on the points.
 """
 self.constrain_to_pointcloud(self.landmarks[group][label],
 trilist=trilist)

[docs] def constrain_to_pointcloud(self, pointcloud, trilist=None):
 r"""
 Restricts this mask to be equal to the convex hull around a point cloud.
 This is not a per-pixel convex hull, but instead
 relies on a triangulated approximation.

 Parameters

 pointcloud : :map:`PointCloud`
 The pointcloud of points that should be constrained to.
 trilist: ``(t, 3)`` `ndarray`, optional
 Triangle list to be used on the landmarked points in selecting
 the mask region. If None defaults to performing Delaunay
 triangulation on the points.
 """
 from menpo.transform.piecewiseaffine import PiecewiseAffine
 from menpo.transform.piecewiseaffine import TriangleContainmentError

 if self.n_dims != 2:
 raise ValueError("can only constrain mask on 2D images.")

 if trilist is not None:
 from menpo.shape import TriMesh
 pointcloud = TriMesh(pointcloud.points, trilist)

 pwa = PiecewiseAffine(pointcloud, pointcloud)
 try:
 pwa.apply(self.indices())
 except TriangleContainmentError as e:
 self.from_vector_inplace(~e.points_outside_source_domain)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/homogeneous/rotation.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.homogeneous.rotation

import abc
import numpy as np

from .base import HomogFamilyAlignment
from .affine import DiscreteAffine
from .similarity import Similarity

def optimal_rotation_matrix(source, target):
 r"""
 Performs an SVD on the corrolation matrix to find an optimal rotation
 between source and target

 Parameters

 source: :class:`menpo.shape.PointCloud`
 The source points to be aligned

 target: :class:`menpo.shape.PointCloud`
 The target points to be aligned

 Returns

 ndarray
 The optimal square rotation matrix
 """
 correlation = np.dot(target.points.T, source.points)
 U, D, Vt = np.linalg.svd(correlation)
 return np.dot(U, Vt)

TODO build rotations about axis, euler angles etc
see http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
for details

[docs]class Rotation(DiscreteAffine, Similarity):
 r"""
 Abstract `n_dims` rotation transform.

 Parameters

 rotation_matrix : (D, D) `ndarray`
 A valid, square rotation matrix
 """
 __metaclass__ = abc.ABCMeta

 def __init__(self, rotation_matrix, skip_checks=False):
 h_matrix = np.eye(rotation_matrix.shape[0] + 1)
 Similarity.__init__(self, h_matrix, copy=False, skip_checks=True)
 self.set_rotation_matrix(rotation_matrix, skip_checks=skip_checks)

 @classmethod
[docs] def from_2d_ccw_angle(cls, theta, degrees=True):
 r"""
 Convenience constructor for 2D CCW rotations about the origin

 Parameters

 theta : `float`
 The angle of rotation about the origin
 degrees : `bool`, optional
 If ``True`` theta is interpreted as a degree. If ``False``, theta is
 interpreted as radians.

 Returns

 rotation : :map:`Rotation`
 A 2D rotation transform.
 """
 if degrees:
 # convert to radians
 theta = theta * np.pi / 180.0
 return Rotation(np.array([[np.cos(theta), -np.sin(theta)],
 [np.sin(theta), np.cos(theta)]]))

 @classmethod
 def identity(cls, n_dims):
 return Rotation(np.eye(n_dims))

 @property
 def rotation_matrix(self):
 r"""
 The rotation matrix.

 :type: (D, D) `ndarray`
 """
 return self.linear_component

 def set_rotation_matrix(self, value, skip_checks=False):
 if not skip_checks:
 shape = value.shape
 if len(shape) != 2 and shape[0] != shape[1]:
 raise ValueError("You need to provide a square rotation matrix")
 # The update better be the same size
 elif self.n_dims != shape[0]:
 raise ValueError("Trying to update the rotation "
 "matrix to a different dimension")
 # TODO actually check I am a valid rotation
 # TODO slightly dodgy here accessing _h_matrix
 self._h_matrix[:-1, :-1] = value

 def _transform_str(self):
 axis, rad_angle_of_rotation = self.axis_and_angle_of_rotation()
 if axis is None:
 return "NO OP"
 angle_of_rot = (rad_angle_of_rotation * 180.0) / np.pi
 message = ('CCW Rotation of {:.1f} degrees '
 'about {}'.format(angle_of_rot,axis))
 return message

[docs] def axis_and_angle_of_rotation(self):
 r"""
 Abstract method for computing the axis and angle of rotation.

 Returns

 axis : (D,) ndarray
 The unit vector representing the axis of rotation
 angle_of_rotation : double
 The angle in radians of the rotation about the axis. The angle is
 signed in a right handed sense.
 """
 if self.n_dims == 2:
 return self._axis_and_angle_of_rotation_2d()
 elif self.n_dims == 3:
 return self._axis_and_angle_of_rotation_3d()

 def _axis_and_angle_of_rotation_2d(self):
 r"""
 Decomposes this Rotation's rotation matrix into a angular rotation
 The rotation is considered in a right handed sense. The axis is, by
 definition, [0, 0, 1].

 Returns

 axis : (2,) ndarray
 The vector representing the axis of rotation
 angle_of_rotation : double
 The angle in radians of the rotation about the axis. The angle is
 signed in a right handed sense.
 """
 axis = np.array([0, 0, 1])
 test_vector = np.array([1, 0])
 transformed_vector = np.dot(self.rotation_matrix,
 test_vector)
 angle_of_rotation = np.arccos(np.dot(transformed_vector, test_vector))
 return axis, angle_of_rotation

 def _axis_and_angle_of_rotation_3d(self):
 r"""
 Decomposes this 3D rotation's rotation matrix into a angular rotation
 about an axis. The rotation is considered in a right handed sense.

 Returns

 axis : (3,) ndarray
 A unit vector, the axis about which the rotation takes place
 angle_of_rotation : double
 The angle in radians of the rotation about the `axis`.
 The angle is signed in a right handed sense.

 References

 .. [1] http://en.wikipedia.org/wiki/Rotation_matrix#Determining_the_axis
 """
 eval_, evec = np.linalg.eig(self.rotation_matrix)
 real_eval_mask = np.isreal(eval_)
 real_eval = np.real(eval_[real_eval_mask])
 evec_with_real_eval = np.real_if_close(evec[:, real_eval_mask])
 error = 1e-7
 below_margin = np.abs(real_eval) < (1 + error)
 above_margin = (1 - error) < np.abs(real_eval)
 re_unit_eval_mask = np.logical_and(below_margin, above_margin)
 evec_with_real_unitary_eval = evec_with_real_eval[:, re_unit_eval_mask]
 # all the eigenvectors with real unitary eigenvalues are now all
 # equally 'valid' if multiple remain that probably means that this
 # rotation is actually a no op (i.e. rotate by 360 degrees about any
 # axis is an invariant transform) but need to check this. For now,
 # just take the first
 if evec_with_real_unitary_eval.shape[1] != 1:
 # TODO confirm that multiple eigenvalues of 1 means the rotation
 # does nothing
 return None, None
 axis = evec_with_real_unitary_eval[:, 0]
 axis /= np.sqrt((axis ** 2).sum()) # normalize to unit vector
 # to find the angle of rotation, build a new unit vector perpendicular
 # to the axis, and see how it rotates
 axis_temp_vector = axis - np.random.rand(axis.size)
 perpendicular_vector = np.cross(axis, axis_temp_vector)
 perpendicular_vector /= np.sqrt((perpendicular_vector ** 2).sum())
 transformed_vector = np.dot(self.rotation_matrix,
 perpendicular_vector)
 angle_of_rotation = np.arccos(
 np.dot(transformed_vector, perpendicular_vector))
 chirality_of_rotation = np.dot(axis, np.cross(perpendicular_vector,
 transformed_vector))
 if chirality_of_rotation < 0:
 angle_of_rotation *= -1.0
 return axis, angle_of_rotation

 @property
 def n_parameters(self):
 raise NotImplementedError("Rotations are not yet vectorizable")

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order [theta].

 +----------+--+
 |parameter | definition |
 +==========+==+
 |theta | The angle of rotation around `[0, 0, 1]` |
 +----------+--+

 Returns

 theta : double
 Angle of rotation around axis. Right-handed.
 """
 # TODO vectorizable rotations
 raise NotImplementedError("Rotations are not yet vectorizable")

[docs] def from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Supports rebuilding from 2D parameter sets.

 2D Rotation: 1 parameter::

 [theta]

 Parameters

 p : (1,) ndarray
 The array of parameters.

 Returns

 transform : :class:`Rotation2D`
 The transform initialised to the given parameters.
 """
 raise NotImplementedError("Rotations are not yet vectorizable")

 @property
 def composes_inplace_with(self):
 return Rotation

[docs] def pseudoinverse(self):
 r"""
 The inverse rotation matrix.

 :type: (D, D) ndarray
 """
 return Rotation(np.linalg.inv(self.rotation_matrix), skip_checks=True)

[docs]class AlignmentRotation(HomogFamilyAlignment, Rotation):

 def __init__(self, source, target):
 HomogFamilyAlignment.__init__(self, source, target)
 Rotation.__init__(self, optimal_rotation_matrix(source, target))

 def set_rotation_matrix(self, value, skip_checks=False):
 Rotation.set_rotation_matrix(self, value, skip_checks=skip_checks)
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 r = optimal_rotation_matrix(self.source, self.target)
 Rotation.set_rotation_matrix(self, r, skip_checks=True)

[docs] def as_non_alignment(self):
 r"""Returns a copy of this rotation without it's alignment nature.

 Returns

 transform : :map:`Rotation`
 A version of this rotation with the same transform behavior but
 without the alignment logic.
 """
 return Rotation(self.rotation_matrix, skip_checks=True)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/homogeneous/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.homogeneous.base

import abc
import numpy as np

from menpo.base import Vectorizable
from menpo.transform.base import (Alignment, ComposableTransform,
 VComposable, VInvertible)

class HomogFamilyAlignment(Alignment):
 r"""
 Simple subclass of Alignment that adds the ability to create a copy of an
 alignment class without the alignment behavior.

 Note that subclasses should inherit from :map:`HomogFamilyAlignment` first
 to have the correct copy behavior.
 """
 @abc.abstractmethod
 def as_non_alignment(self):
 r"""
 Returns a copy of this transform without it's alignment nature.

 Returns

 transform : :map:`Homogeneous` but not :map:`Alignment` subclass
 A version of this transform with the same transform behavior but
 without the alignment logic.
 """

 def copy(self):
 r"""
 Generate an efficient copy of this :map:`HomogFamilyAlignment`.

 Returns

 new_transform : ``type(self)``
 A copy of this object

 """
 new = self.__class__.__new__(self.__class__)
 # Shallow copy everything except the h_matrix
 new.__dict__ = self.__dict__.copy()
 new._h_matrix = new._h_matrix.copy()
 return new

 def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping source and target, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 Returns

 transform : ``type(self)``
 The inverse of this transform.
 """
 selfcopy = self.copy()
 selfcopy._h_matrix = self._h_matrix_pseudoinverse()
 selfcopy._source, selfcopy._target = selfcopy._target, selfcopy._source
 return selfcopy

[docs]class Homogeneous(ComposableTransform, Vectorizable, VComposable, VInvertible):
 r"""
 A simple n-dimensional homogeneous transformation.

 Adds a unit homogeneous coordinate to points, performs the dot
 product, re-normalizes by division by the homogeneous coordinate,
 and returns the result.

 Can be composed with another :map:`Homogeneous`, so long as the
 dimensionality matches.

 Parameters

 h_matrix : ``(n_dims + 1, n_dims + 1)`` `ndarray`
 The homogeneous matrix defining this transform.
 copy : `bool`, optional
 If False avoid copying ``h_matrix``. Useful for performance.
 skip_checks : `bool`, optional
 If True avoid sanity checks on the ``h_matrix``. Useful for
 performance.
 """
 def __init__(self, h_matrix, copy=True, skip_checks=False):
 self._h_matrix = None
 # Delegate setting to the most specialized setter method possible
 self._set_h_matrix(h_matrix, copy=copy, skip_checks=skip_checks)

 @property
 def h_matrix_is_mutable(self):
 r"""
 ``True`` iff :meth:`set_h_matrix` is permitted on this type of
 transform.
 If this returns ``False`` calls to :meth:`set_h_matrix` will raise
 a ``NotImplementedError``.

 :type: `bool`
 """
 return True

[docs] def from_vector(self, vector):
 """
 Build a new instance of the object from it's vectorized state.

 ``self`` is used to fill out the missing state required to
 rebuild a full object from it's standardized flattened state. This
 is the default implementation, which is which is a ``deepcopy`` of the
 object followed by a call to :meth:`from_vector_inplace()`. This method
 can be overridden for a performance benefit if desired.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of the object.

 Returns

 transform : ``type(self)``
 An new instance of this class.
 """
 # avoid the deepcopy with an efficient copy
 self_copy = self.copy()
 self_copy.from_vector_inplace(vector)
 return self_copy

 def __str__(self):
 rep = self._transform_str() + '\n'
 rep += str(self.h_matrix)
 return rep

 def _transform_str(self):
 r"""
 A string representation explaining what this homogeneous transform
 does. Has to be implemented by base classes.

 Returns

 string : ``str``
 String representation of transform.
 """
 return 'Homogeneous'

 @classmethod
 def identity(cls, n_dims):
 return Homogeneous(np.eye(n_dims + 1))

 @property
 def h_matrix(self):
 return self._h_matrix

[docs] def set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""
 Updates ``h_matrix``, optionally performing sanity checks.

 Note that it won't always be possible to manually specify the
 ``h_matrix`` through this method, specifically if changing the
 ``h_matrix`` could change the nature of the transform. See
 :attr:`h_matrix_is_mutable` for how you can discover if the
 ``h_matrix`` is allowed to be set for a given class.

 Parameters

 value : ndarray
 The new homogeneous matrix to set
 copy : `bool`, optional
 If False do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If True skip checking. Useful for performance.

 Raises

 NotImplementedError
 If :attr:`h_matrix_is_mutable` returns ``False``.
 """
 if self.h_matrix_is_mutable:
 self._set_h_matrix(value, copy=copy, skip_checks=skip_checks)
 else:
 raise NotImplementedError(
 "h_matrix cannot be set on {}".format(self._transform_str()))

 def _set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""
 Actually updates the h_matrix, optionally performing sanity checks.

 Called by :meth:`set_h_matrix` on classes that have
 :attr:`h_matrix_is_mutable` as ``True``.

 Every subclass should invoke this method internally when the
 h_matrix needs to be set in order to get the most sanity checking
 possible.

 Parameters

 value : ndarray
 The new homogeneous matrix to set
 copy : `bool`, optional
 If False do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If True skip checking. Useful for performance.
 """
 if copy:
 value = value.copy()
 self._h_matrix = value

 @property
 def n_dims(self):
 return self.h_matrix.shape[1] - 1

 @property
 def n_dims_output(self):
 # doesn't have to be a square homogeneous matrix...
 return self.h_matrix.shape[0] - 1

 def _apply(self, x, **kwargs):
 # convert to homogeneous
 h_x = np.hstack([x, np.ones([x.shape[0], 1])])
 # apply the transform
 h_y = h_x.dot(self.h_matrix.T)
 # normalize and return
 return (h_y / h_y[:, -1][:, None])[:, :-1]

 def _as_vector(self):
 return self.h_matrix.ravel()

 def from_vector_inplace(self, vector):
 self.set_h_matrix(vector.reshape(self.h_matrix.shape),
 copy=True, skip_checks=True)

 @property
 def composes_inplace_with(self):
 r"""
 Homogeneous can swallow composition with any other Homogeneous,
 subclasses will have to override and be more specific.
 """
 return Homogeneous

 def compose_after_from_vector_inplace(self, vector):
 self.compose_after_inplace(self.from_vector(vector))

 @property
 def composes_with(self):
 r"""
 Any Homogeneous can compose with any other Homogeneous.
 """
 return Homogeneous

 # noinspection PyProtectedMember
 def _compose_before(self, t):
 r"""
 Chains an Homogeneous family transform with another transform of the
 same family, producing a new transform that is the composition of
 the two.

 .. note::

 The type of the returned transform is always the first common
 ancestor between self and transform.

 Any Alignment will be lost.

 Parameters

 transform : :class:`Homogeneous`
 Transform to be applied **after** self

 Returns

 transform : :class:`Homogeneous`
 The resulting homogeneous transform.
 """
 # note that this overload of the basic _compose_before is just to
 # deal with the complexities of maintaining the correct class of
 # transform upon composition
 if isinstance(t, type(self)):
 # He is a subclass of me - I can swallow him.
 # What if I'm an Alignment though? Rules of composition state we
 # have to produce a non-Alignment result. Nasty, but we check
 # here to save a lot of repetition.
 if isinstance(self, HomogFamilyAlignment):
 new_self = self.as_non_alignment()
 else:
 new_self = self.copy()
 new_self._compose_before_inplace(t)
 elif isinstance(self, type(t)):
 # I am a subclass of him - he can swallow me
 new_self = t._compose_after(self)
 elif isinstance(self, Similarity) and isinstance(t, Similarity):
 # we're both in the Similarity family
 new_self = Similarity(self.h_matrix)
 new_self._compose_before_inplace(t)
 elif isinstance(self, Affine) and isinstance(t, Affine):
 # we're both in the Affine family
 new_self = Affine(self.h_matrix)
 new_self._compose_before_inplace(t)
 else:
 # at least one of us is Homogeneous
 new_self = Homogeneous(self.h_matrix)
 new_self._compose_before_inplace(t)
 return new_self

 # noinspection PyProtectedMember
 def _compose_after(self, t):
 r"""
 Chains an Homogeneous family transform with another transform of the
 same family, producing a new transform that is the composition of
 the two.

 .. note::

 The type of the returned transform is always the first common
 ancestor between self and transform.

 Any Alignment will be lost.

 Parameters

 transform : :class:`Homogeneous`
 Transform to be applied **before** self

 Returns

 transform : :class:`Homogeneous`
 The resulting homogeneous transform.
 """
 # note that this overload of the basic _compose_after is just to
 # deal with the complexities of maintaining the correct class of
 # transform upon composition
 if isinstance(t, type(self)):
 # He is a subclass of me - I can swallow him.
 # What if I'm an Alignment though? Rules of composition state we
 # have to produce a non-Alignment result. Nasty, but we check
 # here to save a lot of repetition.
 if isinstance(self, HomogFamilyAlignment):
 new_self = self.as_non_alignment()
 else:
 new_self = self.copy()
 new_self._compose_after_inplace(t)
 elif isinstance(self, type(t)):
 # I am a subclass of him - he can swallow me
 new_self = t._compose_before(self)
 elif isinstance(self, Similarity) and isinstance(t, Similarity):
 # we're both in the Similarity family
 new_self = Similarity(self.h_matrix)
 new_self._compose_after_inplace(t)
 elif isinstance(self, Affine) and isinstance(t, Affine):
 # we're both in the Affine family
 new_self = Affine(self.h_matrix)
 new_self._compose_after_inplace(t)
 else:
 # at least one of us is Homogeneous
 new_self = Homogeneous(self.h_matrix)
 new_self._compose_after_inplace(t)
 return new_self

 def _compose_before_inplace(self, transform):
 # Compose machinery will guarantee this is only invoked in the right
 # circumstances (e.g. the types will match) so we don't need to block
 # the setting of the matrix
 self._set_h_matrix(np.dot(transform.h_matrix, self.h_matrix),
 copy=False, skip_checks=True)

 def _compose_after_inplace(self, transform):
 # Compose machinery will guarantee this is only invoked in the right
 # circumstances (e.g. the types will match) so we don't need to block
 # the setting of the matrix
 self._set_h_matrix(np.dot(self.h_matrix, transform.h_matrix),
 copy=False, skip_checks=True)

 @property
 def has_true_inverse(self):
 return True

 def pseudoinverse(self):
 # Skip the checks as we know inverse of a homogeneous is a homogeneous
 return self.__class__(self._h_matrix_pseudoinverse(), copy=False,
 skip_checks=True)

 def _h_matrix_pseudoinverse(self):
 return np.linalg.inv(self.h_matrix)

from .affine import Affine
from .similarity import Similarity

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/homogeneous/affine.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.homogeneous.affine

import abc
import numpy as np

from .base import Homogeneous, HomogFamilyAlignment
from functools import reduce

[docs]class Affine(Homogeneous):
 r"""Base class for all n-dimensional affine transformations. Provides
 methods to break the transform down into it's constituent
 scale/rotation/translation, to view the homogeneous matrix equivalent,
 and to chain this transform with other affine transformations.

 Parameters

 h_matrix : ``(n_dims + 1, n_dims + 1)`` `ndarray`
 The homogeneous matrix of the affine transformation.
 copy : `bool`, optional
 If ``False`` avoid copying ``h_matrix`` for performance.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``h_matrix`` for performance.
 """
 def __init__(self, h_matrix, copy=True, skip_checks=False):
 Homogeneous.__init__(self, h_matrix, copy=copy,
 skip_checks=skip_checks)

 @classmethod
 def identity(cls, n_dims):
 return cls(np.eye(n_dims + 1))

 @property
 def h_matrix(self):
 return self._h_matrix

 def _set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""Updates the h_matrix, performing sanity checks.

 Parameters

 value : `ndarray`
 The new homogeneous matrix to set
 copy : `bool`, optional
 If False do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If True skip sanity checks on the matrix. Useful for performance.
 """
 if not skip_checks:
 shape = value.shape
 if len(shape) != 2 or shape[0] != shape[1]:
 raise ValueError("You need to provide a square homogeneous "
 "matrix")
 if self.h_matrix is not None:
 # already have a matrix set! The update better be the same size
 if self.n_dims != shape[0] - 1:
 raise ValueError("Trying to update the homogeneous "
 "matrix to a different dimension")
 if shape[0] - 1 not in [2, 3]:
 raise ValueError("Affine Transforms can only be 2D or 3D")
 if not (np.allclose(value[-1, :-1], 0) and
 np.allclose(value[-1, -1], 1)):
 raise ValueError("Bottom row must be [0 0 0 1] or [0, 0, 1]")
 if copy:
 value = value.copy()
 self._h_matrix = value

 @property
 def linear_component(self):
 r"""The linear component of this affine transform.

 :type: ``(n_dims, n_dims)`` `ndarray`
 """
 return self.h_matrix[:-1, :-1]

 @property
 def translation_component(self):
 r"""The translation component of this affine transform.

 :type: ``(n_dims,)`` `ndarray`
 """
 return self.h_matrix[:-1, -1]

[docs] def decompose(self):
 r"""Decompose this transform into discrete Affine Transforms.

 Useful for understanding the effect of a complex composite transform.

 Returns

 transforms : list of :map:`DiscreteAffine`
 Equivalent to this affine transform, such that::

 reduce(lambda x,y: x.chain(y), self.decompose()) == self
 """
 from .rotation import Rotation
 from .translation import Translation
 from .scale import Scale
 U, S, V = np.linalg.svd(self.linear_component)
 rotation_2 = Rotation(U)
 rotation_1 = Rotation(V)
 scale = Scale(S)
 translation = Translation(self.translation_component)
 return [rotation_1, scale, rotation_2, translation]

 def _transform_str(self):
 r"""
 A string representation explaining what this affine transform does.
 Has to be implemented by base classes.

 Returns

 str : string
 String representation of transform.
 """
 header = 'Affine decomposing into:'
 list_str = [t._transform_str() for t in self.decompose()]
 return header + reduce(lambda x, y: x + '\n' + ' ' + y, list_str, ' ')

 def _apply(self, x, **kwargs):
 r"""
 Applies this transform to a new set of vectors.

 Parameters

 x : (N, D) ndarray
 Array to apply this transform to.

 Returns

 transformed_x : (N, D) ndarray
 The transformed array.
 """
 return np.dot(x, self.linear_component.T) + self.translation_component

 @property
 def n_parameters(self):
 r"""
 `n_dims * (n_dims + 1)` parameters - every element of the matrix bar
 the homogeneous part.

 :type: int

 Examples

 2D Affine: 6 parameters::

 [p1, p3, p5]
 [p2, p4, p6]

 3D Affine: 12 parameters::

 [p1, p4, p7, p10]
 [p2, p5, p8, p11]
 [p3, p6, p9, p12]
 """
 return self.n_dims * (self.n_dims + 1)

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. This does not
 include the homogeneous part of the warp. Note that it flattens using
 Fortran ordering, to stay consistent with Matlab.

 2D

 ========= ===
 parameter definition
 ========= ===
 p1 Affine parameter
 p2 Affine parameter
 p3 Affine parameter
 p4 Affine parameter
 p5 Translation in `x`
 p6 Translation in `y`
 ========= ===

 3D and higher transformations follow a similar format to the 2D case.

 Returns

 params : ``(n_parameters,)`` `ndarray`
 The values that parametrise the transform.
 """
 params = self.h_matrix - np.eye(self.n_dims + 1)
 return params[:self.n_dims, :].ravel(order='F')

[docs] def from_vector_inplace(self, p):
 r"""
 Updates this Affine in-place from the new parameters. See
 from_vector for details of the parameter format
 """
 h_matrix = None
 if p.shape[0] == 6: # 2D affine
 h_matrix = np.eye(3)
 h_matrix[:2, :] += p.reshape((2, 3), order='F')
 elif p.shape[0] == 12: # 3D affine
 h_matrix = np.eye(4)
 h_matrix[:3, :] += p.reshape((3, 4), order='F')
 else:
 ValueError("Only 2D (6 parameters) or 3D (12 parameters) "
 "homogeneous matrices are supported.")
 self.set_h_matrix(h_matrix, copy=False, skip_checks=True)

 @property
 def composes_inplace_with(self):
 return Affine

[docs]class AlignmentAffine(HomogFamilyAlignment, Affine):
 r"""
 Constructs an Affine by finding the optimal affine transform to align
 source to target.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment

 Notes

 We want to find the optimal transform M which satisfies

 M a = b

 where `a` and `b` are the source and target homogeneous vectors
 respectively.

 ::

 (M a)' = b'
 a' M' = b'
 a a' M' = a b'

 `a a'` is of shape `(n_dim + 1, n_dim + 1)` and so can be inverted
 to solve for M.

 This approach is the analytical linear least squares solution to
 the problem at hand. It will have a solution as long as `(a a')`
 is non-singular, which generally means at least 2 corresponding
 points are required.
 """
 def __init__(self, source, target):
 # first, initialize the alignment
 HomogFamilyAlignment.__init__(self, source, target)
 # now, the Affine
 optimal_h = self._build_alignment_h_matrix(source, target)
 Affine.__init__(self, optimal_h, copy=False, skip_checks=True)

 @staticmethod
 def _build_alignment_h_matrix(source, target):
 r"""
 Returns the optimal alignment of source to target.
 """
 a = source.h_points()
 b = target.h_points()
 return np.linalg.solve(np.dot(a, a.T), np.dot(a, b.T)).T

[docs] def set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""
 Updates ``h_matrix``, optionally performing sanity checks.

 .. note::

 Updating the ``h_matrix`` on an :map:`AlignmentAffine`
 triggers a sync of the target.

 Note that it won't always be possible to manually specify the
 ``h_matrix`` through this method, specifically if changing the
 ``h_matrix`` could change the nature of the transform. See
 :attr:`h_matrix_is_mutable` for how you can discover if the
 ``h_matrix`` is allowed to be set for a given class.

 Parameters

 value : ndarray
 The new homogeneous matrix to set
 copy : `bool`, optional
 If False do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If ``True`` skip checking. Useful for performance.

 Raises

 NotImplementedError
 If :attr:`h_matrix_is_mutable` returns ``False``.
 """
 Affine.set_h_matrix(self, value, copy=copy, skip_checks=skip_checks)
 # now update the state
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 optimal_h = self._build_alignment_h_matrix(self.source, self.target)
 # Use the pure Affine setter (so we don't get syncing)
 # We know the resulting affine is correct so skip the checks
 Affine.set_h_matrix(self, optimal_h, copy=False, skip_checks=True)

[docs] def as_non_alignment(self):
 r"""Returns a copy of this affine without it's alignment nature.

 Returns

 transform : :map:`Affine`
 A version of this affine with the same transform behavior but
 without the alignment logic.
 """
 return Affine(self.h_matrix, skip_checks=True)

[docs]class DiscreteAffine(object):
 r"""
 A discrete Affine transform operation (such as a :meth:`Scale`,
 :class:`Translation` or :meth:`Rotation`). Has to be able to invertable.
 Make sure you inherit from :class:`DiscreteAffine` first,
 for optimal `decompose()` behavior.
 """

 __metaclass__ = abc.ABCMeta

[docs] def decompose(self):
 r"""
 A :class:`DiscreteAffine` is already maximally decomposed -
 return a copy of self in a list.

 Returns

 transform : :class:`DiscreteAffine`
 Deep copy of `self`.
 """
 return [self.copy()]

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/base/composable.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 		menpo.transform.base »

 Source code for menpo.transform.base.composable

import abc

from menpo.transform.base import Transform
from functools import reduce

[docs]class ComposableTransform(Transform):
 r"""
 :map:`Transform` subclass that enables native composition, such that
 the behavior of multiple :map:`Transform` s is composed together in a
 natural way.
 """

 @abc.abstractproperty
 def composes_inplace_with(self):
 r"""
 The :map:`Transform` s that this transform composes inplace
 with **natively** (i.e. no :map:`TransformChain` will be produced).

 An attempt to compose inplace against any type that is not an
 instance of this property on this class will result in an `Exception`.

 :type: :map:`Transform` or tuple of :map:`Transform` s
 """

 @property
 def composes_with(self):
 r"""
 The :map:`Transform` s that this transform composes
 with **natively** (i.e. no :map:`TransformChain` will be produced).

 If native composition is not possible, falls back to producing a
 :map:`TransformChain`.

 By default, this is the same list as :attr:`composes_inplace_with`.

 :type: :map:`Transform` or tuple of :map:`Transform` s
 """
 return self.composes_inplace_with

[docs] def compose_before(self, transform):
 r"""
 A :map:`Transform` that represents **this** transform
 composed **before** the given transform::

 c = a.compose_before(b)
 c.apply(p) == b.apply(a.apply(p))

 ``a`` and ``b`` are left unchanged.

 An attempt is made to perform native composition, but will fall back
 to a :map:`TransformChain` as a last resort. See :attr:`composes_with`
 for a description of how the mode of composition is decided.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **after** ``self``

 Returns

 transform : :map:`Transform` or :map:`TransformChain`
 If the composition was native, a single new :map:`Transform` will
 be returned. If not, a :map:`TransformChain` is returned instead.
 """
 if isinstance(transform, self.composes_with):
 return self._compose_before(transform)
 else:
 # best we can do is a TransformChain, let Transform handle that.
 return Transform.compose_before(self, transform)

[docs] def compose_after(self, transform):
 r"""
 A :map:`Transform` that represents **this** transform
 composed **after** the given transform::

 c = a.compose_after(b)
 c.apply(p) == a.apply(b.apply(p))

 ``a`` and ``b`` are left unchanged.

 This corresponds to the usual mathematical formalism for the compose
 operator, `o`.

 An attempt is made to perform native composition, but will fall back
 to a :map:`TransformChain` as a last resort. See :attr:`composes_with`
 for a description of how the mode of composition is decided.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **before** ``self``

 Returns

 transform : :map:`Transform` or :map:`TransformChain`
 If the composition was native, a single new :map:`Transform` will
 be returned. If not, a :map:`TransformChain` is returned instead.
 """
 if isinstance(transform, self.composes_with):
 return self._compose_after(transform)
 else:
 # best we can do is a TransformChain, let Transform handle that.
 return Transform.compose_after(self, transform)

[docs] def compose_before_inplace(self, transform):
 r"""
 Update ``self`` so that it represents **this** transform composed
 before the given transform::

 a_orig = a.copy()
 a.compose_before_inplace(b)
 a.apply(p) == b.apply(a_orig.apply(p))

 ``a`` is permanently altered to be the result of the composition.
 ``b`` is left unchanged.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **after** ``self``

 Raises

 ValueError
 If ``transform`` isn't an instance of :attr:`composes_inplace_with`
 """
 if isinstance(transform, self.composes_inplace_with):
 self._compose_before_inplace(transform)
 else:
 raise ValueError(
 "{} can only compose inplace with {} - not "
 "{}".format(type(self), self.composes_inplace_with,
 type(transform)))

[docs] def compose_after_inplace(self, transform):
 r"""
 Update ``self`` so that it represents **this** transform composed
 after the given transform::

 a_orig = a.copy()
 a.compose_after_inplace(b)
 a.apply(p) == a_orig.apply(b.apply(p))

 ``a`` is permanently altered to be the result of the composition. ``b``
 is left unchanged.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **before** ``self``

 Raises

 ValueError
 If ``transform`` isn't an instance of :attr:`composes_inplace_with`
 """
 if isinstance(transform, self.composes_inplace_with):
 self._compose_after_inplace(transform)
 else:
 raise ValueError(
 "{} can only compose inplace with {} - not "
 "{}".format(type(self), self.composes_inplace_with,
 type(transform)))

 def _compose_before(self, transform):
 r"""
 Naive implementation of composition, ``self.copy()`` and then
 :meth:``compose_before_inplace``. Apply this transform **first**.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **after** ``self``

 Returns

 transform : :map:`ComposableTransform`
 The resulting transform.
 """
 # naive approach - copy followed by the inplace operation
 self_copy = self.copy()
 self_copy._compose_before_inplace(transform)
 return self_copy

 def _compose_after(self, transform):
 r"""
 Naive implementation of composition, ``self.copy()`` and then
 :meth:``compose_after_inplace``. Apply this transform **second**.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **before** ``self``

 Returns

 transform : :map:`ComposableTransform`
 The resulting transform.
 """
 # naive approach - copy followed by the inplace operation
 self_copy = self.copy()
 self_copy._compose_after_inplace(transform)
 return self_copy

 @abc.abstractmethod
[docs] def _compose_before_inplace(self, transform):
 r"""
 Specialised inplace composition. This should be overridden to
 provide specific cases of composition as defined in
 :attr:`composes_inplace_with`.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **after** ``self``
 """

 @abc.abstractmethod
[docs] def _compose_after_inplace(self, transform):
 r"""
 Specialised inplace composition. This should be overridden to
 provide specific cases of composition as defined in
 :attr:`composes_inplace_with`.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **before** ``self``
 """

[docs]class VComposable(object):
 r"""
 Mix-in for :map:`Vectorizable` :map:`ComposableTransform` s.

 Use this mix-in with :map:`ComposableTransform` if the
 :map:`ComposableTransform` in question is :map:`Vectorizable` as this adds
 :meth:`from_vector` variants to the :map:`ComposableTransform` interface.
 These can be tuned for performance.
 """

 @abc.abstractmethod
[docs] def compose_after_from_vector_inplace(self, vector):
 r"""
 Specialised inplace composition with a vector. This should be
 overridden to provide specific cases of composition whereby the current
 state of the transform can be derived purely from the provided vector.

 Parameters

 vector : ``(n_parameters,)`` ndarray
 Vector to update the transform state with.
 """

[docs]class TransformChain(ComposableTransform):
 r"""
 A chain of transforms that can be efficiently applied one after the
 other.

 This class is the natural product of composition. Note that objects may
 know how to compose themselves more efficiently - such objects
 implement the :map:`ComposableTransform` or :map:`VComposable` interfaces.

 Parameters

 transforms : `list` of :map:`Transform`
 The list of transforms to be applied. Note that the first transform
 will be applied first - the result of which is fed into the second
 transform and so on until the chain is exhausted.
 """

 def __init__(self, transforms):
 # TODO Should TransformChain copy on input?
 self.transforms = transforms

 def _apply(self, x, **kwargs):
 r"""
 Applies each of the transforms to the array ``x``, in order.

 Parameters

 x : ``(n_points, n_dims)`` `ndarray`
 The array to transform.

 Returns

 transformed : ``(n_points, n_dims_output)`` `ndarray`
 Transformed array having passed through the chain of transforms.
 """
 return reduce(lambda x_i, tr: tr._apply(x_i), self.transforms, x)

 @property
 def composes_inplace_with(self):
 r"""
 The :map:`Transform` s that this transform composes inplace
 with **natively** (i.e. no :map:`TransformChain` will be produced).

 An attempt to compose inplace against any type that is not an
 instance of this property on this class will result in an `Exception`.

 :type: :map:`Transform` or tuple of :map:`Transform` s
 """
 return Transform

 def _compose_before_inplace(self, transform):
 r"""
 Specialised inplace composition. In this case we merely keep a list
 of :map:`Transform` s to apply in order.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **after** ``self``
 """
 self.transforms.append(transform)

 def _compose_after_inplace(self, transform):
 r"""
 Specialised inplace composition. In this case we merely keep a list
 of :map:`Transform`s to apply in order.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **before** ``self``
 """
 self.transforms.insert(0, transform)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/homogeneous/translation.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.homogeneous.translation

import numpy as np

from .base import HomogFamilyAlignment
from .affine import DiscreteAffine
from .similarity import Similarity

[docs]class Translation(DiscreteAffine, Similarity):
 r"""
 An N-dimensional translation transform.

 Parameters

 translation : (D,) ndarray
 The translation in each axis.
 """

 def __init__(self, translation, skip_checks=False):
 translation = np.asarray(translation)
 h_matrix = np.eye(translation.shape[0] + 1)
 h_matrix[:-1, -1] = translation
 Similarity.__init__(self, h_matrix, copy=False,
 skip_checks=skip_checks)

 @classmethod
 def identity(cls, n_dims):
 return Translation(np.zeros(n_dims))

 def _transform_str(self):
 message = 'Translation by {}'.format(self.translation_component)
 return message

 @property
 def n_parameters(self):
 r"""
 The number of parameters: `n_dims`

 :type: int
 """
 return self.n_dims

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order [t0, t1, ...].

 +-----------+--+
 |parameter | definition |
 +==========+===+
 |t0 | The translation in the first axis |
 |t1 | The translation in the second axis |
 |... | ... |
 |tn | The translation in the nth axis |
 +----------+---+

 Returns

 ts : (D,) ndarray
 The translation in each axis.
 """
 return self.h_matrix[:-1, -1]

 def from_vector_inplace(self, p):
 self.h_matrix[:-1, -1] = p

[docs] def pseudoinverse(self):
 r"""
 The inverse translation (negated).

 :return: :class:`Translation`
 """
 return Translation(-self.translation_component, skip_checks=True)

[docs]class AlignmentTranslation(HomogFamilyAlignment, Translation):

 def __init__(self, source, target):
 HomogFamilyAlignment.__init__(self, source, target)
 Translation.__init__(self, target.centre() - source.centre())

 def from_vector_inplace(self, p):
 Translation.from_vector_inplace(self, p)
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 translation = self.target.centre() - self.source.centre()
 self.h_matrix[:-1, -1] = translation

[docs] def as_non_alignment(self):
 r"""Returns a copy of this translation without it's alignment nature.

 Returns

 transform : :map:`Translation`
 A version of this transform with the same transform behavior but
 without the alignment logic.
 """
 return Translation(self.translation_component)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/base/invertible.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 		menpo.transform.base »

 Source code for menpo.transform.base.invertible

import abc

[docs]class Invertible(object):
 r"""
 Mix-in for invertible transforms. Provides an interface for
 taking the `psuedo` or true inverse of a transform.

 Has to be implemented in conjunction with :map:`Transform`.
 """

 @abc.abstractproperty
 def has_true_inverse(self):
 r"""`True` if the pseudoinverse is an exact inverse.

 :type: `bool`
 """

[docs] def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping source and target, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 :type: ``type(self)``
 """

[docs]class VInvertible(Invertible):
 r"""
 Mix-in for :map:`Vectorizable` :map:`Invertible` :map:`Transform` s.

 Prefer this mix-in over :map:`Invertible` if the :map:`Transform` in
 question is :map:`Vectorizable` as this adds :meth:`from_vector` variants
 to the :map:`Invertible` interface. These can be tuned for performance,
 and are, for instance, needed by some of the machinery of fit.
 """
[docs] def pseudoinverse_vector(self, vector):
 r"""
 The vectorized pseudoinverse of a provided vector instance.
 Syntactic sugar for::

 self.from_vector(vector).pseudoinverse().as_vector()

 Can be much faster than the explict call as object creation can be
 entirely avoided in some cases.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 A vectorized version of ``self``

 Returns

 pseudoinverse_vector : ``(n_parameters,)`` `ndarray`
 The pseudoinverse of the vector provided
 """
 return self.from_vector(vector).pseudoinverse().as_vector()

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/base/alignment.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 		menpo.transform.base »

 Source code for menpo.transform.base.alignment

import numpy as np

from menpo.base import Targetable
from menpo.visualize.base import Viewable

[docs]class Alignment(Targetable, Viewable):
 r"""
 Mix-in for :map:`Transform` that have been constructed from an
 optimisation aligning a source :map:`PointCloud` to a target
 :map:`PointCloud`.

 This is naturally an extension of the :map:`Targetable` interface - we
 just augment :map:`Targetable` with the concept of a source, and related
 methods to construct alignments between a source and a target.

 Note that to inherit from :map:`Alignment`, you have to be a
 :map:`Transform` subclass first.

 Parameters

 source : :map:`PointCloud`
 A PointCloud that the alignment will be based from
 target : :map:`PointCloud`
 A PointCloud that the alignment is targeted towards
 """
 def __init__(self, source, target):
 self._verify_source_and_target(source, target)
 self._source = source
 self._target = target

 @staticmethod
 def _verify_source_and_target(source, target):
 r"""
 Checks that the dimensions and number of points match up of the source
 and the target.

 """
 if source.n_dims != target.n_dims:
 raise ValueError("Source and target must have the same "
 "dimensionality")
 elif source.n_points != target.n_points:
 raise ValueError("Source and target must have the same number of"
 " points")

 @property
 def source(self):
 r"""
 The source :map:`PointCloud` that is used in the alignment.

 The source is not mutable.

 :type: :map:`PointCloud`
 """
 return self._source

[docs] def aligned_source(self):
 r"""
 The result of applying ``self`` to :attr:`source`

 :type: :map:`PointCloud`
 """
 # Note that here we have the dependency that we are a Transform
 return self.apply(self.source)

[docs] def alignment_error(self):
 r"""
 The Frobenius Norm of the difference between the target and
 the aligned source.

 :type: float
 """
 return np.linalg.norm(self.target.points -
 self.aligned_source().points)

 @property
 def target(self):
 r"""
 The current :map:`PointCloud` that this object produces.

 To change the target, use :meth:`set_target`.

 :type: :map:`PointCloud`
 """
 return self._target

 def _target_setter(self, new_target):
 r"""
 Fulfils the :map:`Targetable` _target_setter interface for all
 Alignments. This method should purely set the target - we know how to do
 that for all :map:`Alignment` instances.

 """
 self._target = new_target

 def _new_target_from_state(self):
 r"""
 Fulfils the :map:`Targetable` :meth:`_new_target_from_state`
 interface for all Alignments.

 This method should purely return the new target to be set - for all
 :map:`Alignment` instances this is just the aligned source.
 """
 return self.aligned_source()

 def _view_2d(self, figure_id=None, new_figure=False, **kwargs):
 r"""
 Plots the source points and vectors that represent the shift from
 source to target.

 Parameters

 image : `bool`, optional
 If ``True`` the vectors are plotted on top of an image

 Default: ``False``
 """
 from menpo.visualize import AlignmentViewer2d
 return AlignmentViewer2d(figure_id, new_figure, self).render(**kwargs)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/groupalign/procrustes.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.groupalign.procrustes

import numpy as np

from menpo.transform import AlignmentSimilarity, UniformScale, Translation
from .base import MultipleAlignment

mean_pointcloud = None # to avoid circular imports
PointCloud = None # to avoid circular imports
Similarity = None # to avoid circular imports

[docs]class GeneralizedProcrustesAnalysis(MultipleAlignment):
 r"""
 Class for aligning multiple source shapes between them.

 After construction, the :map:`AlignmentSimilarity` transforms used to map
 each source optimally to the target can be found at `transforms`.

 Parameters

 sources : list of :map:`PointCloud`
 List of pointclouds to be aligned.

 target : :map:`PointCloud`
 The target :map:`PointCloud` to align each source to.
 If None, then the mean of the sources is used.

 Default: None

 Raises

 ValueError
 Need at least two sources to align

 """
 def __init__(self, sources, target=None):
 super(GeneralizedProcrustesAnalysis, self).__init__(sources,
 target=target)
 initial_target = self.target
 self.transforms = [AlignmentSimilarity(source, self.target)
 for source in self.sources]
 self.initial_target_scale = self.target.norm()
 self.n_iterations = 1
 self.max_iterations = 100
 self.converged = self._recursive_procrustes()
 if target is not None:
 self.target = initial_target

 def _recursive_procrustes(self):
 r"""
 Recursively calculates a procrustes alignment.
 """
 global mean_pointcloud, PointCloud, Similarity
 if mean_pointcloud is None or PointCloud is None or Similarity is None:
 from menpo.shape import mean_pointcloud, PointCloud
 from menpo.transform import Similarity
 if self.n_iterations > self.max_iterations:
 return False
 new_tgt = mean_pointcloud([PointCloud(t.aligned_source().points,
 copy=False)
 for t in self.transforms])
 # rescale the new_target to be the same size as the original about
 # it's centre
 rescale = Similarity.identity(new_tgt.n_dims)

 s = UniformScale(self.initial_target_scale / new_tgt.norm(),
 self.n_dims, skip_checks=True)
 t = Translation(-new_tgt.centre(), skip_checks=True)
 rescale.compose_before_inplace(t)
 rescale.compose_before_inplace(s)
 rescale.compose_before_inplace(t.pseudoinverse())
 rescale.apply_inplace(new_tgt)
 # check to see if we have converged yet
 delta_target = np.linalg.norm(self.target.points - new_tgt.points)
 if delta_target < 1e-6:
 return True
 else:
 self.n_iterations += 1
 for t in self.transforms:
 t.set_target(new_tgt)
 self.target = new_tgt
 return self._recursive_procrustes()

[docs] def mean_aligned_shape(self):
 r"""
 Returns the mean of the aligned shapes.

 :type: PointCloud
 """
 from menpo.shape import PointCloud
 return PointCloud(np.mean([t.target.points for t in self.transforms],
 axis=0))

[docs] def mean_alignment_error(self):
 r"""
 Returns the average error of the recursive procrustes alignment.

 :type: float
 """
 return sum([t.alignment_error() for t in
 self.transforms])/self.n_sources

 def __str__(self):
 if self.converged:
 return ('Converged after %d iterations with av. error %f'
 % (self.n_iterations, self.mean_alignment_error()))
 else:
 return ('Failed to converge after %d iterations with av. error '
 '%f' % (self.n_iterations, self.mean_alignment_error()))

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/piecewiseaffine/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.piecewiseaffine.base

import abc
import numpy as np
from copy import deepcopy
from menpo.base import Copyable
from menpo.transform.base import Alignment, Invertible, Transform
from .fastpwa import CLookupPWA
TODO View is broken for PWA (TriangleContainmentError)

class TriangleContainmentError(Exception):
 r"""
 Exception that is thrown when an attempt is made to map a point with a
 PWATransform that does not lie in a source triangle.

 points_outside_source_domain : (d,) ndarray
 A boolean value for the d points that were attempted to be applied.
 If True, the point was outside of the domain.
 """
 def __init__(self, points_outside_source_domain):
 super(TriangleContainmentError, self).__init__()
 self.points_outside_source_domain = points_outside_source_domain

def containment_from_alpha_beta(alpha, beta):
 r"""
 Check `alpha` and `beta` are within a triangle (`alpha >= 0`,
 `beta >= 0`, `alpha + beta <= 1`). Returns the indices of the
 triangles that are `alpha` and `beta` are in. If any of the
 points are not contained in a triangle,
 raises a TriangleContainmentError.

 Parameters

 alpha: (K, `n_tris`) ndarray
 Alpha for each point and triangle being tested.
 beta: (K, `n_tris`) ndarray
 Beta for each point and triangle being tested.

 Returns

 tri_index : (L,) ndarray
 triangle index for each `points`, assigning each
 point in a triangle to the triangle index.

 Raises

 TriangleContainmentError
 All `points` must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 # (K, n_tris), boolean for whether a given triangle contains a given
 # point
 point_containment = np.logical_and(np.logical_and(
 alpha >= 0, beta >= 0),
 alpha + beta <= 1)
 # is each point in a triangle?
 point_in_a_triangle = np.any(point_containment, axis=1)
 if np.any(~point_in_a_triangle):
 raise TriangleContainmentError(~point_in_a_triangle)
 point_index, tri_index = np.nonzero(point_containment)
 # don't want duplicates! ensure that here:
 index = np.zeros(alpha.shape[0])
 index[point_index] = tri_index
 return index.astype(np.uint32)

def alpha_beta(i, ij, ik, points):
 r"""
 Calculates the alpha and beta values (barycentric coordinates) for each
 triangle for all points provided. Note that this does not raise a
 TriangleContainmentError.

 Parameters

 i : (`n_tris`, 2) ndarray
 The coordinate of the i'th point of each triangle

 ij (`n_tris`, 2) ndarray
 The vector between the i'th point and the j'th point of each
 triangle

 ik (`n_tris`, 2) ndarray
 The vector between the i'th point and the k'th point of each
 triangle

 points : (`n_points`, 2) ndarray
 Points to calculate the barycentric coordinates for.

 Returns

 alpha : (`n_points`, `n_tris`)
 The alpha for each point and triangle. Alpha can be interpreted
 as the contribution of the ij vector to the position of the
 point in question.
 beta : (`n_points`, `n_tris`)
 The beta for each point and triangle. Beta can be interpreted as
 the contribution of the ik vector to the position of the point
 in question.
 """
 ip = points[..., None] - i
 dot_jj = np.einsum('dt, dt -> t', ij, ij)
 dot_kk = np.einsum('dt, dt -> t', ik, ik)
 dot_jk = np.einsum('dt, dt -> t', ij, ik)
 dot_pj = np.einsum('vdt, dt -> vt', ip, ij)
 dot_pk = np.einsum('vdt, dt -> vt', ip, ik)

 d = 1.0/(dot_jj * dot_kk - dot_jk * dot_jk)
 alpha = (dot_kk * dot_pj - dot_jk * dot_pk) * d
 beta = (dot_jj * dot_pk - dot_jk * dot_pj) * d
 return alpha, beta

def index_alpha_beta(i, ij, ik, points):
 """
 Finds for each input point the index of it's bounding triangle
 and the alpha and beta value for that point in the triangle. Note
 this means that the following statements will always be true:
 alpha + beta <= 1
 alpha >= 0
 beta >= 0
 for each triangle result.
 Trying to map a point that does not exist in a
 triangle throws a TriangleContainmentError.

 Parameters

 i : (`n_tris`, 2) ndarray
 The coordinate of the i'th point of each triangle

 ij (`n_tris`, 2) ndarray
 The vector between the i'th point and the j'th point of each
 triangle

 ik (`n_tris`, 2) ndarray
 The vector between the i'th point and the k'th point of each
 triangle

 points : (`n_points`, 2) ndarray
 Points to calculate the barycentric coordinates for.

 Returns

 tri_index : (`n_tris`,) ndarray
 triangle index for each of the `points`, assigning each
 point to it's containing triangle.
 alpha : (`n_tris`,) ndarray
 Alpha for containing triangle of each point.
 beta : (`n_tris`,) ndarray
 Beta for containing triangle of each point.

 Raises

 TriangleContainmentError
 All `points` must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 alpha, beta = alpha_beta(i, ij, ik, points)
 each_point = np.arange(points.shape[0])
 index = containment_from_alpha_beta(alpha, beta)
 return index, alpha[each_point, index], beta[each_point, index]

def barycentric_vectors(points, trilist):
 r"""
 Compute the affine transformation between each triangle in the source
 and target. This is calculated analytically.

 Parameters

 points : (`n_points`, 2) ndarray
 Points to calculate the barycentric coordinates for.

 trilist: (`n_tris`, 3) ndarray
 The 0-based index triangulation joining the points.

 Returns

 i : (`n_tris`, 2) ndarray
 The coordinate of the i'th point of each triangle

 ij (`n_tris`, 2) ndarray
 The vector between the i'th point and the j'th point of each
 triangle

 ik (`n_tris`, 2) ndarray
 The vector between the i'th point and the k'th point of each
 triangle
 """
 # we permute the axes of the indexed point set to have shape
 # [3, n_dims, n_tris] for ease of indexing in.
 x = np.transpose(points[trilist], axes=[1, 2, 0])
 return x[0], x[1] - x[0], x[2] - x[0]

Note we inherit from Alignment first to get it's n_dims behavior
class AbstractPWA(Alignment, Transform, Invertible):
 r"""
 A piecewise affine transformation. This is composed of a number of
 triangles defined be a set of source and target vertices. These vertices
 are related by a common triangle list. No limitations on the nature of
 the triangle list are imposed. Points can then be mapped via
 barycentric coordinates from the source to the target space.
 Trying to map points that are not contained by any source triangle
 throws a TriangleContainmentError, which contains diagnostic information.

 Parameters

 source : :class:`menpo.shape.PointCloud` or :class:`menpo.shape.TriMesh`
 The source points. If a TriMesh is provided, the triangulation on
 the TriMesh is used. If a :class:`menpo.shape.PointCloud`
 is provided, a Delaunay triangulation of the source is performed
 automatically.
 target : :class:`PointCloud`
 The target points. Note that the trilist is entirely decided by
 the source.

 Raises

 ValueError
 Source and target must both be 2D.

 TriangleContainmentError
 All points to apply must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 def __init__(self, source, target):
 from menpo.shape import TriMesh # to avoid circular import
 if not isinstance(source, TriMesh):
 source = TriMesh(source.points)
 Alignment.__init__(self, source, target)
 if self.n_dims != 2:
 raise ValueError("source and target must be 2 "
 "dimensional")
 self.ti, self.tij, self.tik = None, None, None
 self._rebuild_target_vectors()

 @property
 def n_tris(self):
 r"""
 The number of triangles in the triangle list.

 :type: int
 """
 return self.source.n_tris

 @property
 def trilist(self):
 r"""
 The triangle list.

 :type: (`n_tris`, 3) ndarray
 """
 return self.source.trilist

 def _rebuild_target_vectors(self):
 r"""
 Rebuild the vectors that are used in the apply method. This needs to
 be called whenever the target is changed.
 """
 t = self.target.points[self.trilist]
 # get vectors ij ik for the target
 self.tij, self.tik = t[:, 1] - t[:, 0], t[:, 2] - t[:, 0]
 # target i'th vertex positions
 self.ti = t[:, 0]

 def _sync_state_from_target(self):
 r"""
 PWA is particularly efficient to sync from target - we don't have to
 do much at all, just rebuild the target vectors.
 """
 self._rebuild_target_vectors()

 def _apply(self, x, **kwargs):
 """
 Applies this transform to a new set of vectors.

 Parameters

 x : (K, 2) ndarray
 Points to apply this transform to.

 Returns

 transformed : (K, 2) ndarray
 The transformed array.
 """
 tri_index, alpha, beta = self.index_alpha_beta(x)
 return (self.ti[tri_index] +
 alpha[:, None] * self.tij[tri_index] +
 beta[:, None] * self.tik[tri_index])

 @abc.abstractmethod
 def index_alpha_beta(self, points):
 """
 Finds for each input point the index of it's bounding triangle
 and the alpha and beta value for that point in the triangle. Note
 this means that the following statements will always be true:
 alpha + beta <= 1
 alpha >= 0
 beta >= 0
 for each triangle result.
 Trying to map a point that does not exist in a
 triangle throws a TriangleContainmentError.

 Parameters

 points : (K, 2) ndarray
 Points to test.

 Returns

 tri_index : (L,) ndarray
 triangle index for each of the `points`, assigning each
 point to it's containing triangle.
 alpha : (L,) ndarray
 Alpha for containing triangle of each point.
 beta : (L,) ndarray
 Beta for containing triangle of each point.

 Raises

 TriangleContainmentError
 All `points` must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 pass

 @property
 def has_true_inverse(self):
 return True

 def pseudoinverse(self):
 from menpo.shape import PointCloud, TriMesh # to avoid circular import
 new_source = TriMesh(self.target.points, self.source.trilist)
 new_target = PointCloud(self.source.points)
 return type(self)(new_source, new_target)

class PythonPWA(AbstractPWA):

 def __init__(self, source, target):
 super(PythonPWA, self).__init__(source, target)
 si, sij, sik = barycentric_vectors(self.source.points, self.trilist)
 self.s, self.sij, self.sik = si, sij, sik

 def index_alpha_beta(self, points):
 return index_alpha_beta(self.s, self.sij, self.sik, points)

class CachedPWA(PythonPWA):

 def __init__(self, source, target):
 super(CachedPWA, self).__init__(source, target)
 self._applied_points, self._iab = None, None

 def index_alpha_beta(self, points):
 if (self._applied_points is None or not
 np.all(points == self._applied_points)):
 self._applied_points = points
 self._iab = PythonPWA.index_alpha_beta(self, points)
 return self._iab

class CythonPWA(AbstractPWA):
 r"""
 A piecewise affine transformation.

 The apply method in this case involves dotting the triangle vectors with
 the values of alpha and beta found. The calculation of alpha and beta is
 done in C, and a hash map is used to cache lookup values.

 Parameters

 source : :class:`menpo.shape.PointCloud` or :class:`menpo.shape.TriMesh`
 The source points. If a TriMesh is provided, the triangulation on
 the TriMesh is used. If a :class:`menpo.shape.PointCloud`
 is provided, a Delaunay triangulation of the source is performed
 automatically.
 target : :class:`PointCloud`
 The target points. Note that the trilist is entirely decided by
 the source.

 Raises

 ValueError
 Source and target must both be 2D.

 TriangleContainmentError
 All points to apply must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 def __init__(self, source, target):
 super(CythonPWA, self).__init__(source, target)
 # make sure the source and target satisfy the c requirements
 source_c = np.require(self.source.points, dtype=np.float64,
 requirements=['C'])
 trilist_c = np.require(self.trilist, dtype=np.uint32,
 requirements=['C'])
 # build the cython wrapped C object and store it locally
 self._fastpwa = CLookupPWA(source_c, trilist_c)

 def copy(self):
 new = Copyable.copy(self)
 new._fastpwa = deepcopy(self._fastpwa)
 return new

 def index_alpha_beta(self, points):
 points_c = np.require(points, dtype=np.float64, requirements=['C'])
 index, alpha, beta = self._fastpwa.index_alpha_beta(points_c)
 if np.any(index < 0):
 raise TriangleContainmentError(index < 0)
 else:
 return index, alpha, beta

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/groupalign/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.groupalign.base

import abc

[docs]class MultipleAlignment(object):
 r"""
 Abstract base class for aligning multiple source shapes to a target shape.

 Parameters

 sources : list of :map:`PointCloud`
 List of pointclouds to be aligned.

 target : :map:`PointCloud`
 The target :map:`PointCloud` to align each source to.
 If None, then the mean of the sources is used.

 Default: None

 Raises

 ValueError
 Need at least two sources to align

 """

 __metaclass__ = abc.ABCMeta

 def __init__(self, sources, target=None):
 from menpo.shape import PointCloud
 if len(sources) < 2 and target is None:
 raise ValueError("Need at least two sources to align")
 self.n_sources = len(sources)
 self.n_points, self.n_dims = sources[0].n_points, sources[0].n_dims
 self.sources = sources
 if target is None:
 # set the target to the mean source position
 self.target = PointCloud(
 sum([s.points for s in self.sources]) / self.n_sources)
 else:
 assert self.n_dims, self.n_points == target.shape
 self.target = target

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/model/instancebacked.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.model.instancebacked

class InstanceBackedModel(object):
 r"""
 Mixin for models constructed from a set of :map:`Vectorizable` objects.
 Supports models for which visualizing the meaning of a set of components
 is trivial. Requires that the following attributes to be present:

 1. `n_components`
 2. `components`

 and the following methods implemented:

 1. `component_vector(index)`
 2. `instance_vectors(weightings)`
 3. `project_vector(vector)`
 4. `reconstruct_vectors(vectors, n_components)`
 5. `project_out_vector(vector)`

 The constructor takes an instance of :map:`Vectorizable`. This is used for
 all conversions to and from numpy vectors and instances.

 Parameters

 template_instance : :map:`Vectorizable`
 The template instance.
 """

 def __init__(self, template_instance):
 self.template_instance = template_instance

 def component(self, index):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned.

 Returns

 component_vector : `type(self.template_instance)`
 The component vector.
 """
 return self.template_instance.from_vector(self.component_vector(index))

 def instance(self, weights):
 """
 Creates a new instance of the model using the first ``len(weights)``
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 ``weights[i]`` is the linear contribution of the i'th component
 to the instance vector.

 Raises

 ValueError
 If n_weights > n_components

 Returns

 instance : `type(self.template_instance)`
 An instance of the model.
 """
 return self.template_instance.from_vector(
 self.instance_vector(weights))

 def project(self, instance):
 """
 Projects the `instance` onto the model, retrieving the optimal
 linear weightings.

 Parameters

 novel_instance : :map:`Vectorizable`
 A novel instance.

 Returns

 projected : ``(n_components,)`` `ndarray`
 A vector of optimal linear weightings.
 """
 return self.project_vector(instance.as_vector())

 def reconstruct(self, instance):
 """
 Projects a `instance` onto the linear space and rebuilds from the
 weights found.

 Syntactic sugar for: ::

 instance(project(instance))

 but faster, as it avoids the conversion that takes place each time.

 Parameters

 instance : :class:`Vectorizable`
 A novel instance of :class:`Vectorizable`.

 Returns

 reconstructed : `self.instance_class`
 The reconstructed object.
 """
 reconstruction_vector = self.reconstruct_vector(instance.as_vector())
 return instance.from_vector(reconstruction_vector)

 def project_out(self, instance):
 """
 Returns a version of `instance` where all the basis of the model
 have been projected out.

 Parameters

 instance : :class:`Vectorizable`
 A novel instance of :class:`Vectorizable`.

 Returns

 projected_out : `self.instance_class`
 A copy of `instance`, with all basis of the model projected out.
 """
 vector_instance = self.project_out_vector(instance.as_vector())
 return instance.from_vector(vector_instance)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/io/output/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.io.output.base

import gzip
from functools import partial
from pathlib import Path

from .extensions import landmark_types, image_types, pickle_types
from ..utils import _norm_path

an open file handle that uses a small fast level of compression
gzip_open = partial(gzip.open, compresslevel=3)

[docs]def export_landmark_file(landmark_group, fp, extension=None, overwrite=False):
 r"""
 Exports a given landmark group. The ``fp`` argument can be either
 or a `str` or any Python type that acts like a file. If a file is provided,
 the ``extension`` kwarg **must** be provided. If no
 ``extension`` is provided and a `str` filepath is provided, then
 the export type is calculated based on the filepath extension.

 Due to the mix in string and file types, an explicit overwrite argument is
 used which is ``False`` by default.

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to export.
 fp : `str` or `file`-like object
 The string path or file-like object to save the object at/into.
 extension : `str` or None, optional
 The extension to use, this must match the file path if the file
 path is a string. Determines the type of exporter that is used.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.

 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 ``fp`` is a `str` and the ``extension`` is not ``None``
 and the two extensions do not match
 ValueError
 ``fp`` is a `file`-like object and ``extension`` is
 ``None``
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 """
 _export(landmark_group, fp, landmark_types, extension, overwrite)

[docs]def export_image(image, fp, extension=None, overwrite=False):
 r"""
 Exports a given image. The ``fp`` argument can be either
 a `str` or any Python type that acts like a file. If a file is provided,
 the ``extension`` kwarg **must** be provided. If no
 ``extension`` is provided and a `str` filepath is provided, then
 the export type is calculated based on the filepath extension.

 Due to the mix of string and file types, an explicit overwrite argument is
 used which is ``False`` by default.

 Parameters

 image : :map:`Image`
 The image to export.
 fp : `str` or `file`-like object
 The string path or file-like object to save the object at/into.
 extension : `str` or None, optional
 The extension to use, this must match the file path if the file
 path is a string. Determines the type of exporter that is used.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.

 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 ``fp`` is a `str` and the ``extension`` is not ``None``
 and the two extensions do not match
 ValueError
 ``fp`` is a `file`-like object and ``extension`` is
 ``None``
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 """
 _export(image, fp, image_types, extension, overwrite)

[docs]def export_pickle(obj, fp, overwrite=False):
 r"""
 Exports a given collection of Python objects with Pickle.

 The ``fp`` argument can be either a `str` or any Python type that acts like
 a file.
 If ``fp`` is a path, it must have the suffix `.pkl` or `.pkl.gz`. If
 `.pkl`, the object will be pickled using Pickle protocol 2 without
 compression. If `.pkl.gz` the object will be pickled using Pickle protocol
 2 with gzip compression (at a fixed compression level of 3).

 Parameters

 obj : ``object``
 The object to export.
 fp : `str` or `file`-like object
 The string path or file-like object to save the object at/into.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.

 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 ``fp`` is a `file`-like object and ``extension`` is
 ``None``
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 """
 if isinstance(fp, Path):
 fp = str(fp) # cheeky conversion to string to reuse existing code
 if isinstance(fp, basestring):
 # user provided a path - if it ended .gz we will compress
 path_filepath = _validate_filepath(fp, '.pkl', overwrite)
 o = gzip_open if path_filepath.suffix == '.gz' else open
 with o(fp, 'wb') as f:
 # force overwrite as True we've already done the check above
 _export(obj, f, pickle_types, '.pkl', True)
 else:
 _export(obj, fp, pickle_types, '.pkl', overwrite)

def _normalise_extension(extension):
 # Account for the fact the user may only have passed the extension
 # without the proceeding period
 if extension[0] is not '.':
 extension = '.' + extension
 return extension.lower()

def _extension_to_export_function(extension, extensions_map):
 try:
 extension = _normalise_extension(extension)
 return extensions_map[extension.lower()]
 except KeyError:
 raise ValueError('The output file extension provided is not currently '
 'supported.')

def _validate_filepath(fp, extension, overwrite):
 path_filepath = Path(_norm_path(fp))
 if path_filepath.exists() and not overwrite:
 raise ValueError('File already exists. Please set the overwrite '
 'kwarg if you wish to overwrite the file.')
 if extension is not None:
 # use .suffixes[0] to handle compression suffixes correctly (see below)
 filepath_suffix = path_filepath.suffixes[0]
 # we couldn't find an exporter for all the suffixes (e.g .foo.bar)
 # maybe the file stem has '.' in it? -> try again but this time just use the
 # final suffix (.bar). (Note we first try '.foo.bar' as we want to catch
 # cases like 'pkl.gz')
 if _normalise_extension(extension) != filepath_suffix and len(path_filepath.suffixes) > 1:
 filepath_suffix = path_filepath.suffix
 if _normalise_extension(extension) != filepath_suffix:
 raise ValueError('The file path extension must match the '
 'requested file extension.')
 return path_filepath

def _export(obj, fp, extensions_map, extension, overwrite):
 if isinstance(fp, Path):
 fp = str(fp) # cheeky conversion to string to reuse existing code
 if isinstance(fp, basestring):
 path_filepath = _validate_filepath(fp, extension, overwrite)

 export_function = _extension_to_export_function(
 path_filepath.suffix, extensions_map)

 with path_filepath.open('wb') as file_handle:
 export_function(obj, file_handle)
 else:
 # You MUST provide an extension if a file handle is given
 if extension is None:
 raise ValueError('An export file extension must be provided if a '
 'file-like object is passed.')
 # Apparently in Python 2.x there is no reliable way to detect something
 # that is 'file' like (file handle or a StringIO object or something
 # you can read and write to like a file). Therefore, we are going to
 # just be really Pythonic about it and just assume we were handed
 # a correctly behaving object.
 try:
 # Follow PIL like behaviour. Check the file handle extension
 # and check if matches the given extension
 _validate_filepath(fp.name, extension, overwrite)
 except AttributeError:
 pass
 export_function = _extension_to_export_function(
 _normalise_extension(extension), extensions_map)
 export_function(obj, fp)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/model/linear.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.model.linear

import numpy as np
from menpo.base import Copyable

[docs]class LinearModel(Copyable):
 r"""
 A Linear Model contains a matrix of vector components, each component
 vector being made up of `features`.

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The components array.
 """

 def __init__(self, components):
 self._components = components # getter/setter variable

 @property
 def n_components(self):
 r"""
 The number of bases of the model.

 :type: `int`
 """
 return self._components.shape[0]

 @property
 def n_features(self):
 r"""
 The number of elements in each linear component.

 :type: `int`
 """
 return self.components.shape[-1]

 @property
 def components(self):
 r"""
 The components matrix of the linear model.

 :type: ``(n_available_components, n_features)`` `ndarray`
 """
 return self._components

 @components.setter
 def components(self, value):
 r"""
 Updates the components of this linear model, ensuring that the shape
 of the components is not changed.

 Parameters

 value : ``(n_components, n_features)`` `ndarray`
 The new components array.

 Raises

 ValueError
 Trying to replace components of shape {} with some of shape {}
 """
 if value.shape != self._components.shape:
 raise ValueError(
 "Trying to replace components of shape {} with some of "
 "shape {}".format(self.components.shape, value.shape))
 else:
 np.copyto(self._components, value, casting='safe')

[docs] def component_vector(self, index):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned.

 Returns

 component_vector : ``(n_features,)`` `ndarray`
 The component vector.
 """
 return self.components[index]

[docs] def instance_vector(self, weights):
 r"""
 Creates a new vector instance of the model by weighting together the
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 The weightings for the first `n_weights` components that should be
 used.

 ``weights[j]`` is the linear contribution of the j'th principal
 component to the instance vector.

 Returns

 vector : ``(n_features,)`` `ndarray`
 The instance vector for the weighting provided.
 """
 # just call the plural version and adapt
 weights = np.asarray(weights) # if eg a list is provided
 return self.instance_vectors(weights[None, :]).flatten()

[docs] def instance_vectors(self, weights):
 """
 Creates new vectorized instances of the model using all the components
 of the linear model.

 Parameters

 weights : ``(n_vectors, n_weights)`` `ndarray` or `list` of `lists`
 The weightings for all components of the linear model. All
 components will be used to produce the instance.

 ``weights[i, j]`` is the linear contribution of the j'th
 principal component to the i'th instance vector produced.

 Raises

 ValueError
 If n_weights > n_available_components

 Returns

 vectors : ``(n_vectors, n_features)`` `ndarray`
 The instance vectors for the weighting provided.
 """
 weights = np.asarray(weights) # if eg a list is provided
 n_instances, n_weights = weights.shape
 if not n_weights == self.n_components:
 raise ValueError(
 "Number of weightings has to match number of available "
 "components = {}".format(self.n_components))
 return self._instance_vectors_for_full_weights(weights)

 # TODO check this is right

 def _instance_vectors_for_full_weights(self, full_weights):
 return np.dot(full_weights, self.components)

[docs] def project_vector(self, vector):
 """
 Projects the `vector` onto the model, retrieving the optimal
 linear reconstruction weights.

 Parameters

 vector : ``(n_features,)`` `ndarray`
 A vectorized novel instance.

 Returns

 weights : ``(n_components,)`` `ndarray`
 A vector of optimal linear weights.
 """
 return self.project_vectors(vector[None, :]).flatten()

[docs] def project_vectors(self, vectors):
 """
 Projects each of the `vectors` onto the model, retrieving
 the optimal linear reconstruction weights for each instance.

 Parameters

 vectors : ``(n_samples, n_features)`` `ndarray`
 Array of vectorized novel instances.

 Returns

 weights : ``(n_samples, n_components)`` `ndarray`
 The matrix of optimal linear weights.
 """
 return np.dot(vectors, self.components.T)

[docs] def reconstruct_vector(self, vector):
 """
 Project a `vector` onto the linear space and rebuild from the weights
 found.

 Parameters

 vector : ``(n_features,)`` `ndarray`
 A vectorized novel instance to project.

 Returns

 reconstructed : ``(n_features,)`` `ndarray`
 The reconstructed vector.
 """
 return self.reconstruct_vectors(vector[None, :]).flatten()

[docs] def reconstruct_vectors(self, vectors):
 """
 Projects the `vectors` onto the linear space and rebuilds vectors from
 the weights found.

 Parameters

 vectors : ``(n_vectors, n_features)`` `ndarray`
 A set of vectors to project.

 Returns

 reconstructed : ``(n_vectors, n_features)`` `ndarray`
 The reconstructed vectors.
 """
 return self.instance_vectors(self.project_vectors(vectors))

[docs] def project_out_vector(self, vector):
 """
 Returns a version of `vector` where all the basis of the model have
 been projected out.

 Parameters

 vector : ``(n_features,)`` `ndarray`
 A novel vector.

 Returns

 projected_out : ``(n_features,)`` `ndarray`
 A copy of `vector` with all basis of the model projected out.
 """
 return self.project_out_vectors(vector[None, :])

[docs] def project_out_vectors(self, vectors):
 """
 Returns a version of `vectors` where all the basis of the model have
 been projected out.

 Parameters

 vectors : ``(n_vectors, n_features)`` `ndarray`
 A matrix of novel vectors.

 Returns

 projected_out : ``(n_vectors, n_features)`` `ndarray`
 A copy of `vectors` with all basis of the model projected out.
 """
 weights = np.dot(vectors, self.components.T)
 return vectors - np.dot(weights, self.components)

[docs] def orthonormalize_inplace(self):
 r"""
 Enforces that this model's components are orthonormalized,
 s.t. ``component_vector(i).dot(component_vector(j) = dirac_delta``.
 """
 Q = np.linalg.qr(self.components.T)[0].T
 self.components[...] = Q

 # TODO: Investigate the meaning and consequences of trying to
 # orthonormalize two identical vectors

[docs] def orthonormalize_against_inplace(self, linear_model):
 r"""
 Enforces that the union of this model's components and another are
 both mutually orthonormal.

 Both models keep its number of components unchanged or else a value
 error is raised.

 Parameters

 linear_model : :class:`LinearModel`
 A second linear model to orthonormalize this against.

 Raises

 ValueError
 The number of features must be greater or equal than the sum of the
 number of components in both linear models ({} < {})
 """
 n_components_sum = self.n_components + linear_model.n_components
 if not self.n_features >= n_components_sum:
 raise ValueError(
 "The number of features must be greater or equal than the "
 "sum of the number of components in both linear models ({} < "
 "{})".format(self.n_features, n_components_sum))
 # take the QR decomposition of the model components
 Q = (np.linalg.qr(np.hstack((linear_model._components.T,
 self._components.T)))[0]).T
 # set the orthonormalized components of the model being passed
 linear_model.components = Q[:linear_model.n_components, :]
 # set the orthonormalized components of this model
 self.components = Q[linear_model.n_components:, :]

[docs]class MeanLinearModel(LinearModel):
 r"""
 A Linear Model containing a matrix of vector components, each component
 vector being made up of `features`. The model additionally has a mean
 component which is handled accordingly when either:

 1. A component of the model is selected
 2. A projection operation is performed

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The components array.
 mean_vector : ``(n_features,)`` `ndarray`
 The mean vector.
 """
 def __init__(self, components, mean_vector):
 super(MeanLinearModel, self).__init__(components)
 self.mean_vector = mean_vector

[docs] def component_vector(self, index, with_mean=True, scale=1.0):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned
 with_mean : `bool`, optional
 If ``True``, the component will be blended with the mean vector
 before being returned. If not, the component is returned on it's
 own.
 scale : `float`, optional
 A scale factor that should be directly applied to the component.
 Only valid in the case where ``with_mean == True``.

 Returns

 component_vector : ``(n_features,)`` `ndarray`
 The component vector.
 """
 if with_mean:
 return (scale * self.components[index]) + self.mean_vector
 else:
 return self.components[index]

[docs] def project_vectors(self, vectors):
 """
 Projects each of the `vectors` onto the model, retrieving
 the optimal linear reconstruction weights for each instance.

 Parameters

 vectors : ``(n_samples, n_features)`` `ndarray`
 Array of vectorized novel instances.

 Returns

 projected : ``(n_samples, n_components)`` `ndarray`
 The matrix of optimal linear weights.
 """
 X = vectors - self.mean_vector
 return np.dot(X, self.components.T)

 def _instance_vectors_for_full_weights(self, full_weights):
 x = LinearModel._instance_vectors_for_full_weights(self, full_weights)
 return x + self.mean_vector

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/model/pca.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.model.pca

from __future__ import division
import numpy as np
from menpo.math import principal_component_decomposition
from menpo.model.base import MeanInstanceLinearModel
from menpo.visualize import print_dynamic, progress_bar_str

[docs]class PCAModel(MeanInstanceLinearModel):
 r"""
 A :map:`MeanInstanceLinearModel` where components are Principal
 Components.

 Principal Component Analysis (PCA) by eigenvalue decomposition of the
 data's scatter matrix. For details of the implementation of PCA, see
 :map:`principal_component_decomposition`.

 Parameters

 samples : `list` of :map:`Vectorizable`
 List of samples to build the model from.
 centre : `bool`, optional
 When ``True`` (default) PCA is performed after mean centering the data.
 If ``False`` the data is assumed to be centred, and the mean will be
 ``0``.
 bias : `bool`, optional
 When ``True`` a biased estimator of the covariance matrix is used.
 See notes.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a `list` (so we
 know how large the data matrix needs to be).

 Notes

 True bias means that we calculate the covariance as
 :math:`\frac{1}{N} \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T` instead of
 default :math:`\frac{1}{N-1} \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T`.
 """
 def __init__(self, samples, centre=True, bias=False, verbose=False,
 n_samples=None):
 # get the first element as the template and use it to configure the
 # data matrix
 if n_samples is None:
 # samples is a list
 n_samples = len(samples)
 template = samples[0]
 samples = samples[1:]
 else:
 # samples is an iterator
 template = next(samples)
 n_features = template.n_parameters
 template_vector = template.as_vector()
 data = np.zeros((n_samples, n_features), dtype=template_vector.dtype)
 # now we can fill in the first element from the template
 data[0] = template_vector
 del template_vector
 if verbose:
 print('Allocated data matrix {:.2f}'
 'GB'.format(data.nbytes / 2 ** 30))
 # 1-based as we have the template vector set already
 for i, sample in enumerate(samples, 1):
 if i >= n_samples:
 break
 if verbose:
 print_dynamic(
 'Building data matrix from {} samples - {}'.format(
 n_samples,
 progress_bar_str(float(i + 1) / n_samples, show_bar=True)))
 data[i] = sample.as_vector()

 # compute pca
 e_vectors, e_values, mean = principal_component_decomposition(
 data, whiten=False, centre=centre, bias=bias, inplace=True)

 super(PCAModel, self).__init__(e_vectors, mean, template)
 self.centred = centre
 self.biased = bias
 self._eigenvalues = e_values
 # start the active components as all the components
 self._n_active_components = int(self.n_components)
 self._trimmed_eigenvalues = None

 @property
 def n_active_components(self):
 r"""
 The number of components currently in use on this model.

 :type: `int`
 """
 return self._n_active_components

 @n_active_components.setter
 def n_active_components(self, value):
 r"""
 Sets an updated number of active components on this model.

 Parameters

 value : `int`
 The new number of active components.

 Raises

 ValueError
 Tried setting n_active_components to {value} - value needs to be a
 float 0.0 < n_components < self._total_kept_variance_ratio ({}) or
 an integer 1 < n_components < self.n_components ({})
 """
 err_str = ("Tried setting n_active_components to {} - "
 "value needs to be a float "
 "0.0 < n_components < self._total_kept_variance_ratio "
 "({}) or an integer 1 < n_components < "
 "self.n_components ({})".format(
 value, self._total_variance_ratio(), self.n_components))

 # check value
 if isinstance(value, float):
 if 0.0 < value <= self._total_variance_ratio():
 # value needed to capture desired variance
 value = np.sum(
 [r < value
 for r in self._total_eigenvalues_cumulative_ratio()]) + 1
 else:
 # variance must be bigger than 0.0
 raise ValueError(err_str)
 if isinstance(value, int):
 if value < 1:
 # at least 1 value must be kept
 raise ValueError(err_str)
 elif value >= self.n_components:
 if self.n_active_components < self.n_components:
 # if the number of available components is smaller than
 # the total number of components set value to the later
 value = self.n_components
 else:
 # if the previous is false and value bigger than the
 # total number of components, do nothing
 return
 if 0 < value <= self.n_components:
 self._n_active_components = int(value)
 else:
 raise ValueError(err_str)

 @MeanInstanceLinearModel.components.getter
 def components(self):
 r"""
 Returns the active components of the model.

 :type: ``(n_active_components, n_features)`` `ndarray`
 """
 return self._components[:self.n_active_components, :]

 @property
 def eigenvalues(self):
 r"""
 Returns the eigenvalues associated to the active components of the
 model, i.e. the amount of variance captured by each active component.

 :type: ``(n_active_components,)`` `ndarray`
 """
 return self._eigenvalues[:self.n_active_components]

[docs] def whitened_components(self):
 r"""
 Returns the active components of the model whitened.

 Returns

 whitened_components : ``(n_active_components, n_features)`` `ndarray`
 The whitened components.
 """
 return self.components / (
 np.sqrt(self.eigenvalues + self.noise_variance())[:, None])

[docs] def original_variance(self):
 r"""
 Returns the total amount of variance captured by the original model,
 i.e. the amount of variance present on the original samples.

 Returns

 optional_variance : `float`
 The variance captured by the model.
 """
 original_variance = self._eigenvalues.sum()
 if self._trimmed_eigenvalues is not None:
 original_variance += self._trimmed_eigenvalues.sum()
 return original_variance

[docs] def variance(self):
 r"""
 Returns the total amount of variance retained by the active
 components.

 Returns

 variance : `float`
 Total variance captured by the active components.
 """
 return self.eigenvalues.sum()

 def _total_variance(self):
 r"""
 Returns the total amount of variance retained by all components
 (active and inactive). Useful when the model has been trimmed.

 Returns

 total_variance : `float`
 Total variance captured by all components.
 """
 return self._eigenvalues.sum()

[docs] def variance_ratio(self):
 r"""
 Returns the ratio between the amount of variance retained by the
 active components and the total amount of variance present on the
 original samples.

 Returns

 variance_ratio : `float`
 Ratio of active components variance and total variance present
 in original samples.
 """
 return self.variance() / self.original_variance()

 def _total_variance_ratio(self):
 r"""
 Returns the ratio between the total amount of variance retained by
 all components (active and inactive) and the total amount of variance
 present on the original samples.

 Returns

 total_variance_ratio : `float`
 Ratio of total variance over the original variance.
 """
 return self._total_variance() / self.original_variance()

[docs] def eigenvalues_ratio(self):
 r"""
 Returns the ratio between the variance captured by each active
 component and the total amount of variance present on the original
 samples.

 Returns

 eigenvalues_ratio : ``(n_active_components,)`` `ndarray`
 The active eigenvalues array scaled by the original variance.
 """
 return self.eigenvalues / self.original_variance()

 def _total_eigenvalues_ratio(self):
 r"""
 Returns the ratio between the variance captured by each active
 component and the total amount of variance present on the original
 samples.

 Returns

 total_eigenvalues_ratio : ``(n_components,)`` `ndarray`
 Array of eigenvalues scaled by the original variance.
 """
 return self._eigenvalues / self.original_variance()

[docs] def eigenvalues_cumulative_ratio(self):
 r"""
 Returns the cumulative ratio between the variance captured by the
 active components and the total amount of variance present on the
 original samples.

 Returns

 eigenvalues_cumulative_ratio : ``(n_active_components,)`` `ndarray`
 Array of cumulative eigenvalues.
 """
 return np.cumsum(self.eigenvalues_ratio())

 def _total_eigenvalues_cumulative_ratio(self):
 r"""
 Returns the cumulative ratio between the variance captured by the
 active components and the total amount of variance present on the
 original samples.

 Returns

 total_eigenvalues_cumulative_ratio : ``(n_active_components,)`` `ndarray`
 Array of total cumulative eigenvalues.
 """
 return np.cumsum(self._total_eigenvalues_ratio())

[docs] def noise_variance(self):
 r"""
 Returns the average variance captured by the inactive components,
 i.e. the sample noise assumed in a Probabilistic PCA formulation.

 If all components are active, then ``noise_variance == 0.0``.

 Returns

 noise_variance : `float`
 The mean variance of the inactive components.
 """
 if self.n_active_components == self.n_components:
 noise_variance = 0.0
 if self._trimmed_eigenvalues is not None:
 noise_variance += self._trimmed_eigenvalues.mean()
 else:
 if self._trimmed_eigenvalues is not None:
 noise_variance = np.hstack(
 (self._eigenvalues[self.n_active_components:],
 self._trimmed_eigenvalues)).mean()
 else:
 noise_variance = (
 self._eigenvalues[self.n_active_components:].mean())
 return noise_variance

[docs] def noise_variance_ratio(self):
 r"""
 Returns the ratio between the noise variance and the total amount of
 variance present on the original samples.

 Returns

 noise_variance_ratio : `float`
 The ratio between the noise variance and the variance present
 in the original samples.
 """
 return self.noise_variance() / self.original_variance()

[docs] def inverse_noise_variance(self):
 r"""
 Returns the inverse of the noise variance.

 Returns

 inverse_noise_variance : `float`
 Inverse of the noise variance.

 Raises

 ValueError
 If ``noise_variance() == 0``
 """
 noise_variance = self.noise_variance()
 if noise_variance == 0:
 raise ValueError("noise variance is 0 - cannot take the inverse")
 return 1.0 / noise_variance

[docs] def component_vector(self, index, with_mean=True, scale=1.0):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned
 with_mean: `bool`, optional
 If ``True``, the component will be blended with the mean vector
 before being returned. If not, the component is returned on it's
 own.
 scale : `float`, optional
 A scale factor that should be applied to the component. Only
 valid in the case where with_mean is ``True``. The scale is applied
 in units of standard deviations (so a scale of ``1.0``
 `with_mean` visualizes the mean plus ``1`` std. dev of the component
 in question).

 Returns

 component_vector : ``(n_features,)`` `ndarray`
 The component vector of the given index.
 """
 if with_mean:
 # on PCA, scale is in units of std. deviations...
 scaled_eigval = scale * np.sqrt(self.eigenvalues[index])
 return (scaled_eigval * self.components[index]) + self.mean_vector
 else:
 return self.components[index]

[docs] def instance_vectors(self, weights):
 """
 Creates new vectorized instances of the model using the first
 components in a particular weighting.

 Parameters

 weights : ``(n_vectors, n_weights)`` `ndarray` or `list` of `lists`
 The weightings for the first `n_weights` components that
 should be used per instance that is to be produced

 ``weights[i, j]`` is the linear contribution of the j'th
 principal component to the i'th instance vector produced. Note
 that if ``n_weights < n_components``, only the first ``n_weight``
 components are used in the reconstruction (i.e. unspecified
 weights are implicitly ``0``).

 Returns

 vectors : ``(n_vectors, n_features)`` `ndarray`
 The instance vectors for the weighting provided.

 Raises

 ValueError
 If n_weights > n_components
 """
 weights = np.asarray(weights) # if eg a list is provided
 n_instances, n_weights = weights.shape
 if n_weights > self.n_active_components:
 raise ValueError(
 "Number of weightings cannot be greater than {}".format(
 self.n_active_components))
 else:
 full_weights = np.zeros((n_instances, self.n_active_components))
 full_weights[..., :n_weights] = weights
 weights = full_weights
 return self._instance_vectors_for_full_weights(weights)

[docs] def trim_components(self, n_components=None):
 r"""
 Permanently trims the components down to a certain amount. The number of
 active components will be automatically reset to this particular value.

 This will reduce `self.n_components` down to `n_components`
 (if ``None``, `self.n_active_components` will be used), freeing up
 memory in the process.

 Once the model is trimmed, the trimmed components cannot be recovered.

 Parameters

 n_components: `int` >= ``1`` or `float` > ``0.0`` or ``None``, optional
 The number of components that are kept or else the amount (ratio)
 of variance that is kept. If ``None``, `self.n_active_components` is
 used.

 Notes

 In case `n_components` is greater than the total number of components or
 greater than the amount of variance currently kept, this method does
 not perform any action.
 """
 if n_components is None:
 # by default trim using the current n_active_components
 n_components = self.n_active_components
 # set self.n_active_components to n_components
 self.n_active_components = n_components

 if self.n_active_components < self.n_components:
 # set self.n_components to n_components
 self._components = self._components[:self.n_active_components]
 # store the eigenvalues associated to the discarded components
 self._trimmed_eigenvalues = \
 self._eigenvalues[self.n_active_components:]
 # make sure that the eigenvalues are trimmed too
 self._eigenvalues = self._eigenvalues[:self.n_active_components]

[docs] def distance_to_subspace(self, instance):
 """
 Returns a version of `instance` where all the basis of the model
 have been projected out and which has been scaled by the inverse of
 the `noise_variance`

 Parameters

 instance : :map:`Vectorizable`
 A novel instance.

 Returns

 scaled_projected_out : `self.instance_class`
 A copy of `instance`, with all basis of the model projected out
 and scaled by the inverse of the `noise_variance`.
 """
 vec_instance = self.distance_to_subspace_vector(instance.as_vector())
 return instance.from_vector(vec_instance)

[docs] def distance_to_subspace_vector(self, vector_instance):
 """
 Returns a version of `instance` where all the basis of the model
 have been projected out and which has been scaled by the inverse of
 the `noise_variance`.

 Parameters

 vector_instance : ``(n_features,)`` `ndarray`
 A novel vector.

 Returns

 scaled_projected_out : ``(n_features,)`` `ndarray`
 A copy of `vector_instance` with all basis of the model projected
 out and scaled by the inverse of the `noise_variance`.
 """
 return (self.inverse_noise_variance() *
 self.project_out_vectors(vector_instance))

[docs] def project_whitened(self, instance):
 """
 Returns a sheared (non-orthogonal) reconstruction of `instance`.

 Parameters

 instance : :map:`Vectorizable`
 A novel instance.

 Returns

 sheared_reconstruction : `self.instance_class`
 A sheared (non-orthogonal) reconstruction of `instance`.
 """
 vector_instance = self.project_whitened_vector(instance.as_vector())
 return instance.from_vector(vector_instance)

[docs] def project_whitened_vector(self, vector_instance):
 """
 Returns a sheared (non-orthogonal) reconstruction of `vector_instance`.

 Parameters

 vector_instance : ``(n_features,)`` `ndarray`
 A novel vector.

 Returns

 sheared_reconstruction : ``(n_features,)`` `ndarray`
 A sheared (non-orthogonal) reconstruction of `vector_instance`
 """
 whitened_components = self.whitened_components()
 weights = np.dot(vector_instance, whitened_components.T)
 return np.dot(weights, whitened_components)

[docs] def orthonormalize_against_inplace(self, linear_model):
 r"""
 Enforces that the union of this model's components and another are
 both mutually orthonormal.

 Note that the model passed in is guaranteed to not have it's number
 of available components changed. This model, however, may loose some
 dimensionality due to reaching a degenerate state.

 The removed components will always be trimmed from the end of
 components (i.e. the components which capture the least variance).
 If trimming is performed, `n_components` and `n_available_components`
 would be altered - see :meth:`trim_components` for details.

 Parameters

 linear_model : :map:`LinearModel`
 A second linear model to orthonormalize this against.
 """
 # take the QR decomposition of the model components
 Q = (np.linalg.qr(np.hstack((linear_model._components.T,
 self._components.T)))[0]).T
 # the model passed to us went first, so all it's components will
 # survive. Pull them off, and update the other model.
 linear_model.components = Q[:linear_model.n_components, :]
 # it's possible that all of our components didn't survive due to
 # degeneracy. We need to trim our components down before replacing
 # them to ensure the number of components is consistent (otherwise
 # the components setter will complain at us)
 n_available_components = Q.shape[0] - linear_model.n_components
 if n_available_components < self.n_components:
 # oh dear, we've lost some components from the end of our model.
 if self.n_active_components < n_available_components:
 # save the current number of active components
 n_active_components = self.n_active_components
 else:
 # save the current number of available components
 n_active_components = n_available_components
 # call trim_components to update our state.
 self.trim_components(n_components=n_available_components)
 if n_active_components < n_available_components:
 # reset the number of active components
 self.n_active_components = n_active_components

 # now we can set our own components with the updated orthogonal ones
 self.components = Q[linear_model.n_components:, :]

[docs] def plot_eigenvalues(self, figure_id=None, new_figure=False,
 render_lines=True, line_colour='b', line_style='-',
 line_width=2, render_markers=True, marker_style='o',
 marker_size=6, marker_face_colour='b',
 marker_edge_colour='k', marker_edge_width=1.,
 render_axes=True, axes_font_name='sans-serif',
 axes_font_size=10, axes_font_style='normal',
 axes_font_weight='normal', figure_size=(10, 6),
 render_grid=True, grid_line_style='--',
 grid_line_width=0.5):
 r"""
 Plot of the eigenvalues.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, the line will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers.
 Example options ::

 {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

 figure_size : (`float`, `float`) or ``None``, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Returns

 viewer : :map:`MatplotlibRenderer`
 The viewer object.
 """
 from menpo.visualize import GraphPlotter
 return GraphPlotter(figure_id=figure_id, new_figure=new_figure,
 x_axis=range(self.n_active_components),
 y_axis=[self.eigenvalues], title='Eigenvalues',
 x_label='Component Number', y_label='Eigenvalue',
 x_axis_limits=(0, self.n_active_components - 1),
 y_axis_limits=None).render(
 render_lines=render_lines, line_colour=line_colour,
 line_style=line_style, line_width=line_width,
 render_markers=render_markers, marker_style=marker_style,
 marker_size=marker_size, marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_legend=False,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, render_grid=render_grid,
 grid_line_style=grid_line_style, grid_line_width=grid_line_width,
 figure_size=figure_size)

[docs] def plot_eigenvalues_ratio(self, figure_id=None, new_figure=False,
 render_lines=True, line_colour='b',
 line_style='-', line_width=2,
 render_markers=True, marker_style='o',
 marker_size=6, marker_face_colour='b',
 marker_edge_colour='k', marker_edge_width=1.,
 render_axes=True, axes_font_name='sans-serif',
 axes_font_size=10, axes_font_style='normal',
 axes_font_weight='normal', figure_size=(10, 6),
 render_grid=True, grid_line_style='--',
 grid_line_width=0.5):
 r"""
 Plot of the variance ratio captured by the eigenvalues.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, the line will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers.
 Example options ::

 {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

 figure_size : (`float`, `float`) or `None`, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Returns

 viewer : :map:`MatplotlibRenderer`
 The viewer object.
 """
 from menpo.visualize import GraphPlotter
 return GraphPlotter(figure_id=figure_id, new_figure=new_figure,
 x_axis=range(self.n_active_components),
 y_axis=[self.eigenvalues_ratio()],
 title='Variance Ratio of Eigenvalues',
 x_label='Component Number',
 y_label='Variance Ratio',
 x_axis_limits=(0, self.n_active_components - 1),
 y_axis_limits=None).render(
 render_lines=render_lines, line_colour=line_colour,
 line_style=line_style, line_width=line_width,
 render_markers=render_markers, marker_style=marker_style,
 marker_size=marker_size, marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_legend=False,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, render_grid=render_grid,
 grid_line_style=grid_line_style, grid_line_width=grid_line_width,
 figure_size=figure_size)

[docs] def plot_eigenvalues_cumulative_ratio(self, figure_id=None,
 new_figure=False, render_lines=True,
 line_colour='b', line_style='-',
 line_width=2, render_markers=True,
 marker_style='o', marker_size=6,
 marker_face_colour='b',
 marker_edge_colour='k',
 marker_edge_width=1.,
 render_axes=True,
 axes_font_name='sans-serif',
 axes_font_size=10,
 axes_font_style='normal',
 axes_font_weight='normal',
 figure_size=(10, 6), render_grid=True,
 grid_line_style='--',
 grid_line_width=0.5):
 r"""
 Plot of the variance ratio captured by the eigenvalues.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, the line will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers.
 Example options ::

 {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

 figure_size : (`float`, `float`) or `None`, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Returns

 viewer : :map:`MatplotlibRenderer`
 The viewer object.
 """
 from menpo.visualize import GraphPlotter
 return GraphPlotter(figure_id=figure_id, new_figure=new_figure,
 x_axis=range(self.n_active_components),
 y_axis=[self.eigenvalues_cumulative_ratio()],
 title='Cumulative Variance Ratio of Eigenvalues',
 x_label='Component Number',
 y_label='Cumulative Variance Ratio',
 x_axis_limits=(0, self.n_active_components - 1),
 y_axis_limits=None).render(
 render_lines=render_lines, line_colour=line_colour,
 line_style=line_style, line_width=line_width,
 render_markers=render_markers, marker_style=marker_style,
 marker_size=marker_size, marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width, render_legend=False,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, render_grid=render_grid,
 grid_line_style=grid_line_style, grid_line_width=grid_line_width,
 figure_size=figure_size)

 def __str__(self):
 str_out = 'PCA Model \n' \
 ' - centred: {}\n' \
 ' - biased: {}\n' \
 ' - # features: {}\n' \
 ' - # active components: {}\n' \
 ' - kept variance: {:.2} {:.1%}\n' \
 ' - noise variance: {:.2} {:.1%}\n' \
 ' - total # components: {}\n' \
 ' - components shape: {}\n'.format(
 self.centred, self.biased, self.n_features,
 self.n_active_components, self.variance(), self.variance_ratio(),
 self.noise_variance(), self.noise_variance_ratio(),
 self.n_components, self.components.shape)
 return str_out

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/rbf.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.rbf

import numpy as np
from scipy.spatial.distance import cdist
from .base import Transform

class RadialBasisFunction(Transform):
 r"""
 Radial Basis Functions are a class of transform that is used by
 TPS. They have to be able to take their own radial derivative for TPS to
 be able to take it's own total derivative.

 Parameters

 c : (n_centres, n_dims) ndarray
 The set of centers that make the basis. Usually represents a set of
 source landmarks.
 """

 def __init__(self, c):
 self.c = c

 @property
 def n_centres(self):
 return self.c.shape[0]

 @property
 def n_dims(self):
 r"""
 The RBF can only be applied on points with the same dimensionality as
 the centres.
 """
 return self.c.shape[1]

 @property
 def n_dims_output(self):
 r"""
 The result of the transform has a dimension (weight) for every centre
 """
 return self.n_centres

[docs]class R2LogR2RBF(RadialBasisFunction):
 r"""
 The :math:`r^2 \log{r^2}` basis function.

 The derivative of this function is :math:`2 r (\log{r^2} + 1)`.

 .. note::

 :math:`r = \lVert x - c \rVert`

 Parameters

 c : (n_centres, n_dims) ndarray
 The set of centers that make the basis. Usually represents a set of
 source landmarks.
 """

 def __init__(self, c):
 super(R2LogR2RBF, self).__init__(c)

 def _apply(self, x, **kwargs):
 """
 Apply the basis function.

 .. note::

 :math:`r^2 \log{r^2} === r^2 2 \log{r}`

 Parameters

 x : (n_points, n_dims) ndarray
 Set of points to apply the basis to.

 Returns

 u : (n_points, n_centres) ndarray
 The basis function applied to each distance,
 :math:`\lVert x - c \rVert`.
 """
 euclidean_distance = cdist(x, self.c)
 mask = euclidean_distance == 0
 with np.errstate(divide='ignore', invalid='ignore'):
 u = (euclidean_distance ** 2 *
 (2 * np.log(euclidean_distance)))
 # reset singularities to 0
 u[mask] = 0
 return u

[docs]class R2LogRRBF(RadialBasisFunction):
 r"""
 Calculates the :math:`r^2 \log{r}` basis function.

 The derivative of this function is :math:`r (1 + 2 \log{r})`.

 .. note::

 :math:`r = \lVert x - c \rVert`

 Parameters

 c : (n_centres, n_dims) ndarray
 The set of centers that make the basis. Usually represents a set of
 source landmarks.
 """

 def __init__(self, c):
 super(R2LogRRBF, self).__init__(c)

 def _apply(self, points, **kwargs):
 """
 Apply the basis function :math:`r^2 \log{r}`.

 Parameters

 points : (n_points, n_dims) ndarray
 Set of points to apply the basis to.

 Returns

 u : (n_points, n_centres) ndarray
 The basis function applied to each distance,
 :math:`\lVert points - c \rVert`.
 """
 euclidean_distance = cdist(points, self.c)
 mask = euclidean_distance == 0
 with np.errstate(divide='ignore', invalid='ignore'):
 u = euclidean_distance ** 2 * np.log(euclidean_distance)
 # reset singularities to 0
 u[mask] = 0
 return u

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/model/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.model.base

from menpo.model.instancebacked import InstanceBackedModel
from menpo.model.linear import LinearModel, MeanLinearModel

[docs]class InstanceLinearModel(LinearModel, InstanceBackedModel):
 r"""
 Mixin of :map:`LinearModel` and :map:`InstanceBackedModel` objects.

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The components array.
 template_instance : :map:`Vectorizable`
 The template instance.
 """

 def __int__(self, components, template_instance):
 LinearModel.__init__(self, components)
 InstanceBackedModel.__init__(self, template_instance)

[docs]class MeanInstanceLinearModel(MeanLinearModel, InstanceBackedModel):
 r"""
 Mixin of :map:`MeanLinearModel` and :map:`InstanceBackedModel` objects.

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The components array.
 mean_vector : ``(n_features,)`` `ndarray`
 The mean vector.
 template_instance : :map:`Vectorizable`
 The template instance.
 """

 def __init__(self, components, mean_vector, template_instance):
 MeanLinearModel.__init__(self, components, mean_vector)
 InstanceBackedModel.__init__(self, template_instance)

[docs] def mean(self):
 r"""
 Return the mean of the model.

 :type: :map:`Vectorizable`
 """
 return self.template_instance.from_vector(self.mean_vector)

[docs] def component(self, index, with_mean=True, scale=1.0):
 r"""
 Return a particular component of the linear model.

 Parameters

 index : `int`
 The component that is to be returned
 with_mean: `bool`, optional
 If ``True``, the component will be blended with the mean vector
 before being returned. If not, the component is returned on it's
 own.
 scale : `float`, optional
 A scale factor that should be applied to the component. Only
 valid in the case where ``with_mean == True``. See
 :meth:`component_vector` for how this scale factor is interpreted.

 Returns

 component : `type(self.template_instance)`
 The requested component.
 """
 return self.template_instance.from_vector(self.component_vector(
 index, with_mean=with_mean, scale=scale))

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/thinplatesplines.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.thinplatesplines

import numpy as np
from .base import Transform, Alignment, Invertible
from .rbf import R2LogR2RBF

Note we inherit from Alignment first to get it's n_dims behavior
[docs]class ThinPlateSplines(Alignment, Transform, Invertible):
 r"""
 The thin plate splines (TPS) alignment between 2D source and target
 landmarks.

 `kernel` can be used to specify an alternative kernel function. If
 `None` is supplied, the :class:`menpo.basis.rbf.R2LogR2` kernel will be
 used.

 Parameters

 source : (N, 2) ndarray
 The source points to apply the tps from
 target : (N, 2) ndarray
 The target points to apply the tps to
 kernel : :class:`menpo.basis.rbf.BasisFunction`, optional
 The kernel to apply.

 Default: :class:`menpo.basis.rbf.R2LogR2`

 Raises

 ValueError
 TPS is only with on 2-dimensional data
 """

 def __init__(self, source, target, kernel=None):
 Alignment.__init__(self, source, target)
 if self.n_dims != 2:
 raise ValueError('TPS can only be used on 2D data.')
 if kernel is None:
 kernel = R2LogR2RBF(source.points)
 self.kernel = kernel
 # k[i, j] is the rbf weighting between source i and j
 # (of course, k is thus symmetrical and it's diagonal nil)
 self.k = self.kernel.apply(self.source.points)
 # p is a homogeneous version of the source points
 self.p = np.concatenate(
 [np.ones([self.n_points, 1]), self.source.points], axis=1)
 o = np.zeros([3, 3])
 top_l = np.concatenate([self.k, self.p], axis=1)
 bot_l = np.concatenate([self.p.T, o], axis=1)
 self.l = np.concatenate([top_l, bot_l], axis=0)
 self.v, self.y, self.coefficients = None, None, None
 self._build_coefficients()

 def _build_coefficients(self):
 self.v = self.target.points.T.copy()
 self.y = np.hstack([self.v, np.zeros([2, 3])])
 self.coefficients = np.linalg.solve(self.l, self.y.T)

 def _sync_state_from_target(self):
 # now the target is updated, we only have to rebuild the
 # coefficients.
 self._build_coefficients()

 def _apply(self, points, **kwargs):
 """
 Performs a TPS transform on the given points.

 Parameters

 points : (N, D) ndarray
 The points to transform.

 Returns

 f : (N, D) ndarray
 The transformed points
 """
 if points.shape[1] != self.n_dims:
 raise ValueError('TPS can only be applied to 2D data.')
 x = points[..., 0][:, None]
 y = points[..., 1][:, None]
 # calculate the affine coefficients of the warp
 # (C = Constant component, then X, Y respectively)
 c_affine_c = self.coefficients[-3]
 c_affine_x = self.coefficients[-2]
 c_affine_y = self.coefficients[-1]
 # the affine warp component
 f_affine = c_affine_c + c_affine_x * x + c_affine_y * y
 # calculate a distance matrix (for L2 Norm) between every source
 # and the target
 kernel_dist = self.kernel.apply(points)
 # grab the affine free components of the warp
 c_affine_free = self.coefficients[:-3]
 # build the affine free warp component
 f_affine_free = kernel_dist.dot(c_affine_free)
 return f_affine + f_affine_free

 @property
 def has_true_inverse(self):
 return False

 def pseudoinverse(self):
 return ThinPlateSplines(self.target, self.source, kernel=self.kernel)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.base

import abc
from menpo.base import Copyable

[docs]class Transform(Copyable):
 r"""
 Abstract representation of any spatial transform.

 Provides a unified interface to apply the transform with
 :meth:`apply_inplace` and :meth:`apply`.

 All Transforms support basic composition to form a :map:`TransformChain`.

 There are two useful forms of composition. Firstly, the mathematical
 composition symbol `o` has the following definition::

 let a(x) and b(x) be two transforms on x.
 (a o b)(x) == a(b(x))

 This functionality is provided by the :meth:`compose_after` family of
 methods::

 (a.compose_after(b)).apply(x) == a.apply(b.apply(x))

 Equally useful is an inversion the order of composition - so that over
 time a large chain of transforms can be built to do a useful job,
 and composing on this chain adds another transform to the end (after all
 other preceding transforms have been performed).

 For instance, let's say we want to rescale a :map:`PointCloud` ``p``
 around it's mean, and then translate it some place else. It would be nice
 to be able to do something like::

 t = Translation(-p.centre) # translate to centre
 s = Scale(2.0) # rescale
 move = Translate([10, 0 ,0]) # budge along the x axis
 t.compose(s).compose(-t).compose(move)

 In Menpo, this functionality is provided by the :meth:`compose_before()`
 family of methods::

 (a.compose_before(b)).apply(x) == b.apply(a.apply(x))

 For native composition, see the :map:`ComposableTransform` subclass and
 the :map:`VComposable` mix-in.
 For inversion, see the :map:`Invertible` and :map:`VInvertible` mix-ins.
 For alignment, see the :map:`Alignment` mix-in.
 """
 __metaclass__ = abc.ABCMeta

 @property
 def n_dims(self):
 r"""
 The dimensionality of the data the transform operates on.

 None if the transform is not dimension specific.

 :type: `int` or ``None``
 """
 return None

 @property
 def n_dims_output(self):
 r"""
 The output of the data from the transform.

 None if the output of the transform is not dimension specific.

 :type: `int` or ``None``
 """
 # most Transforms don't change the dimensionality of their input.
 return self.n_dims

 @abc.abstractmethod
 def _apply(self, x, **kwargs):
 r"""
 Applies the transform to the array ``x``, returning the result.

 This method does the actual work of transforming the data, and is the
 one that subclasses must implement. :meth:`apply` and
 :meth:`apply_inplace` both call this method to do that actual work.

 Parameters

 x : ``(n_points, n_dims)`` `ndarray`
 The array to be transformed.
 kwargs : `dict`
 Subclasses may need these in their ``_apply`` methods.

 Returns

 transformed : ``(n_points, n_dims_output)`` `ndarray`
 The transformed array
 """

[docs] def apply_inplace(self, x, **kwargs):
 r"""
 Applies this transform to a :map:`Transformable` ``x`` destructively.

 Any ``kwargs`` will be passed to the specific transform :meth:`_apply`
 method.

 Parameters

 x : :map:`Transformable`
 The :map:`Transformable` object to be transformed.
 kwargs : `dict`
 Passed through to :meth:`_apply`.

 Returns

 transformed : ``type(x)``
 The transformed object
 """

 def transform(x_):
 """
 Local closure which calls the :meth:`_apply` method with the
 `kwargs` attached.
 """
 return self._apply(x_, **kwargs)

 try:
 x._transform_inplace(transform)
 except AttributeError:
 raise ValueError('apply_inplace can only be used on Transformable'
 ' objects.')

[docs] def apply(self, x, **kwargs):
 r"""
 Applies this transform to ``x``.

 If ``x`` is :map:`Transformable`, ``x`` will be handed this transform
 object to transform itself non-destructively (a transformed copy of the
 object will be returned).

 If not, ``x`` is assumed to be an `ndarray`. The transformation
 will be non-destructive, returning the transformed version.

 Any ``kwargs`` will be passed to the specific transform :meth:`_apply`
 method.

 Parameters

 x : :map:`Transformable` or ``(n_points, n_dims)`` `ndarray`
 The array or object to be transformed.
 kwargs : `dict`
 Passed through to :meth:`_apply`.

 Returns

 transformed : ``type(x)``
 The transformed object or array
 """

 def transform(x_):
 """
 Local closure which calls the :meth:`_apply` method with the
 `kwargs` attached.
 """
 return self._apply(x_, **kwargs)

 try:
 return x._transform(transform)
 except AttributeError:
 return self._apply(x, **kwargs)

[docs] def compose_before(self, transform):
 r"""
 Returns a :map:`TransformChain` that represents **this** transform
 composed **before** the given transform::

 c = a.compose_before(b)
 c.apply(p) == b.apply(a.apply(p))

 ``a`` and ``b`` are left unchanged.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **after** self

 Returns

 transform : :map:`TransformChain`
 The resulting transform chain.
 """
 return TransformChain([self, transform])

[docs] def compose_after(self, transform):
 r"""
 Returns a :map:`TransformChain` that represents **this** transform
 composed **after** the given transform::

 c = a.compose_after(b)
 c.apply(p) == a.apply(b.apply(p))

 ``a`` and ``b`` are left unchanged.

 This corresponds to the usual mathematical formalism for the compose
 operator, `o`.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **before** self

 Returns

 transform : :map:`TransformChain`
 The resulting transform chain.
 """
 return TransformChain([transform, self])

[docs]class Transformable(Copyable):
 r"""
 Interface for objects that know how be transformed by the
 :map:`Transform` interface.

 When `Transform.apply_inplace` is called on an object, the
 :meth:`_transform_inplace` method is called, passing in the transforms'
 :meth:`_apply` function.

 This allows for the object to define how it should transform itself.
 """
 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
[docs] def _transform_inplace(self, transform):
 r"""
 Apply the given transform function to ``self`` inplace.

 Parameters

 transform : `function`
 Function that applies a transformation to the transformable object.

 Returns

 transformed : ``type(self)``
 The transformed object, having been transformed in place.
 """

 def _transform(self, transform):
 r"""
 Apply the :map:`Transform` given in a non destructive manner -
 returning the transformed object and leaving this object as it was.

 Parameters

 transform : `function`
 Function that applies a transformation to the transformable object.

 Returns

 transformed : ``type(self)``
 A copy of the object, transformed.
 """
 copy_of_self = self.copy()
 # transform the copy destructively
 copy_of_self._transform_inplace(transform)
 return copy_of_self

from .alignment import Alignment
from .composable import TransformChain, ComposableTransform, VComposable
from .invertible import Invertible, VInvertible

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/homogeneous/similarity.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.homogeneous.similarity

import numpy as np

from .base import HomogFamilyAlignment
from .affine import Affine
from functools import reduce

[docs]class Similarity(Affine):
 r"""
 Specialist version of an :map:`Affine` that is guaranteed to be
 a Similarity transform.

 Parameters

 h_matrix : (D + 1, D + 1) ndarray
 The homogeneous matrix of the similarity transform.

 """

 def __init__(self, h_matrix, copy=True, skip_checks=False):
 Affine.__init__(self, h_matrix, copy=copy, skip_checks=skip_checks)

 def _transform_str(self):
 r"""
 A string representation explaining what this similarity transform does.

 Returns

 str : string
 String representation of transform.

 """
 header = 'Similarity decomposing into:'
 list_str = [t._transform_str() for t in self.decompose()]
 return header + reduce(lambda x, y: x + '\n' + ' ' + y, list_str, ' ')

 @property
 def h_matrix_is_mutable(self):
 return False

 @classmethod
 def identity(cls, n_dims):
 return cls(np.eye(n_dims + 1), copy=False, skip_checks=True)

 @property
 def n_parameters(self):
 r"""
 2D Similarity: 4 parameters::

 [(1 + a), -b, tx]
 [b, (1 + a), ty]

 3D Similarity: Currently not supported

 Returns

 int

 Raises

 DimensionalityError, NotImplementedError
 Only 2D transforms are supported.

 """
 if self.n_dims == 2:
 return 4
 elif self.n_dims == 3:
 raise NotImplementedError("3D similarity transforms cannot be "
 "vectorized yet.")
 else:
 raise ValueError("Only 2D and 3D Similarity transforms "
 "are currently supported.")

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order `[a, b, tx, ty]`, given that
 `a = k cos(theta) - 1` and `b = k sin(theta)` where `k` is a
 uniform scale and `theta` is a clockwise rotation in radians.

 2D

 ========= ===
 parameter definition
 ========= ===
 a `a = k cos(theta) - 1`
 b `b = k sin(theta)`
 tx Translation in `x`
 ty Translation in `y`
 ========= ===

 .. note::

 Only 2D transforms are currently supported.

 Returns

 params : (P,) ndarray
 The values that parameterise the transform.

 Raises

 DimensionalityError, NotImplementedError
 If the transform is not 2D

 """
 n_dims = self.n_dims
 if n_dims == 2:
 params = self.h_matrix - np.eye(n_dims + 1)
 # Pick off a, b, tx, ty
 params = params[:n_dims, :].ravel(order='F')
 # Pick out a, b, tx, ty
 return params[[0, 1, 4, 5]]
 elif n_dims == 3:
 raise NotImplementedError("3D similarity transforms cannot be "
 "vectorized yet.")
 else:
 raise ValueError("Only 2D and 3D Similarity transforms "
 "are currently supported.")

[docs] def from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Supports rebuilding from 2D parameter sets.

 2D Similarity: 4 parameters::

 [a, b, tx, ty]

 Parameters

 p : (P,) ndarray
 The array of parameters.

 Raises

 DimensionalityError, NotImplementedError
 Only 2D transforms are supported.

 """
 if p.shape[0] == 4:
 homog = np.eye(3)
 homog[0, 0] += p[0]
 homog[1, 1] += p[0]
 homog[0, 1] = -p[1]
 homog[1, 0] = p[1]
 homog[:2, 2] = p[2:]
 self._set_h_matrix(homog, skip_checks=True, copy=False)
 elif p.shape[0] == 7:
 raise NotImplementedError("3D similarity transforms cannot be "
 "vectorized yet.")
 else:
 raise ValueError("Only 2D and 3D Similarity transforms "
 "are currently supported.")

[docs]class AlignmentSimilarity(HomogFamilyAlignment, Similarity):
 """
 Infers the similarity transform relating two vectors with the same
 dimensionality. This is simply the procrustes alignment of the
 source to the target.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment

 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment

 rotation: boolean, optional
 If False, the rotation component of the similarity transform is not
 inferred.

 Default: True

 """
 def __init__(self, source, target, rotation=True):
 HomogFamilyAlignment.__init__(self, source, target)
 x = procrustes_alignment(source, target, rotation=rotation)
 Similarity.__init__(self, x.h_matrix, copy=False, skip_checks=True)

 def _sync_state_from_target(self):
 similarity = procrustes_alignment(self.source, self.target)
 self._set_h_matrix(similarity.h_matrix, copy=False, skip_checks=True)

[docs] def as_non_alignment(self):
 r"""Returns a copy of this similarity without it's alignment nature.

 Returns

 transform : :map:`Similarity`
 A version of this similarity with the same transform behavior but
 without the alignment logic.
 """
 return Similarity(self.h_matrix, skip_checks=True)

[docs] def from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Supports rebuilding from 2D parameter sets.

 2D Similarity: 4 parameters::

 [a, b, tx, ty]

 Parameters

 p : (P,) ndarray
 The array of parameters.

 Raises

 DimensionalityError, NotImplementedError
 Only 2D transforms are supported.

 """
 Similarity.from_vector_inplace(self, p)
 self._sync_target_from_state()

def procrustes_alignment(source, target, rotation=True):
 r"""
 Returns the similarity transform that aligns the source to the target.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud

 target : :map:`PointCloud`
 The target pointcloud

 rotation : `bool`, optional
 If `True`, rotation is allowed in the Procrustes calculation. If
 False, only scale and translation effects are used.

 Returns

 :map:`Similarity`
 A :map:`Similarity Transform that optimally aligns the ``source`` to
 ``target``.

 """
 from .rotation import Rotation, optimal_rotation_matrix
 from .translation import Translation
 from .scale import UniformScale
 # Compute the transforms we need - centering translations...
 tgt_t = Translation(-target.centre(), skip_checks=True)
 src_t = Translation(-source.centre(), skip_checks=True)
 # and a scale that matches the norm of the source to the norm of the target
 src_s = UniformScale(target.norm() / source.norm(), source.n_dims,
 skip_checks=True)

 # start building the Procrustes Alignment - src translation followed by
 # scale
 p = Similarity.identity(source.n_dims)
 p.compose_before_inplace(src_t)
 p.compose_before_inplace(src_s)

 if rotation:
 # to calculate optimal rotation we need the source and target in the
 # centre and of the correct size. Use the current p to do this
 aligned_src = p.apply(source)
 aligned_tgt = tgt_t.apply(target)
 r = Rotation(optimal_rotation_matrix(aligned_src, aligned_tgt),
 skip_checks=True)
 p.compose_before_inplace(r)
 # finally, translate the target back
 p.compose_before_inplace(tgt_t.pseudoinverse())
 return p

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/transform/homogeneous/scale.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.transform.homogeneous.scale

import numpy as np

from .base import HomogFamilyAlignment
from .affine import DiscreteAffine, Affine
from .similarity import Similarity

[docs]def Scale(scale_factor, n_dims=None):
 r"""
 Factory function for producing Scale transforms. Zero scale factors are not
 permitted.

 A :class:`UniformScale` will be produced if:

 - A float `scale_factor` and a `n_dims` kwarg are provided
 - A ndarray scale_factor with shape (`n_dims`,) is provided with all
 elements being the same

 A :class:`NonUniformScale` will be provided if:

 - A ndarray `scale_factor` with shape (`n_dims`,) is provided with
 at least two differing scale factors.

 Parameters

 scale_factor: double or (D,) ndarray
 Scale for each axis.
 n_dims: int
 The dimensionality of the output transform.

 Returns

 scale : :class:`UniformScale` or :class:`NonUniformScale`
 The correct type of scale

 Raises

 ValueError
 If any of the scale factors is zero
 """
 from numbers import Number
 if not isinstance(scale_factor, Number):
 # some array like thing - make it a numpy array for sure
 scale_factor = np.asarray(scale_factor)
 if not np.all(scale_factor):
 raise ValueError('Having a zero in one of the scales is invalid')

 if n_dims is None:
 # scale_factor better be a numpy array then
 if np.allclose(scale_factor, scale_factor[0]):
 return UniformScale(scale_factor[0], scale_factor.shape[0])
 else:
 return NonUniformScale(scale_factor)
 else:
 # interpret as a scalar then
 return UniformScale(scale_factor, n_dims)

[docs]class NonUniformScale(DiscreteAffine, Affine):
 r"""
 An `n_dims` scale transform, with a scale component for each dimension.

 Parameters

 scale : ``(n_dims,)`` `ndarray`
 A scale for each axis.
 """

 def __init__(self, scale, skip_checks=False):
 scale = np.asarray(scale)
 if not skip_checks:
 if scale.size > 3 or scale.size < 2:
 raise ValueError("NonUniformScale can only be 2D or 3D"
 ", not {}".format(scale.size))
 h_matrix = np.eye(scale.size + 1)
 np.fill_diagonal(h_matrix, scale)
 h_matrix[-1, -1] = 1
 Affine.__init__(self, h_matrix, skip_checks=True, copy=False)

 @classmethod
 def identity(cls, n_dims):
 return NonUniformScale(np.ones(n_dims))

 @property
 def h_matrix_is_mutable(self):
 return False

 @property
 def scale(self):
 r"""
 The scale vector.

 :type: (D,) ndarray
 """
 # Copy the vector as Numpy 1.10 will return a writeable view
 return self.h_matrix.diagonal()[:-1].copy()

 def _transform_str(self):
 message = 'NonUniformScale by {}'.format(self.scale)
 return message

 @property
 def n_parameters(self):
 """
 The number of parameters: `n_dims`.

 :type: int

 `n_dims` parameters - `[scale_x, scale_y,]` - The scalar values
 representing the scale across each axis.
 """
 return self.scale.size

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order [s0, s1, ...].

 +----------+--+
 |parameter | definition |
 +==========+==+
 |s0 | The scale across the first axis |
 +----------+--+
 |s1 | The scale across the second axis |
 +----------+--+
 |... | ... |
 +----------+--+
 |sn | The scale across the nth axis |
 +----------+--+

 Returns

 s : (D,) ndarray
 The scale across each axis.
 """
 return self.scale

[docs] def from_vector_inplace(self, vector):
 r"""
 Updates the NonUniformScale inplace.

 Parameters

 vector : (D,) ndarray
 The array of parameters.

 """
 np.fill_diagonal(self.h_matrix, vector)
 self.h_matrix[-1, -1] = 1

 @property
 def composes_inplace_with(self):
 return NonUniformScale, UniformScale

[docs] def pseudoinverse(self):
 """
 The inverse scale.

 :type: :class:`NonUniformScale`
 """
 return NonUniformScale(1.0 / self.scale, skip_checks=True)

[docs]class UniformScale(DiscreteAffine, Similarity):
 r"""
 An abstract similarity scale transform, with a single scale component
 applied to all dimensions. This is abstracted out to remove unnecessary
 code duplication.
 """

 def __init__(self, scale, n_dims, skip_checks=False):
 if not skip_checks:
 if n_dims > 3 or n_dims < 2:
 raise ValueError("UniformScale can only be 2D or 3D"
 ", not {}".format(n_dims))
 h_matrix = np.eye(n_dims + 1)
 np.fill_diagonal(h_matrix, scale)
 h_matrix[-1, -1] = 1
 Similarity.__init__(self, h_matrix, copy=False,
 skip_checks=True)

 @classmethod
 def identity(cls, n_dims):
 return UniformScale(1, n_dims)

 @property
 def scale(self):
 r"""
 The single scale value.

 :type: double
 """
 return self.h_matrix[0, 0]

 def _transform_str(self):
 message = 'UniformScale by {}'.format(self.scale)
 return message

 @property
 def n_parameters(self):
 r"""
 The number of parameters: 1

 :type: int
 """
 return 1

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order [s].

 +----------+--------------------------------+
 |parameter | definition |
 +==========+================================+
 |s | The scale across each axis |
 +----------+--------------------------------+

 Returns

 s : double
 The scale across each axis.
 """
 return np.asarray(self.scale)

 def from_vector_inplace(self, p):
 np.fill_diagonal(self.h_matrix, p)
 self.h_matrix[-1, -1] = 1

 @property
 def composes_inplace_with(self):
 return UniformScale

[docs] def pseudoinverse(self):
 r"""
 The inverse scale.

 :type: type(self)
 """
 return UniformScale(1.0 / self.scale, self.n_dims, skip_checks=True)

[docs]class AlignmentUniformScale(HomogFamilyAlignment, UniformScale):

 def __init__(self, source, target):
 HomogFamilyAlignment.__init__(self, source, target)
 UniformScale.__init__(self, target.norm() / source.norm(),
 source.n_dims)

 def from_vector_inplace(self, p):
 UniformScale.from_vector_inplace(self, p)
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 new_scale = self.target.norm() / self.source.norm()
 np.fill_diagonal(self.h_matrix, new_scale)
 self.h_matrix[-1, -1] = 1

[docs] def as_non_alignment(self):
 r"""Returns a copy of this uniform scale without it's alignment nature.

 Returns

 transform : :map:`UniformScale`
 A version of this scale with the same transform behavior but
 without the alignment logic.
 """
 return UniformScale(self.scale, self.n_dims)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/io/input/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.io.input.base

import abc
import os
from pathlib import Path

from ..utils import _norm_path
from menpo.base import menpo_src_dir_path
from menpo.visualize import progress_bar_str, print_dynamic

[docs]def data_dir_path():
 r"""A path to the Menpo built in ./data folder on this machine.

 Returns

 ``pathlib.Path``
 The path to the local Menpo ./data folder

 """
 return menpo_src_dir_path() / 'data'

[docs]def data_path_to(asset_filename):
 r"""
 The path to a builtin asset in the ./data folder on this machine.

 Parameters

 asset_filename : `str`
 The filename (with extension) of a file builtin to Menpo. The full
 set of allowed names is given by :func:`ls_builtin_assets()`

 Returns

 data_path : `pathlib.Path`
 The path to a given asset in the ./data folder

 Raises

 ValueError
 If the asset_filename doesn't exist in the `data` folder.

 """
 asset_path = data_dir_path() / asset_filename
 if not asset_path.is_file():
 raise ValueError("{} is not a builtin asset: {}".format(
 asset_filename, ls_builtin_assets()))
 return asset_path

def same_name(asset):
 r"""
 Menpo's default landmark resolver. Returns all landmarks found to have
 the same stem as the asset.
 """
 # pattern finding all landmarks with the same stem
 pattern = asset.path.with_suffix('.*')
 # find all the landmarks we can with this name. Key is ext (without '.')
 return {p.suffix[1:].upper(): p for p in landmark_file_paths(pattern)}

[docs]def import_image(filepath, landmark_resolver=same_name, normalise=True):
 r"""Single image (and associated landmarks) importer.

 If an image file is found at `filepath`, returns an :map:`Image` or
 subclass representing it. By default, landmark files sharing the same
 filename stem will be imported and attached with a group name based on the
 extension of the landmark file, although this behavior can be customised
 (see `landmark_resolver`). If the image defines a mask, this mask will be
 imported.

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to an image file.
 landmark_resolver : `function`, optional
 This function will be used to find landmarks for the
 image. The function should take one argument (the image itself) and
 return a dictionary of the form ``{'group_name': 'landmark_filepath'}``
 Default finds landmarks with the same name as the image file.
 normalise : `bool`, optional
 If ``True``, normalise the image pixels between 0 and 1 and convert
 to floating point. If false, the native datatype of the image will be
 maintained (commonly `uint8`). Note that in general Menpo assumes
 :map:`Image` instances contain floating point data - if you disable
 this flag you will have to manually convert the images you import to
 floating point before doing most Menpo operations. This however can be
 useful to save on memory usage if you only wish to view or crop images.

 Returns

 images : :map:`Image` or list of
 An instantiated :map:`Image` or subclass thereof or a list of images.
 """
 kwargs = {'normalise': normalise}
 return _import(filepath, image_types,
 landmark_ext_map=image_landmark_types,
 landmark_resolver=landmark_resolver,
 importer_kwargs=kwargs)

[docs]def import_landmark_file(filepath, asset=None):
 r"""Single landmark group importer.

 If a landmark file is found at ``filepath``, returns a
 :map:`LandmarkGroup` representing it.

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to an landmark file.

 Returns

 landmark_group : :map:`LandmarkGroup`
 The :map:`LandmarkGroup` that the file format represents.
 """
 return _import(filepath, image_landmark_types, asset=asset)

[docs]def import_pickle(filepath):
 r"""Import a pickle file of arbitrary Python objects.

 Menpo unambiguously uses ``.pkl`` as it's choice of extension for Pickle
 files. Menpo also supports automatic importing and exporting of gzip
 compressed pickle files - just choose a ``filepath`` ending ``pkl.gz`` and
 gzip compression will automatically be applied. Compression can massively
 reduce the filesize of a pickle file at the cost of longer import and
 export times.

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to a ``.pkl`` or ``.pkl.gz`` file.

 Returns

 object : `object`
 Whatever Python objects are present in the Pickle file
 """
 return _import(filepath, pickle_types)

[docs]def import_images(pattern, max_images=None, landmark_resolver=same_name,
 normalise=True, verbose=False):
 r"""Multiple image (and associated landmarks) importer.

 For each image found yields an :map:`Image` or
 subclass representing it. By default, landmark files sharing the same
 filename stem will be imported and attached with a group name based on the
 extension of the landmark file, although this behavior can be customised
 (see `landmark_resolver`). If the image defines a mask, this mask will be
 imported.

 Note that this is a generator function. This allows for pre-processing
 of data to take place as data is imported (e.g. cropping images to
 landmarks as they are imported for memory efficiency).

 Parameters

 pattern : `str`
 A glob path pattern to search for images. Every image found to match
 the glob will be imported one by one. See :map:`image_paths` for more
 details of what images will be found.
 max_images : positive `int`, optional
 If not ``None``, only import the first ``max_images`` found. Else,
 import all.
 landmark_resolver : `function`, optional
 This function will be used to find landmarks for the
 image. The function should take one argument (the image itself) and
 return a dictionary of the form ``{'group_name': 'landmark_filepath'}``
 Default finds landmarks with the same name as the image file.
 normalise : `bool`, optional
 If ``True``, normalise the image pixels between 0 and 1 and convert
 to floating point. If false, the native datatype of the image will be
 maintained (commonly `uint8`). Note that in general Menpo assumes
 :map:`Image` instances contain floating point data - if you disable
 this flag you will have to manually convert the images you import to
 floating point before doing most Menpo operations. This however can be
 useful to save on memory usage if you only wish to view or crop images.
 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported with
 a progress bar.

 Returns

 generator : `generator` yielding :map:`Image` or list of
 Generator yielding :map:`Image` instances found to match the glob
 pattern provided.

 Raises

 ValueError
 If no images are found at the provided glob.

 Examples

 Import images at 20% scale from a huge collection:

 >>> images = []
 >>> for img in menpo.io.import_images('./massive_image_db/*'):
 >>> # rescale to a sensible size as we go
 >>> images.append(img.rescale(0.2))
 """
 kwargs = {'normalise': normalise}
 for asset in _import_glob_generator(pattern, image_types,
 max_assets=max_images,
 landmark_resolver=landmark_resolver,
 landmark_ext_map=image_landmark_types,
 verbose=verbose,
 importer_kwargs=kwargs):
 yield asset

[docs]def import_landmark_files(pattern, max_landmarks=None, verbose=False):
 r"""Multiple landmark file import generator.

 Note that this is a generator function.

 Parameters

 pattern : `str`
 A glob path pattern to search for landmark files. Every
 landmark file found to match the glob will be imported one by one.
 See :map:`landmark_file_paths` for more details of what landmark files
 will be found.

 max_landmark_files : positive `int`, optional
 If not ``None``, only import the first ``max_landmark_files`` found.
 Else, import all.

 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported.

 Returns

 generator : `generator` yielding :map:`LandmarkGroup`
 Generator yielding :map:`LandmarkGroup` instances found to match the
 glob pattern provided.

 Raises

 ValueError
 If no landmarks are found at the provided glob.
 """
 for asset in _import_glob_generator(pattern, image_landmark_types,
 max_assets=max_landmarks,
 verbose=verbose):
 yield asset

[docs]def import_pickles(pattern, max_pickles=None, verbose=False):
 r"""Multiple pickle file import generator.

 Note that this is a generator function.

 Menpo unambiguously uses ``.pkl`` as it's choice of extension for pickle
 files. Menpo also supports automatic importing of gzip compressed pickle
 files - matching files with extension ``pkl.gz`` will be automatically
 un-gzipped and imported.

 Parameters

 pattern : `str`
 The glob path pattern to search for pickles. Every pickle file found
 to match the glob will be imported one by one.

 max_pickles : positive `int`, optional
 If not ``None``, only import the first ``max_pickles`` found.
 Else, import all.

 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported.

 Returns

 generator : generator yielding `object`
 Generator yielding whatever Python object is present in the pickle
 files that match the glob pattern provided.

 Raises

 ValueError
 If no pickles are found at the provided glob.

 """
 for asset in _import_glob_generator(pattern, pickle_types,
 max_assets=max_pickles,
 verbose=verbose):
 yield asset

def _import_builtin_asset(asset_name):
 r"""Single builtin asset (landmark or image) importer.

 Imports the relevant builtin asset from the ``./data`` directory that
 ships with Menpo.

 Parameters

 asset_name : `str`
 The filename of a builtin asset (see :map:`ls_builtin_assets`
 for allowed values)

 Returns

 asset :
 An instantiated :map:`Image` or :map:`LandmarkGroup` asset.
 """
 asset_path = data_path_to(asset_name)
 # Import could be either an image or a set of landmarks, so we try
 # importing them both separately.
 try:
 return _import(asset_path, image_types,
 landmark_ext_map=image_landmark_types)
 except ValueError:
 return _import(asset_path, image_landmark_types)

[docs]def ls_builtin_assets():
 r"""List all the builtin asset examples provided in Menpo.

 Returns

 list of strings
 Filenames of all assets in the data directory shipped with Menpo

 """
 return [p.name for p in data_dir_path().glob('*')]

def import_builtin(x):

 def execute():
 return _import_builtin_asset(x)

 return execute

class BuiltinAssets(object):

 def __call__(self, asset_name):
 return _import_builtin_asset(asset_name)

import_builtin_asset = BuiltinAssets()

for asset in ls_builtin_assets():
 setattr(import_builtin_asset, asset.replace('.', '_'),
 import_builtin(asset))

[docs]def image_paths(pattern):
 r"""
 Return image filepaths that Menpo can import that match the glob pattern.
 """
 return glob_with_suffix(pattern, image_types)

[docs]def landmark_file_paths(pattern):
 r"""
 Return landmark file filepaths that Menpo can import that match the glob
 pattern.
 """
 return glob_with_suffix(pattern, image_landmark_types)

def _import_glob_generator(pattern, extension_map, max_assets=None,
 landmark_resolver=same_name,
 landmark_ext_map=None, importer_kwargs=None,
 verbose=False):
 filepaths = list(glob_with_suffix(pattern, extension_map))
 if max_assets:
 filepaths = filepaths[:max_assets]
 n_files = len(filepaths)
 if n_files == 0:
 raise ValueError('The glob {} yields no assets'.format(pattern))
 for i, asset in enumerate(_multi_import_generator(filepaths, extension_map,
 landmark_resolver=landmark_resolver,
 landmark_ext_map=landmark_ext_map,
 importer_kwargs=importer_kwargs)):
 if verbose:
 print_dynamic('- Loading {} assets: {}'.format(
 n_files, progress_bar_str(float(i + 1) / n_files,
 show_bar=True)))
 yield asset

def _import(filepath, extensions_map, keep_importer=False,
 landmark_resolver=same_name,
 landmark_ext_map=None, asset=None, importer_kwargs=None):
 r"""
 Creates an importer for the filepath passed in, and then calls build on
 it, returning a list of assets or a single asset, depending on the
 file type.

 The type of assets returned are specified by the `extensions_map`.

 Parameters

 filepath : string
 The filepath to import
 extensions_map : dictionary (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 non-instantiated classes. The extensions are expected to
 contain the leading period eg. `.obj`.
 keep_importer : bool, optional
 If `True`, return the :class:`menpo.io.base.Importer` for each mesh
 as well as the meshes.
 landmark_ext_map : dictionary (str, :map:`Importer`), optional
 If not None an attempt will be made to import annotations with
 extensions defined in this mapping. If None, no attempt will be
 made to import annotations.
 landmark_resolver: function, optional
 If not None, this function will be used to find landmarks for each
 asset. The function should take one argument (the asset itself) and
 return a dictionary of the form {'group_name': 'landmark_filepath'}
 asset: object, optional
 If not None, the asset will be passed to the importer's build method
 as the asset kwarg
 importer_kwargs: dict, optional:
 kwargs that will be supplied to the importer if not None

 Returns

 assets : list of assets or tuple of (assets, [:class:`menpo.io.base
 .Importer`])
 The asset or list of assets found in the filepath. If
 `keep_importers` is `True` then the importer is returned.
 """
 path = Path(_norm_path(filepath))
 if not path.is_file():
 raise ValueError("{} is not a file".format(path))
 # below could raise ValueError as well...
 importer = importer_for_filepath(path, extensions_map,
 importer_kwargs=importer_kwargs)
 if asset is not None:
 built_objects = importer.build(asset=asset)
 else:
 built_objects = importer.build()
 # landmarks are iterable so check for list precisely
 # enforce a list to make processing consistent
 if not isinstance(built_objects, list):
 built_objects = [built_objects]

 # attach path if there is no x.path already.
 for x in built_objects:
 if not hasattr(x, 'path'):
 try:
 x.path = path
 except AttributeError:
 pass # that's fine! Probably a dict/list from PickleImporter.
 # handle landmarks
 if landmark_ext_map is not None:
 for x in built_objects:
 lm_paths = landmark_resolver(x) # use the users fcn to find
 # paths
 if lm_paths is None:
 continue
 for group_name, lm_path in lm_paths.iteritems():
 lms = _import(lm_path, landmark_ext_map, asset=x)
 if x.n_dims == lms.n_dims:
 x.landmarks[group_name] = lms

 # undo list-ification (if we added it!)
 if len(built_objects) == 1:
 built_objects = built_objects[0]

 if keep_importer:
 return built_objects, importer
 else:
 return built_objects

def _multi_import_generator(filepaths, extensions_map, keep_importers=False,
 landmark_resolver=same_name,
 landmark_ext_map=None, importer_kwargs=None):
 r"""
 Generator yielding assets from the filepaths provided.

 Note that if a single file yields multiple assets, each is yielded in
 turn (this function will never yield an iterable of assets in one go).
 Assets are yielded in alphabetical order from the filepaths provided.

 Parameters

 filepaths : list of strings
 The filepaths to import. Assets are imported in alphabetical order
 extensions_map : dictionary (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 non-instantiated classes. The extensions are expected to
 contain the leading period eg. `.obj`.
 keep_importers : bool, optional
 If `True`, return the :class:`menpo.io.base.Importer` for each mesh
 as well as the meshes.
 landmark_ext_map : dictionary (str, :map:`Importer`), optional
 If not None an attempt will be made to import annotations with
 extensions defined in this mapping. If None, no attempt will be
 made to import annotations.
 landmark_resolver: function, optional
 If not None, this function will be used to find landmarks for each
 asset. The function should take one argument (the asset itself) and
 return a dictionary of the form {'group_name': 'landmark_filepath'}
 importer_kwargs: dict, optional
 kwargs to be supplied to the importer if not None

 Yields

 asset :
 An asset found at one of the filepaths.
 importer: :class:`menpo.io.base.Importer`
 Only if `keep_importers` is `True`. The importer used for the
 yielded asset.
 """
 importer = None
 for f in sorted(filepaths):
 imported = _import(f, extensions_map, keep_importer=keep_importers,
 landmark_resolver=landmark_resolver,
 landmark_ext_map=landmark_ext_map,
 importer_kwargs=importer_kwargs)
 if keep_importers:
 assets, importer = imported
 else:
 assets = imported
 # could be that there are many assets returned from one file.
 # landmarks are iterable so check for list precisely
 if isinstance(assets, list):
 # there are multiple assets, and one importer.
 # -> yield each asset in turn with the shared importer (if
 # requested)
 for asset in assets:
 if keep_importers:
 yield asset, importer
 else:
 yield asset
 else:
 # assets is a single item. Rather than checking (again! for
 # importers, just yield the imported tuple
 yield imported

def _pathlib_glob_for_pattern(pattern):
 r"""Generator for glob matching a string path pattern

 Splits the provided ``pattern`` into a root path for pathlib and a
 subsequent glob pattern to be applied.

 Parameters

 pattern : `str`
 Path including glob patterns. If no glob patterns are present and the
 pattern is a dir, a '**/*' pattern will be automatically added.

 Yields

 Path : A path to a file matching the provided pattern.

 Raises

 ValueError
 If the pattern doesn't contain a '*' wildcard and is not a directory
 """
 pattern = _norm_path(pattern)
 gsplit = pattern.split('*', 1)
 if len(gsplit) == 1:
 # no glob provided. Is the provided pattern a dir?
 if Path(pattern).is_dir():
 preglob = pattern
 pattern = '*'
 else:
 raise ValueError('{} is an invalid glob and '
 'not a dir'.format(pattern))
 else:
 preglob = gsplit[0]
 pattern = '*' + gsplit[1]
 if not os.path.isdir(preglob):
 # the glob pattern is in the middle of a path segment. pair back
 # to the nearest dir and add the reminder to the pattern
 preglob, pattern_prefix = os.path.split(preglob)
 pattern = pattern_prefix + pattern
 p = Path(preglob)
 return sorted(p.glob(str(pattern)))

def glob_with_suffix(pattern, extensions_map):
 r"""
 Filters the results from the glob pattern passed in to only those files
 that have an importer given in `extensions_map`.

 Parameters

 pattern : string
 A UNIX style glob pattern to match against.
 extensions_map : dictionary (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 non-instantiated classes. The extensions are expected to
 contain the leading period eg. `.obj`.

 Yields

 filepaths : list of string
 The list of filepaths that have valid extensions.
 """
 for path in _pathlib_glob_for_pattern(pattern):
 # we want to extract '.pkl.gz' as an extension - for this we need to
 # use suffixes and join.
 # .suffix only takes
 if ''.join(path.suffixes) in extensions_map:
 yield path

def importer_for_filepath(filepath, extensions_map, importer_kwargs=None):
 r"""
 Given a filepath, return the appropriate importer as mapped by the
 extension map.

 Parameters

 filepath : `pathlib.Path`
 The filepath to get importers for
 extensions_map : dictionary (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 a subclass of :class:`Importer`. The extensions are expected to
 contain the leading period eg. `.obj`.
 importer_kwargs: dictionary, optional
 kwargs that will be supplied to the importer if not None.

 Returns

 importer: :class:`menpo.io.base.Importer` instance
 Importer as found in the `extensions_map` instantiated for the
 filepath provided.

 """
 suffix = ''.join(filepath.suffixes)
 importer_type = extensions_map.get(suffix)
 # we couldn't find an importer for all the suffixes (e.g .foo.bar)
 # maybe the file stem has '.' in it? -> try again but this time just use the
 # final suffix (.bar). (Note we first try '.foo.bar' as we want to catch
 # cases like 'pkl.gz')
 if importer_type is None and len(filepath.suffixes) > 1:
 suffix = filepath.suffix
 importer_type = extensions_map.get(suffix)
 if importer_type is None:
 raise ValueError("{} does not have a "
 "suitable importer.".format(suffix))
 if importer_kwargs is not None:
 return importer_type(str(filepath), **importer_kwargs)
 else:
 return importer_type(str(filepath))

class Importer(object):
 r"""
 Abstract representation of an Importer. Construction of an importer simply
 sets the filepaths etc up. To actually import the object and build a valid
 representation, the `build` method must be called. This allows a set
 of importers to be instantiated but the heavy duty importing to happen
 separately.

 Parameters

 filepath : string
 An absolute filepath
 """
 __metaclass__ = abc.ABCMeta

 def __init__(self, filepath):
 self.filepath = os.path.abspath(os.path.expanduser(filepath))
 self.filename = os.path.splitext(os.path.basename(self.filepath))[0]
 self.extension = os.path.splitext(self.filepath)[1]
 self.folder = os.path.dirname(self.filepath)

 @abc.abstractmethod
 def build(self):
 r"""
 Performs the heavy lifting for the importer class. This actually reads
 the file in from disk and does any necessary parsing of the data in to
 an appropriate format.

 Returns

 object : object or list
 An instantiated class of the expected type. For example, for an
 `.obj` importer, this would be a
 :class:`menpo.shape.mesh.base.Trimesh`. If multiple objects need
 to be returned from one importer, a list must be returned.
 """
 pass

Avoid circular imports
from menpo.io.input.extensions import (image_landmark_types, image_types,
 pickle_types)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

search.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/minus.png

_static/comment.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

_static/plus.png

_modules/menpo/visualize/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.visualize.base

from collections import Iterable

import numpy as np

Menpo3dErrorMessage = ("In order to keep menpo's dependencies simple, menpo "
 "does not contain 3D importing and visualization code. "
 "Please install menpo3d to view 3D meshes.")

[docs]class Renderer(object):
 r"""
 Abstract class for rendering visualizations. Framework specific
 implementations of these classes are made in order to separate
 implementation cleanly from the rest of the code.

 It is assumed that the renderers follow some form of stateful pattern for
 rendering to Figures. Therefore, the major interface for rendering involves
 providing a `figure_id` or a `bool` about whether a new figure should be
 used. If neither are provided then the default state of the rendering engine
 is assumed to be maintained.

 Providing both a ``figure_id`` and ``new_figure == True`` is not a valid
 state.

 Parameters

 figure_id : `object`
 A figure id. Could be any valid object that identifies a figure in a
 given framework (`str`, `int`, `float`, etc.).
 new_figure : `bool`
 Whether the rendering engine should create a new figure.

 Raises

 ValueError
 It is not valid to provide a figure id AND request a new figure to
 be rendered on.
 """

 def __init__(self, figure_id, new_figure):
 if figure_id is not None and new_figure:
 raise ValueError("Conflicting arguments. figure_id cannot be "
 "specified if the new_figure flag is True")

 self.figure_id = figure_id
 self.new_figure = new_figure
 self.figure = self.get_figure()

[docs] def render(self, **kwargs):
 r"""
 Abstract method to be overridden by the renderer. This will implement
 the actual rendering code for a given object class.

 Parameters

 kwargs : `dict`
 Passed through to specific rendering engine.

 Returns

 viewer : :map:`Renderer`
 Pointer to `self`.
 """
 pass

[docs] def get_figure(self):
 r"""
 Abstract method for getting the correct figure to render on. Should
 also set the correct `figure_id` for the figure.

 Returns

 figure : `object`
 The figure object that the renderer will render on.
 """
 pass

[docs] def save_figure(self, **kwargs):
 r"""
 Abstract method for saving the figure of the current `figure_id` to
 file. It will implement the actual saving code for a given object class.

 Parameters

 kwargs : `dict`
 Options to be set when saving the figure to file.
 """
 pass

class viewwrapper(object):
 r"""
 This class abuses the Python descriptor protocol in order to dynamically
 change the view method at runtime. Although this is more obviously achieved
 through inheritance, the view methods practically amount to syntactic sugar
 and so we want to maintain a single view method per class. We do not want
 to add the mental overhead of implementing different 2D and 3D PointCloud
 classes for example, since, outside of viewing, their implementations would
 be identical.

 Also note that we could have separated out viewing entirely and made the
 check there, but the view method is an important paradigm in menpo that
 we want to maintain.

 Therefore, this function cleverly (and obscurely) returns the correct
 view method for the dimensionality of the given object.
 """

 def __init__(self, wrapped_func):
 fname = wrapped_func.__name__
 self._2d_fname = '_{}_2d'.format(fname)
 self._3d_fname = '_{}_3d'.format(fname)

 def __get__(self, instance, instancetype):
 if instance.n_dims == 2:
 return getattr(instance, self._2d_fname)
 elif instance.n_dims == 3:
 return getattr(instance, self._3d_fname)
 else:
 def raise_not_supported(self):
 r"""
 Viewing of objects with greater than 3 dimensions is not
 currently possible.
 """
 raise ValueError('Viewing of objects with greater than 3 '
 'dimensions is not currently possible.')
 return raise_not_supported

[docs]class Viewable(object):
 r"""
 Abstract interface for objects that can visualize themselves. This assumes
 that the class has dimensionality as the view method checks the ``n_dims``
 property to wire up the correct view method.
 """

 @viewwrapper
 def view(self):
 r"""
 Abstract method for viewing. See the :map:`viewwrapper` documentation
 for an explanation of how the `view` method works.
 """
 pass

 def _view_2d(self, **kwargs):
 raise NotImplementedError('2D Viewing is not supported.')

 def _view_3d(self, **kwargs):
 raise NotImplementedError('3D Viewing is not supported.')

[docs]class LandmarkableViewable(object):
 r"""
 Mixin for :map:`Landmarkable` and :map:`Viewable` objects. Provides a
 single helper method for viewing Landmarks and `self` on the same figure.
 """

 @viewwrapper
 def view_landmarks(self, **kwargs):
 pass

 def _view_landmarks_2d(self, **kwargs):
 raise NotImplementedError('2D Landmark Viewing is not supported.')

 def _view_landmarks_3d(self, **kwargs):
 raise NotImplementedError('3D Landmark Viewing is not supported.')

from menpo.visualize.viewmatplotlib import (
 MatplotlibImageViewer2d, MatplotlibImageSubplotsViewer2d,
 MatplotlibLandmarkViewer2d, MatplotlibAlignmentViewer2d,
 MatplotlibGraphPlotter, MatplotlibMultiImageViewer2d,
 MatplotlibMultiImageSubplotsViewer2d, MatplotlibPointGraphViewer2d)

Default importer types
PointGraphViewer2d = MatplotlibPointGraphViewer2d
LandmarkViewer2d = MatplotlibLandmarkViewer2d
ImageViewer2d = MatplotlibImageViewer2d
ImageSubplotsViewer2d = MatplotlibImageSubplotsViewer2d

AlignmentViewer2d = MatplotlibAlignmentViewer2d
GraphPlotter = MatplotlibGraphPlotter
MultiImageViewer2d = MatplotlibMultiImageViewer2d
MultiImageSubplotsViewer2d = MatplotlibMultiImageSubplotsViewer2d

class ImageViewer(object):
 r"""
 Base :map:`Image` viewer that abstracts away dimensionality. It can
 visualize multiple channels of an image in subplots.

 Parameters

 figure_id : `object`
 A figure id. Could be any valid object that identifies a figure in a
 given framework (`str`, `int`, `float`, etc.).
 new_figure : `bool`
 Whether the rendering engine should create a new figure.
 dimensions : {``2``, ``3``} `int`
 The number of dimensions in the image.
 pixels : ``(N, D)`` `ndarray`
 The pixels to render.
 channels: `int` or `list` or ``'all'`` or `None`
 A specific selection of channels to render. The user can choose either
 a single or multiple channels. If ``'all'``, render all channels in
 subplot mode. If `None` and image is not greyscale or RGB, render all
 channels in subplots. If `None` and image is greyscale or RGB, then do
 not plot channels in different subplots.
 mask: ``(N, D)`` `ndarray`
 A `bool` mask to be applied to the image. All points outside the
 mask are set to ``0``.
 """

 def __init__(self, figure_id, new_figure, dimensions, pixels,
 channels=None, mask=None):
 pixels = pixels.copy()
 self.figure_id = figure_id
 self.new_figure = new_figure
 self.dimensions = dimensions
 pixels, self.use_subplots = \
 self._parse_channels(channels, pixels)
 self.pixels = self._masked_pixels(pixels, mask)

 def _parse_channels(self, channels, pixels):
 r"""
 Parse `channels` parameter. If `channels` is `int` or `list`, keep it as
 is. If `channels` is ``'all'``, return a `list` of all the image's
 channels. If `channels` is `None`, return the minimum between an
 `upper_limit` and the image's number of channels. If image is greyscale
 or RGB and `channels` is `None`, then do not plot channels in different
 subplots.

 Parameters

 channels : `int` or `list` or ``'all'`` or `None`
 A specific selection of channels to render.
 pixels : ``(N, D)`` `ndarray`
 The image's pixels to render.

 Returns

 pixels : ``(N, D)`` `ndarray`
 The pixels to be visualized.
 use_subplots : `bool`
 Whether to visualize using subplots.
 """
 # Flag to trigger ImageSubplotsViewer2d or ImageViewer2d
 use_subplots = True
 n_channels = pixels.shape[2]
 if channels is None:
 if n_channels == 1:
 pixels = pixels[..., 0]
 use_subplots = False
 elif n_channels == 3:
 use_subplots = False
 elif channels != 'all':
 if isinstance(channels, Iterable):
 if len(channels) == 1:
 pixels = pixels[..., channels[0]]
 use_subplots = False
 else:
 pixels = pixels[..., channels]
 else:
 pixels = pixels[..., channels]
 use_subplots = False

 return pixels, use_subplots

 def _masked_pixels(self, pixels, mask):
 r"""
 Return the masked pixels using a given `bool` mask. In order to make
 sure that the non-masked pixels are visualized in white, their value
 is set to the maximum of pixels.

 Parameters

 pixels : ``(N, D)`` `ndarray`
 The image's pixels to render.
 mask: ``(N, D)`` `ndarray`
 A `bool` mask to be applied to the image. All points outside the
 mask are set to the image max. If mask is `None`, then the initial
 pixels are returned.

 Returns

 masked_pixels : ``(N, D)`` `ndarray`
 The masked pixels.
 """
 if mask is not None:
 nanmax = np.nanmax(pixels)
 pixels[~mask] = nanmax + (0.01 * nanmax)
 return pixels

 def render(self, **kwargs):
 r"""
 Select the correct type of image viewer for the given image
 dimensionality.

 Parameters

 kwargs : `dict`
 Passed through to image viewer.

 Returns

 viewer : :map:`Renderer`
 The rendering object.

 Raises

 ValueError
 Only 2D images are supported.
 """
 if self.dimensions == 2:
 if self.use_subplots:
 return ImageSubplotsViewer2d(self.figure_id, self.new_figure,
 self.pixels).render(**kwargs)
 else:
 return ImageViewer2d(self.figure_id, self.new_figure,
 self.pixels).render(**kwargs)
 else:
 raise ValueError("Only 2D images are currently supported")

def view_image_landmarks(image, channels, masked, group,
 with_labels, without_labels, figure_id, new_figure,
 interpolation, alpha, render_lines, line_colour,
 line_style, line_width, render_markers, marker_style,
 marker_size, marker_face_colour, marker_edge_colour,
 marker_edge_width, render_numbering,
 numbers_horizontal_align, numbers_vertical_align,
 numbers_font_name, numbers_font_size,
 numbers_font_style, numbers_font_weight,
 numbers_font_colour, render_legend, legend_title,
 legend_font_name, legend_font_style, legend_font_size,
 legend_font_weight, legend_marker_scale,
 legend_location, legend_bbox_to_anchor,
 legend_border_axes_pad, legend_n_columns,
 legend_horizontal_spacing, legend_vertical_spacing,
 legend_border, legend_border_padding, legend_shadow,
 legend_rounded_corners, render_axes, axes_font_name,
 axes_font_size, axes_font_style, axes_font_weight,
 axes_x_limits, axes_y_limits, figure_size):
 r"""
 This is a helper method that abstracts away the fact that viewing
 images and masked images is identical apart from the mask. Therefore,
 we do the class check in this method and then proceed identically whether
 the image is masked or not.

 See the documentation for _view_2d on Image or _view_2d on MaskedImage
 for information about the parameters.
 """
 import matplotlib.pyplot as plt

 if not image.has_landmarks:
 raise ValueError('Image does not have landmarks attached, unable '
 'to view landmarks.')

 # Render self
 from menpo.image import MaskedImage
 if isinstance(image, MaskedImage):
 self_view = image.view(figure_id=figure_id, new_figure=new_figure,
 channels=channels, masked=masked,
 interpolation=interpolation, alpha=alpha)
 else:
 self_view = image.view(figure_id=figure_id, new_figure=new_figure,
 channels=channels,
 interpolation=interpolation, alpha=alpha)

 # Make sure axes are constrained to the image size
 if axes_x_limits is None:
 axes_x_limits = [0, image.width - 1]
 if axes_y_limits is None:
 axes_y_limits = [0, image.height - 1]

 # Render landmarks
 landmark_view = None # initialize viewer object
 # useful in order to visualize the legend only for the last axis object
 render_legend_tmp = False
 for i, ax in enumerate(self_view.axes_list):
 # set current axis
 plt.sca(ax)
 # show legend only for the last axis object
 if i == len(self_view.axes_list) - 1:
 render_legend_tmp = render_legend

 # viewer
 landmark_view = image.landmarks[group].view(
 with_labels=with_labels, without_labels=without_labels,
 figure_id=self_view.figure_id, new_figure=False,
 image_view=True, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend_tmp, legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size)

 return landmark_view

class MultipleImageViewer(ImageViewer):

 def __init__(self, figure_id, new_figure, dimensions, pixels_list,
 channels=None, mask=None):
 super(MultipleImageViewer, self).__init__(
 figure_id, new_figure, dimensions, pixels_list[0],
 channels=channels, mask=mask)
 pixels_list = [self._parse_channels(channels, p)[0]
 for p in pixels_list]
 self.pixels_list = [self._masked_pixels(p, mask)
 for p in pixels_list]

 def render(self, **kwargs):
 if self.dimensions == 2:
 if self.use_subplots:
 MultiImageSubplotsViewer2d(self.figure_id, self.new_figure,
 self.pixels_list).render(**kwargs)
 else:
 return MultiImageViewer2d(self.figure_id, self.new_figure,
 self.pixels_list).render(**kwargs)
 else:
 raise ValueError("Only 2D images are currently supported")

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/visualize/text_utils.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.visualize.text_utils

import sys

[docs]def progress_bar_str(percentage, bar_length=20, bar_marker='=', show_bar=True):
 r"""
 Returns an `str` of the specified progress percentage. The percentage is
 represented either in the form of a progress bar or in the form of a
 percentage number. It can be combined with the :func:`print_dynamic`
 function.

 Parameters

 percentage : `float`
 The progress percentage to be printed. It must be in the range
 ``[0, 1]``.
 bar_length : `int`, optional
 Defines the length of the bar in characters.
 bar_marker : `str`, optional
 Defines the marker character that will be used to fill the bar.
 show_bar : `bool`, optional
 If ``True``, the `str` includes the bar followed by the percentage,
 e.g. ``'[=====] 50%'``

 If ``False``, the `str` includes only the percentage,
 e.g. ``'50%'``

 Returns

 progress_str : `str`
 The progress percentage string that can be printed.

 Raises

 ValueError
 ``percentage`` is not in the range ``[0, 1]``
 ValueError
 ``bar_length`` must be an integer >= ``1``
 ValueError
 ``bar_marker`` must be a string of length 1

 Examples

 This for loop: ::

 n_iters = 2000
 for k in range(n_iters):
 print_dynamic(progress_bar_str(float(k) / (n_iters-1)))

 prints a progress bar of the form: ::

 [=============] 68%
 """
 if percentage < 0:
 raise ValueError("percentage is not in the range [0, 1]")
 elif percentage > 1:
 percentage = 1
 if not isinstance(bar_length, int) or bar_length < 1:
 raise ValueError("bar_length must be an integer >= 1")
 if not isinstance(bar_marker, str) or len(bar_marker) != 1:
 raise ValueError("bar_marker must be a string of length 1")
 # generate output string
 if show_bar:
 str_param = "[%-" + str(bar_length) + "s] %d%%"
 bar_percentage = int(percentage * bar_length)
 return str_param % (bar_marker * bar_percentage, percentage * 100)
 else:
 return "%d%%" % (percentage * 100)

[docs]def print_dynamic(str_to_print):
 r"""
 Prints dynamically the provided `str`, i.e. the `str` is printed and then
 the buffer gets flushed.

 Parameters

 str_to_print : `str`
 The string to print.
 """
 sys.stdout.write("\r%s" % str_to_print)
 sys.stdout.flush()

[docs]def print_bytes(num):
 r"""
 Converts bytes to a sensible format to be printed. For example: ::

 print_bytes(12345) returns '12.06 KB'
 print_bytes(123456789) returns '117.74 MB'

 Parameters

 num : `int`
 The size in bytes.

 Raises

 ValueError
 num must be int >= 0
 """
 if not isinstance(num, int) or num < 0:
 raise ValueError("num must be int >= 0")
 for x in ['bytes', 'KB', 'MB', 'GB']:
 if num < 1024.0:
 return "{0:3.2f} {1:s}".format(num, x)
 num /= 1024.0
 return "{0:3.2f} {1:s}".format(num, 'TB')

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/visualize/widgets/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.visualize.widgets.base

import numpy as np
from collections import Sized

from menpo.visualize.viewmatplotlib import (MatplotlibImageViewer2d,
 sample_colours_from_colourmap)

from .options import (channel_options, format_channel_options,
 update_channel_options,
 landmark_options, format_landmark_options,
 update_landmark_options, info_print, format_info_print,
 animation_options, format_animation_options,
 save_figure_options, format_save_figure_options,
 features_options, format_features_options, viewer_options,
 format_viewer_options)
from .tools import logo, format_logo

This glyph import is called frequently during visualisation, so we ensure
that we only import it once
glyph = None

[docs]def visualize_pointclouds(pointclouds, figure_size=(10, 8), popup=False,
 browser_style='buttons'):
 r"""
 Widget that allows browsing through a `list` of :map:`PointCloud`,
 :map:`PointGraph` or :map:`TriMesh` or subclasses.

 The widget has options tabs regarding the renderer (lines, markers, figure,
 axes) and saving the figure to file.

 Parameters

 pointclouds : `list` of :map:`PointCloud` or :map:`PointGraph` or :map:`TriMesh` or subclasses
 The `list` of objects to be visualized.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : {``buttons``, ``slider``}, optional
 It defines whether the selector of the objects will have the form of
 plus/minus buttons or a slider.
 """
 import IPython.display as ipydisplay
 import IPython.html.widgets as ipywidgets
 print('Initializing...')

 # make sure that pointclouds is a list even with one pointcloud member
 if not isinstance(pointclouds, Sized):
 pointclouds = [pointclouds]

 # find number of pointclouds
 n_pointclouds = len(pointclouds)

 # initial options dictionaries
 lines_options = {'render_lines': True,
 'line_width': 1,
 'line_colour': ['r'],
 'line_style': '-'}
 markers_options = {'render_markers': True,
 'marker_size': 20,
 'marker_face_colour': ['r'],
 'marker_edge_colour': ['k'],
 'marker_style': 'o',
 'marker_edge_width': 1}
 figure_options = {'x_scale': 1.,
 'y_scale': 1.,
 'render_axes': False,
 'axes_font_name': 'sans-serif',
 'axes_font_size': 10,
 'axes_font_style': 'normal',
 'axes_font_weight': 'normal',
 'axes_x_limits': None,
 'axes_y_limits': None}
 viewer_options_default = {'lines': lines_options,
 'markers': markers_options,
 'figure': figure_options}
 index_selection_default = {'min': 0,
 'max': n_pointclouds-1,
 'step': 1,
 'index': 0}

 # define plot function
 def plot_function(name, value):
 import matplotlib.pyplot as plt
 # clear current figure, but wait until the new data to be displayed are
 # generated
 ipydisplay.clear_output(wait=True)

 # get selected pointcloud number
 im = 0
 if n_pointclouds > 1:
 im = pointcloud_number_wid.selected_values['index']

 # update info text widget
 update_info(pointclouds[im])

 # show pointcloud with selected options
 tmp1 = viewer_options_wid.selected_values[0]['lines']
 tmp2 = viewer_options_wid.selected_values[0]['markers']
 tmp3 = viewer_options_wid.selected_values[0]['figure']
 new_figure_size = (tmp3['x_scale'] * figure_size[0],
 tmp3['y_scale'] * figure_size[1])

 renderer = pointclouds[im].view(
 figure_id=save_figure_wid.renderer[0].figure_id,
 new_figure=False, image_view=axes_mode_wid.value == 1,
 render_lines=tmp1['render_lines'],
 line_colour=tmp1['line_colour'][0],
 line_style=tmp1['line_style'], line_width=tmp1['line_width'],
 render_markers=tmp2['render_markers'],
 marker_style=tmp2['marker_style'], marker_size=tmp2['marker_size'],
 marker_face_colour=tmp2['marker_face_colour'][0],
 marker_edge_colour=tmp2['marker_edge_colour'][0],
 marker_edge_width=tmp2['marker_edge_width'],
 render_axes=tmp3['render_axes'],
 axes_font_name=tmp3['axes_font_name'],
 axes_font_size=tmp3['axes_font_size'],
 axes_font_style=tmp3['axes_font_style'],
 axes_font_weight=tmp3['axes_font_weight'],
 axes_x_limits=tmp3['axes_x_limits'],
 axes_y_limits=tmp3['axes_y_limits'],
 figure_size=new_figure_size,
 label=None)

 plt.show()

 # save the current figure id
 save_figure_wid.renderer[0] = renderer

 # define function that updates info text
 def update_info(pointcloud):
 min_b, max_b = pointcloud.bounds()
 rang = pointcloud.range()
 cm = pointcloud.centre()
 info_wid.children[1].children[0].value = "> {} points.".\
 format(pointcloud.n_points)
 info_wid.children[1].children[1].value = "> Bounds: " \
 "[{0:.1f}-{1:.1f}]W, " \
 "[{2:.1f}-{3:.1f}]H.".\
 format(min_b[0], max_b[0], min_b[1], max_b[1])
 info_wid.children[1].children[2].value = "> Range: {0:.1f}W, " \
 "{1:.1f}H.".\
 format(rang[0], rang[1])
 info_wid.children[1].children[3].value = "> Centre of mass: " \
 "({0:.1f}, {1:.1f}).".\
 format(cm[0], cm[1])

 # viewer options widget
 axes_mode_wid = ipywidgets.RadioButtonsWidget(
 values={'Image': 1, 'Point cloud': 2}, description='Axes mode:',
 value=2)
 axes_mode_wid.on_trait_change(plot_function, 'value')
 viewer_options_wid = viewer_options(viewer_options_default,
 ['lines', 'markers', 'figure_one'],
 objects_names=None,
 plot_function=plot_function,
 toggle_show_visible=False,
 toggle_show_default=True)
 viewer_options_all = ipywidgets.ContainerWidget(children=[axes_mode_wid,
 viewer_options_wid])
 info_wid = info_print(n_bullets=4, toggle_show_default=True,
 toggle_show_visible=False)

 # save figure widget
 initial_renderer = MatplotlibImageViewer2d(figure_id=None, new_figure=True,
 image=np.zeros((10, 10)))
 save_figure_wid = save_figure_options(initial_renderer,
 toggle_show_default=True,
 toggle_show_visible=False)

 # create final widget
 if n_pointclouds > 1:
 # pointcloud selection slider
 pointcloud_number_wid = animation_options(
 index_selection_default, plot_function=plot_function,
 index_description='Pointcloud Number', index_minus_description='<',
 index_plus_description='>', index_style=browser_style,
 index_text_editable=True, loop_default=True, interval_default=0.3,
 toggle_show_title='Pointcloud Options', toggle_show_default=True,
 toggle_show_visible=False)

 # final widget
 logo_wid = ipywidgets.ContainerWidget(children=[logo(),
 pointcloud_number_wid])
 button_title = 'Pointclouds Menu'
 else:
 # final widget
 logo_wid = logo()
 button_title = 'Pointcloud Menu'
 # create popup widget if asked
 cont_wid = ipywidgets.TabWidget(children=[info_wid, viewer_options_all,
 save_figure_wid])
 if popup:
 wid = ipywidgets.PopupWidget(children=[logo_wid, cont_wid],
 button_text=button_title)
 else:
 wid = ipywidgets.ContainerWidget(children=[logo_wid, cont_wid])

 # display final widget
 ipydisplay.display(wid)

 # set final tab titles
 tab_titles = ['Info', 'Viewer options', 'Save figure']
 for (k, tl) in enumerate(tab_titles):
 wid.children[1].set_title(k, tl)

 # align-start the pointcloud number widget and the rest
 if n_pointclouds > 1:
 wid.add_class('align-start')

 # format options' widgets
 if n_pointclouds > 1:
 wid.children[0].remove_class('vbox')
 wid.children[0].add_class('hbox')
 format_animation_options(pointcloud_number_wid,
 index_text_width='1.0cm',
 container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_viewer_options(viewer_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False,
 suboptions_border_visible=True)
 format_info_print(info_wid, font_size_in_pt='10pt', container_padding='6px',
 container_margin='6px',
 container_border='1px solid gray',
 toggle_button_font_weight='bold', border_visible=False)
 format_save_figure_options(save_figure_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 tab_top_margin='0cm', border_visible=False)

 # Reset value to trigger initial visualization
 axes_mode_wid.value = 1

[docs]def visualize_landmarkgroups(landmarkgroups, figure_size=(10, 8), popup=False,
 browser_style='buttons'):
 r"""
 Widget that allows browsing through a `list` of :map:`LandmarkGroup`
 (or subclass) objects.

 The landmark groups can have a combination of different attributes, e.g.
 different labels, number of points etc. The widget has options tabs
 regarding the landmarks, the renderer (lines, markers, numbering, legend,
 figure, axes) and saving the figure to file.

 Parameters

 landmarkgroups : `list` of :map:`LandmarkGroup` or subclass
 The `list` of landmark groups to be visualized.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : {``buttons``, ``slider``}, optional
 It defines whether the selector of the landmark managers will have the
 form of plus/minus buttons or a slider.
 """
 import IPython.display as ipydisplay
 import IPython.html.widgets as ipywidgets
 print('Initializing...')

 # make sure that landmarkgroups is a list even with one landmark group
 # member
 if not isinstance(landmarkgroups, list):
 landmarkgroups = [landmarkgroups]

 # find number of landmarkgroups
 n_landmarkgroups = len(landmarkgroups)

 # find all available groups and the respective labels from all the landmarks
 # that are passed in
 all_groups = []
 all_labels = []
 groups_l = 0
 for i, l in enumerate(landmarkgroups):
 labels_l = l.labels
 if labels_l not in all_labels:
 groups_l += 1
 all_groups.append(str(groups_l))
 all_labels.append(labels_l)

 # get initial line colours for each available group
 line_colours = []
 for l in all_labels:
 if len(l) == 1:
 line_colours.append(['r'])
 else:
 line_colours.append(sample_colours_from_colourmap(len(l), 'jet'))

 # initial options dictionaries
 landmark_options_default = {'render_landmarks': True,
 'group_keys': ['0'],
 'labels_keys': [landmarkgroups[0].labels],
 'group': None,
 'with_labels': None}
 index_selection_default = {'min': 0,
 'max': n_landmarkgroups-1,
 'step': 1,
 'index': 0}
 markers_options = {'render_markers': True,
 'marker_size': 20,
 'marker_face_colour': ['r'],
 'marker_edge_colour': ['k'],
 'marker_style': 'o',
 'marker_edge_width': 1}
 numbering_options = {'render_numbering': False,
 'numbers_font_name': 'sans-serif',
 'numbers_font_size': 10,
 'numbers_font_style': 'normal',
 'numbers_font_weight': 'normal',
 'numbers_font_colour': ['k'],
 'numbers_horizontal_align': 'center',
 'numbers_vertical_align': 'bottom'}
 legend_options = {'render_legend': True,
 'legend_title': '',
 'legend_font_name': 'sans-serif',
 'legend_font_style': 'normal',
 'legend_font_size': 10,
 'legend_font_weight': 'normal',
 'legend_marker_scale': 1.,
 'legend_location': 2,
 'legend_bbox_to_anchor': (1.05, 1.),
 'legend_border_axes_pad': 1.,
 'legend_n_columns': 1,
 'legend_horizontal_spacing': 1.,
 'legend_vertical_spacing': 1.,
 'legend_border': True,
 'legend_border_padding': 0.5,
 'legend_shadow': False,
 'legend_rounded_corners': False}
 figure_options = {'x_scale': 1.,
 'y_scale': 1.,
 'render_axes': False,
 'axes_font_name': 'sans-serif',
 'axes_font_size': 10,
 'axes_font_style': 'normal',
 'axes_font_weight': 'normal',
 'axes_x_limits': None,
 'axes_y_limits': None}
 viewer_options_default = []
 for i in range(len(all_labels)):
 lines_options_default = {'render_lines': True,
 'line_width': 1,
 'line_colour': line_colours[i],
 'line_style': '-'}
 tmp = {'lines': lines_options_default,
 'markers': markers_options,
 'numbering': numbering_options,
 'legend': legend_options,
 'figure': figure_options}
 viewer_options_default.append(tmp)

 # Define plot function
 def plot_function(name, value):
 import matplotlib.pyplot as plt
 # clear current figure, but wait until the new data to be displayed are
 # generated
 ipydisplay.clear_output(wait=True)

 # get selected pointcloud number
 im = 0
 if n_landmarkgroups > 1:
 im = landmark_number_wid.selected_values['index']

 # update info text widget
 update_info(landmarkgroups[im])

 # show landmarks with selected options
 group_idx = all_labels.index(landmarkgroups[im].labels)
 tmp1 = viewer_options_wid.selected_values[group_idx]['lines']
 tmp2 = viewer_options_wid.selected_values[group_idx]['markers']
 tmp3 = viewer_options_wid.selected_values[group_idx]['numbering']
 tmp4 = viewer_options_wid.selected_values[group_idx]['legend']
 tmp5 = viewer_options_wid.selected_values[group_idx]['figure']
 new_figure_size = (tmp5['x_scale'] * figure_size[0],
 tmp5['y_scale'] * figure_size[1])
 n_labels = len(landmark_options_wid.selected_values['with_labels'])

 renderer = landmarkgroups[im].view(
 with_labels=landmark_options_wid.selected_values['with_labels'],
 figure_id=save_figure_wid.renderer[0].figure_id,
 new_figure=False, image_view=axes_mode_wid.value == 1,
 render_lines=tmp1['render_lines'],
 line_colour=tmp1['line_colour'][:n_labels],
 line_style=tmp1['line_style'], line_width=tmp1['line_width'],
 render_markers=tmp2['render_markers'],
 marker_style=tmp2['marker_style'], marker_size=tmp2['marker_size'],
 marker_face_colour=tmp2['marker_face_colour'][0],
 marker_edge_colour=tmp2['marker_edge_colour'][0],
 marker_edge_width=tmp2['marker_edge_width'],
 render_numbering=tmp3['render_numbering'],
 numbers_font_name=tmp3['numbers_font_name'],
 numbers_font_size=tmp3['numbers_font_size'],
 numbers_font_style=tmp3['numbers_font_style'],
 numbers_font_weight=tmp3['numbers_font_weight'],
 numbers_font_colour=tmp3['numbers_font_colour'][0],
 numbers_horizontal_align=tmp3['numbers_horizontal_align'],
 numbers_vertical_align=tmp3['numbers_vertical_align'],
 legend_n_columns=tmp4['legend_n_columns'],
 legend_border_axes_pad=tmp4['legend_border_axes_pad'],
 legend_rounded_corners=tmp4['legend_rounded_corners'],
 legend_title=tmp4['legend_title'],
 legend_horizontal_spacing=tmp4['legend_horizontal_spacing'],
 legend_shadow=tmp4['legend_shadow'],
 legend_location=tmp4['legend_location'],
 legend_font_name=tmp4['legend_font_name'],
 legend_bbox_to_anchor=tmp4['legend_bbox_to_anchor'],
 legend_border=tmp4['legend_border'],
 legend_marker_scale=tmp4['legend_marker_scale'],
 legend_vertical_spacing=tmp4['legend_vertical_spacing'],
 legend_font_weight=tmp4['legend_font_weight'],
 legend_font_size=tmp4['legend_font_size'],
 render_legend=tmp4['render_legend'],
 legend_font_style=tmp4['legend_font_style'],
 legend_border_padding=tmp4['legend_border_padding'],
 render_axes=tmp5['render_axes'],
 axes_font_name=tmp5['axes_font_name'],
 axes_font_size=tmp5['axes_font_size'],
 axes_font_style=tmp5['axes_font_style'],
 axes_font_weight=tmp5['axes_font_weight'],
 axes_x_limits=tmp5['axes_x_limits'],
 axes_y_limits=tmp5['axes_y_limits'],
 figure_size=new_figure_size)

 plt.show()

 # save the current figure id
 save_figure_wid.renderer[0] = renderer

 # define function that updates info text
 def update_info(landmarkgroup):
 min_b, max_b = landmarkgroup.values()[0].bounds()
 rang = landmarkgroup.values()[0].range()
 cm = landmarkgroup.values()[0].centre()

 info_wid.children[1].children[0].value = "> {} landmark points.".\
 format(landmarkgroup.values()[0].n_points)
 info_wid.children[1].children[1].value = "> Bounds: " \
 "[{0:.1f}-{1:.1f}]W, " \
 "[{2:.1f}-{3:.1f}]H.".\
 format(min_b[0], max_b[0], min_b[1], max_b[1])
 info_wid.children[1].children[2].value = "> Range: {0:.1f}W, " \
 "{1:.1f}H.".\
 format(rang[0], rang[1])
 info_wid.children[1].children[3].value = "> Centre of mass: " \
 "({0:.1f}, {1:.1f}).".\
 format(cm[0], cm[1])
 info_wid.children[1].children[4].value = "> Norm is {0:.2f}.".\
 format(landmarkgroup.values()[0].norm())

 # create options widgets
 # The landmarks checkbox default value if the first image doesn't have
 # landmarks
 landmark_options_wid = landmark_options(landmark_options_default,
 plot_function=plot_function,
 toggle_show_default=True,
 toggle_show_visible=False)

 # viewer options widget
 axes_mode_wid = ipywidgets.RadioButtonsWidget(
 values={'Image': 1, 'Point cloud': 2}, description='Axes mode:',
 value=2)
 axes_mode_wid.on_trait_change(plot_function, 'value')
 viewer_options_wid = viewer_options(viewer_options_default,
 ['lines', 'markers', 'numbering',
 'legend', 'figure_one'],
 objects_names=all_groups,
 plot_function=plot_function,
 toggle_show_visible=False,
 toggle_show_default=True,
 labels=all_labels)
 # make the selection dropdown invisible, as ti is controlled by the
 # landmarks selection
 viewer_options_wid.children[1].children[0].visible = False
 viewer_options_all = ipywidgets.ContainerWidget(children=[axes_mode_wid,
 viewer_options_wid])
 info_wid = info_print(n_bullets=5,
 toggle_show_default=True, toggle_show_visible=False)

 # save figure widget
 initial_renderer = MatplotlibImageViewer2d(figure_id=None, new_figure=True,
 image=np.zeros((10, 10)))
 save_figure_wid = save_figure_options(initial_renderer,
 toggle_show_default=True,
 toggle_show_visible=False)

 # define function that updates options' widgets state
 def update_widgets(name, value):
 # get new groups and labels, update landmark options and format them
 im = 0
 if n_landmarkgroups > 1:
 im = landmark_number_wid.selected_values['index']
 group_l = all_labels.index(landmarkgroups[im].labels)
 update_landmark_options(landmark_options_wid, [str(group_l)],
 [landmarkgroups[im].labels], plot_function)
 format_landmark_options(landmark_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)

 # set correct group to viewer options' selection
 viewer_options_wid.children[1].children[0].value = \
 all_labels.index(landmarkgroups[im].labels)
 landmark_options_wid.children[2].children[0].on_trait_change(update_widgets,
 'value')

 # create final widget
 if n_landmarkgroups > 1:
 # landmark selection slider
 landmark_number_wid = animation_options(
 index_selection_default, plot_function=plot_function,
 update_function=update_widgets, index_description='Shape Number',
 index_minus_description='<', index_plus_description='>',
 index_style=browser_style, index_text_editable=True,
 loop_default=True, interval_default=0.3,
 toggle_show_title='Shape Options', toggle_show_default=True,
 toggle_show_visible=False)

 # final widget
 logo_wid = ipywidgets.ContainerWidget(children=[logo(),
 landmark_number_wid])
 button_title = 'Shapes Menu'
 else:
 # final widget
 logo_wid = logo()
 button_title = 'Shape Menu'
 # create popup widget if asked
 cont_wid = ipywidgets.TabWidget(children=[info_wid, landmark_options_wid,
 viewer_options_all,
 save_figure_wid])
 if popup:
 wid = ipywidgets.PopupWidget(children=[logo_wid, cont_wid],
 button_text=button_title)
 else:
 wid = ipywidgets.ContainerWidget(children=[logo_wid, cont_wid])

 # display final widget
 ipydisplay.display(wid)

 # set final tab titles
 tab_titles = ['Info', 'Landmarks options', 'Viewer options',
 'Save figure']
 for (k, tl) in enumerate(tab_titles):
 wid.children[1].set_title(k, tl)

 # align-start the image number widget and the rest
 if n_landmarkgroups > 1:
 wid.add_class('align-start')

 # format options' widgets
 if n_landmarkgroups > 1:
 wid.children[0].remove_class('vbox')
 wid.children[0].add_class('hbox')
 format_animation_options(landmark_number_wid, index_text_width='1.0cm',
 container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_landmark_options(landmark_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_viewer_options(viewer_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False,
 suboptions_border_visible=True)
 format_info_print(info_wid, font_size_in_pt='10pt', container_padding='6px',
 container_margin='6px',
 container_border='1px solid gray',
 toggle_button_font_weight='bold', border_visible=False)
 format_save_figure_options(save_figure_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 tab_top_margin='0cm', border_visible=False)

 # update widgets' state for shape number 0
 update_widgets('', 0)

 # Reset value to trigger initial visualization
 axes_mode_wid.value = 1

[docs]def visualize_landmarks(landmarks, figure_size=(10, 8), popup=False,
 browser_style='buttons'):
 r"""
 Widget that allows browsing through a `list` of :map:`LandmarkManager`
 (or subclass) objects.

 The managers can have a combination of different attributes, e.g. different
 landmark groups and labels etc. The widget has options tabs regarding the
 landmarks, the renderer (lines, markers, numbering, legend, figure, axes)
 and saving the figure to file.

 Parameters

 landmarks : `list` of :map:`LandmarkManager` or subclass
 The `list` of landmark managers to be visualized.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : {``buttons``, ``slider``}, optional
 It defines whether the selector of the landmark managers will have the
 form of plus/minus buttons or a slider.
 """
 import IPython.display as ipydisplay
 import IPython.html.widgets as ipywidgets
 print('Initializing...')

 # make sure that landmarks (groups) is a list even with one landmark group
 # member
 if not isinstance(landmarks, list):
 landmarks = [landmarks]

 # find number of landmarks
 n_landmarks = len(landmarks)

 # find initial groups and labels that will be passed to the landmark options
 # widget creation
 first_has_landmarks = landmarks[0].n_groups != 0
 if first_has_landmarks:
 initial_groups_keys, initial_labels_keys = \
 _extract_group_labels_landmarks(landmarks[0])
 else:
 initial_groups_keys = [' ']
 initial_labels_keys = [[' ']]

 # find all available groups and the respective labels from all the landmarks
 # that are passed in
 all_groups = []
 all_labels = []
 for l in landmarks:
 groups_l, labels_l = _extract_group_labels_landmarks(l)
 for i, g in enumerate(groups_l):
 if g not in all_groups:
 all_groups.append(g)
 all_labels.append(labels_l[i])

 # get initial line colours for each available group
 line_colours = []
 for l in all_labels:
 if len(l) == 1:
 line_colours.append(['r'])
 else:
 line_colours.append(sample_colours_from_colourmap(len(l), 'jet'))

 # initial options dictionaries
 landmark_options_default = {'render_landmarks': first_has_landmarks,
 'group_keys': initial_groups_keys,
 'labels_keys': initial_labels_keys,
 'group': None,
 'with_labels': None}
 index_selection_default = {'min': 0,
 'max': n_landmarks-1,
 'step': 1,
 'index': 0}
 markers_options = {'render_markers': True,
 'marker_size': 20,
 'marker_face_colour': ['r'],
 'marker_edge_colour': ['k'],
 'marker_style': 'o',
 'marker_edge_width': 1}
 numbering_options = {'render_numbering': False,
 'numbers_font_name': 'sans-serif',
 'numbers_font_size': 10,
 'numbers_font_style': 'normal',
 'numbers_font_weight': 'normal',
 'numbers_font_colour': ['k'],
 'numbers_horizontal_align': 'center',
 'numbers_vertical_align': 'bottom'}
 legend_options = {'render_legend': True,
 'legend_title': '',
 'legend_font_name': 'sans-serif',
 'legend_font_style': 'normal',
 'legend_font_size': 10,
 'legend_font_weight': 'normal',
 'legend_marker_scale': 1.,
 'legend_location': 2,
 'legend_bbox_to_anchor': (1.05, 1.),
 'legend_border_axes_pad': 1.,
 'legend_n_columns': 1,
 'legend_horizontal_spacing': 1.,
 'legend_vertical_spacing': 1.,
 'legend_border': True,
 'legend_border_padding': 0.5,
 'legend_shadow': False,
 'legend_rounded_corners': False}
 figure_options = {'x_scale': 1.,
 'y_scale': 1.,
 'render_axes': False,
 'axes_font_name': 'sans-serif',
 'axes_font_size': 10,
 'axes_font_style': 'normal',
 'axes_font_weight': 'normal',
 'axes_x_limits': None,
 'axes_y_limits': None}
 viewer_options_default = []
 for i in range(len(all_groups)):
 lines_options_default = {'render_lines': True,
 'line_width': 1,
 'line_colour': line_colours[i],
 'line_style': '-'}
 tmp = {'lines': lines_options_default,
 'markers': markers_options,
 'numbering': numbering_options,
 'legend': legend_options,
 'figure': figure_options}
 viewer_options_default.append(tmp)

 # Define plot function
 def plot_function(name, value):
 import matplotlib.pyplot as plt
 # clear current figure, but wait until the new data to be displayed are
 # generated
 ipydisplay.clear_output(wait=True)

 # get selected pointcloud number
 im = 0
 if n_landmarks > 1:
 im = landmark_number_wid.selected_values['index']

 # update info text widget
 update_info(landmarks[im],
 landmark_options_wid.selected_values['group'])

 # show landmarks with selected options
 group_idx = all_groups.index(landmark_options_wid.selected_values['group'])
 tmp1 = viewer_options_wid.selected_values[group_idx]['lines']
 tmp2 = viewer_options_wid.selected_values[group_idx]['markers']
 tmp3 = viewer_options_wid.selected_values[group_idx]['numbering']
 tmp4 = viewer_options_wid.selected_values[group_idx]['legend']
 tmp5 = viewer_options_wid.selected_values[group_idx]['figure']
 new_figure_size = (tmp5['x_scale'] * figure_size[0],
 tmp5['y_scale'] * figure_size[1])
 n_labels = len(landmark_options_wid.selected_values['with_labels'])

 sel_group = landmark_options_wid.selected_values['group']
 renderer = landmarks[im][sel_group].view(
 with_labels=landmark_options_wid.selected_values['with_labels'],
 figure_id=save_figure_wid.renderer[0].figure_id,
 new_figure=False, image_view=axes_mode_wid.value == 1,
 render_lines=tmp1['render_lines'],
 line_colour=tmp1['line_colour'][:n_labels],
 line_style=tmp1['line_style'], line_width=tmp1['line_width'],
 render_markers=tmp2['render_markers'],
 marker_style=tmp2['marker_style'], marker_size=tmp2['marker_size'],
 marker_face_colour=tmp2['marker_face_colour'][0],
 marker_edge_colour=tmp2['marker_edge_colour'][0],
 marker_edge_width=tmp2['marker_edge_width'],
 render_numbering=tmp3['render_numbering'],
 numbers_font_name=tmp3['numbers_font_name'],
 numbers_font_size=tmp3['numbers_font_size'],
 numbers_font_style=tmp3['numbers_font_style'],
 numbers_font_weight=tmp3['numbers_font_weight'],
 numbers_font_colour=tmp3['numbers_font_colour'][0],
 numbers_horizontal_align=tmp3['numbers_horizontal_align'],
 numbers_vertical_align=tmp3['numbers_vertical_align'],
 legend_n_columns=tmp4['legend_n_columns'],
 legend_border_axes_pad=tmp4['legend_border_axes_pad'],
 legend_rounded_corners=tmp4['legend_rounded_corners'],
 legend_title=tmp4['legend_title'],
 legend_horizontal_spacing=tmp4['legend_horizontal_spacing'],
 legend_shadow=tmp4['legend_shadow'],
 legend_location=tmp4['legend_location'],
 legend_font_name=tmp4['legend_font_name'],
 legend_bbox_to_anchor=tmp4['legend_bbox_to_anchor'],
 legend_border=tmp4['legend_border'],
 legend_marker_scale=tmp4['legend_marker_scale'],
 legend_vertical_spacing=tmp4['legend_vertical_spacing'],
 legend_font_weight=tmp4['legend_font_weight'],
 legend_font_size=tmp4['legend_font_size'],
 render_legend=tmp4['render_legend'],
 legend_font_style=tmp4['legend_font_style'],
 legend_border_padding=tmp4['legend_border_padding'],
 render_axes=tmp5['render_axes'],
 axes_font_name=tmp5['axes_font_name'],
 axes_font_size=tmp5['axes_font_size'],
 axes_font_style=tmp5['axes_font_style'],
 axes_font_weight=tmp5['axes_font_weight'],
 axes_x_limits=tmp5['axes_x_limits'],
 axes_y_limits=tmp5['axes_y_limits'],
 figure_size=new_figure_size)

 plt.show()

 # save the current figure id
 save_figure_wid.renderer[0] = renderer

 # define function that updates info text
 def update_info(landmarks, group):
 if group != ' ':
 min_b, max_b = landmarks[group][None].bounds()
 rang = landmarks[group][None].range()
 cm = landmarks[group][None].centre()
 info_wid.children[1].children[0].value = "> {} landmark points.".\
 format(landmarks[group][None].n_points)
 info_wid.children[1].children[1].value = "> Bounds: " \
 "[{0:.1f}-{1:.1f}]W, " \
 "[{2:.1f}-{3:.1f}]H.".\
 format(min_b[0], max_b[0], min_b[1], max_b[1])
 info_wid.children[1].children[2].value = "> Range: {0:.1f}W, " \
 "{1:.1f}H.".\
 format(rang[0], rang[1])
 info_wid.children[1].children[3].value = "> Centre of mass: " \
 "({0:.1f}, {1:.1f}).".\
 format(cm[0], cm[1])
 info_wid.children[1].children[4].value = "> Norm is {0:.2f}.".\
 format(landmarks[group][None].norm())
 else:
 info_wid.children[1].children[0].value = "There are no landmarks."
 info_wid.children[1].children[1].value = ""
 info_wid.children[1].children[2].value = ""
 info_wid.children[1].children[3].value = ""
 info_wid.children[1].children[4].value = ""

 # create options widgets
 # The landmarks checkbox default value if the first image doesn't have
 # landmarks
 landmark_options_wid = landmark_options(landmark_options_default,
 plot_function=plot_function,
 toggle_show_default=True,
 toggle_show_visible=False)
 # if only a single landmark manager is passed in and it doesn't have
 # landmarks, then landmarks checkbox should be disabled
 landmark_options_wid.children[1].disabled = not first_has_landmarks

 # viewer options widget
 axes_mode_wid = ipywidgets.RadioButtonsWidget(
 values={'Image': 1, 'Point cloud': 2}, description='Axes mode:',
 value=2)
 axes_mode_wid.on_trait_change(plot_function, 'value')
 viewer_options_wid = viewer_options(viewer_options_default,
 ['lines', 'markers', 'numbering',
 'legend', 'figure_one'],
 objects_names=all_groups,
 plot_function=plot_function,
 toggle_show_visible=False,
 toggle_show_default=True,
 labels=all_labels)
 # make the selection dropdown invisible, as ti is controlled by the
 # landmarks selection
 viewer_options_wid.children[1].children[0].visible = False
 viewer_options_all = ipywidgets.ContainerWidget(children=[axes_mode_wid,
 viewer_options_wid])
 info_wid = info_print(n_bullets=5,
 toggle_show_default=True, toggle_show_visible=False)

 # save figure widget
 initial_renderer = MatplotlibImageViewer2d(figure_id=None, new_figure=True,
 image=np.zeros((10, 10)))
 save_figure_wid = save_figure_options(initial_renderer,
 toggle_show_default=True,
 toggle_show_visible=False)

 # define function that updates options' widgets state
 def update_widgets(name, value):
 # get new groups and labels, update landmark options and format them
 im = 0
 if n_landmarks > 1:
 im = landmark_number_wid.selected_values['index']
 group_keys, labels_keys = _extract_group_labels_landmarks(landmarks[im])
 update_landmark_options(landmark_options_wid, group_keys,
 labels_keys, plot_function)
 format_landmark_options(landmark_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)

 # change group on viewer_options
 viewer_options_wid.children[1].children[0].value = \
 all_groups.index(landmark_options_wid.selected_values['group'])

 # create final widget
 if n_landmarks > 1:
 # landmark selection slider
 landmark_number_wid = animation_options(
 index_selection_default, plot_function=plot_function,
 update_function=update_widgets, index_description='Shape Number',
 index_minus_description='<', index_plus_description='>',
 index_style=browser_style, index_text_editable=True,
 loop_default=True, interval_default=0.3,
 toggle_show_title='Shape Options', toggle_show_default=True,
 toggle_show_visible=False)

 # final widget
 logo_wid = ipywidgets.ContainerWidget(children=[logo(),
 landmark_number_wid])
 button_title = 'Shapes Menu'
 else:
 # final widget
 logo_wid = logo()
 button_title = 'Shape Menu'
 # create popup widget if asked
 cont_wid = ipywidgets.TabWidget(children=[info_wid, landmark_options_wid,
 viewer_options_all,
 save_figure_wid])
 if popup:
 wid = ipywidgets.PopupWidget(children=[logo_wid, cont_wid],
 button_text=button_title)
 else:
 wid = ipywidgets.ContainerWidget(children=[logo_wid, cont_wid])

 # display final widget
 ipydisplay.display(wid)

 # set final tab titles
 tab_titles = ['Info', 'Landmarks options', 'Viewer options',
 'Save figure']
 for (k, tl) in enumerate(tab_titles):
 wid.children[1].set_title(k, tl)

 # align-start the image number widget and the rest
 if n_landmarks > 1:
 wid.add_class('align-start')

 # update viewer options
 def update_viewer_options(name, value):
 # set correct group at viewer options' selection
 if cont_wid.selected_index == 2:
 viewer_options_wid.children[1].children[0].value = \
 all_groups.index(landmark_options_wid.selected_values['group'])
 cont_wid.on_trait_change(update_viewer_options, 'selected_index')

 # format options' widgets
 if n_landmarks > 1:
 wid.children[0].remove_class('vbox')
 wid.children[0].add_class('hbox')
 format_animation_options(landmark_number_wid, index_text_width='1.0cm',
 container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_landmark_options(landmark_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_viewer_options(viewer_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False,
 suboptions_border_visible=True)
 format_info_print(info_wid, font_size_in_pt='10pt', container_padding='6px',
 container_margin='6px',
 container_border='1px solid gray',
 toggle_button_font_weight='bold', border_visible=False)
 format_save_figure_options(save_figure_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 tab_top_margin='0cm', border_visible=False)

 # update widgets' state for image number 0
 update_widgets('', 0)

 # Reset value to trigger initial visualization
 axes_mode_wid.value = 1

[docs]def visualize_images(images, figure_size=(10, 8), popup=False,
 browser_style='buttons'):
 r"""
 Widget that allows browsing through a `list` of :map:`Image` (or subclass)
 objects.

 The images can have a combination of different attributes, e.g. masked or
 not, landmarked or not, without multiple landmark groups and labels etc.
 The widget has options tabs regarding the visualized channels, the
 landmarks, the renderer (lines, markers, numbering, legend, figure, axes)
 and saving the figure to file.

 Parameters

 images : `list` of :map:`Image` or subclass
 The `list` of images to be visualized.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : {``buttons``, ``slider``}, optional
 It defines whether the selector of the images will have the form of
 plus/minus buttons or a slider.
 """
 from menpo.image import MaskedImage
 import IPython.display as ipydisplay
 import IPython.html.widgets as ipywidgets
 print('Initializing...')

 # make sure that images is a list even with one image member
 if not isinstance(images, Sized):
 images = [images]

 # find number of images
 n_images = len(images)

 # find initial groups and labels that will be passed to the landmark options
 # widget creation
 first_has_landmarks = images[0].landmarks.n_groups != 0
 if first_has_landmarks:
 initial_groups_keys, initial_labels_keys = \
 _extract_groups_labels(images[0])
 else:
 initial_groups_keys = [' ']
 initial_labels_keys = [[' ']]

 # find all available groups and the respective labels from all the landmarks
 # that are passed in
 all_groups = []
 all_labels = []
 for l in images:
 groups_l, labels_l = _extract_groups_labels(l)
 for i, g in enumerate(groups_l):
 if g not in all_groups:
 all_groups.append(g)
 all_labels.append(labels_l[i])

 # get initial line colours for each available group
 line_colours = []
 for l in all_labels:
 if len(l) == 1:
 line_colours.append(['r'])
 else:
 line_colours.append(sample_colours_from_colourmap(len(l), 'jet'))

 # initial options dictionaries
 channels_default = 0
 if images[0].n_channels == 3:
 channels_default = None
 index_selection_default = {'min': 0,
 'max': n_images-1,
 'step': 1,
 'index': 0}
 channels_options_default = {'n_channels': images[0].n_channels,
 'image_is_masked': isinstance(images[0],
 MaskedImage),
 'channels': channels_default,
 'glyph_enabled': False,
 'glyph_block_size': 3,
 'glyph_use_negative': False,
 'sum_enabled': False,
 'masked_enabled': isinstance(images[0],
 MaskedImage)}
 landmark_options_default = {'render_landmarks': first_has_landmarks,
 'group_keys': initial_groups_keys,
 'labels_keys': initial_labels_keys,
 'group': None,
 'with_labels': None}
 image_options = {'interpolation': 'bilinear',
 'alpha': 1.0}
 markers_options = {'render_markers': True,
 'marker_size': 20,
 'marker_face_colour': ['r'],
 'marker_edge_colour': ['k'],
 'marker_style': 'o',
 'marker_edge_width': 1}
 numbering_options = {'render_numbering': False,
 'numbers_font_name': 'sans-serif',
 'numbers_font_size': 10,
 'numbers_font_style': 'normal',
 'numbers_font_weight': 'normal',
 'numbers_font_colour': ['k'],
 'numbers_horizontal_align': 'center',
 'numbers_vertical_align': 'bottom'}
 legend_options = {'render_legend': True,
 'legend_title': '',
 'legend_font_name': 'sans-serif',
 'legend_font_style': 'normal',
 'legend_font_size': 10,
 'legend_font_weight': 'normal',
 'legend_marker_scale': 1.,
 'legend_location': 2,
 'legend_bbox_to_anchor': (1.05, 1.),
 'legend_border_axes_pad': 1.,
 'legend_n_columns': 1,
 'legend_horizontal_spacing': 1.,
 'legend_vertical_spacing': 1.,
 'legend_border': True,
 'legend_border_padding': 0.5,
 'legend_shadow': False,
 'legend_rounded_corners': False}
 figure_options = {'x_scale': 1.,
 'y_scale': 1.,
 'render_axes': False,
 'axes_font_name': 'sans-serif',
 'axes_font_size': 10,
 'axes_font_style': 'normal',
 'axes_font_weight': 'normal',
 'axes_x_limits': None,
 'axes_y_limits': None}
 viewer_options_default = []
 for i in range(len(all_groups)):
 lines_options_default = {'render_lines': True,
 'line_width': 1,
 'line_colour': line_colours[i],
 'line_style': '-'}
 tmp = {'lines': lines_options_default,
 'markers': markers_options,
 'numbering': numbering_options,
 'legend': legend_options,
 'figure': figure_options,
 'image': image_options}
 viewer_options_default.append(tmp)

 # define plot function
 def plot_function(name, value):
 # clear current figure, but wait until the new data to be displayed are
 # generated
 ipydisplay.clear_output(wait=True)

 # get selected image number
 im = 0
 if n_images > 1:
 im = image_number_wid.selected_values['index']

 # update info text widget
 image_has_landmarks = images[im].landmarks.n_groups != 0
 image_is_masked = isinstance(images[im], MaskedImage)
 update_info(images[im], image_is_masked, image_has_landmarks,
 landmark_options_wid.selected_values['group'])
 n_labels = len(landmark_options_wid.selected_values['with_labels'])

 # show image with selected options
 group_idx = all_groups.index(landmark_options_wid.selected_values['group'])
 tmp1 = viewer_options_wid.selected_values[group_idx]['lines']
 tmp2 = viewer_options_wid.selected_values[group_idx]['markers']
 tmp3 = viewer_options_wid.selected_values[group_idx]['numbering']
 tmp4 = viewer_options_wid.selected_values[group_idx]['legend']
 tmp5 = viewer_options_wid.selected_values[group_idx]['figure']
 tmp6 = viewer_options_wid.selected_values[group_idx]['image']
 new_figure_size = (tmp5['x_scale'] * figure_size[0],
 tmp5['y_scale'] * figure_size[1])
 renderer = _visualize(
 images[im], save_figure_wid.renderer[0],
 landmark_options_wid.selected_values['render_landmarks'],
 channel_options_wid.selected_values['image_is_masked'],
 channel_options_wid.selected_values['masked_enabled'],
 channel_options_wid.selected_values['channels'],
 channel_options_wid.selected_values['glyph_enabled'],
 channel_options_wid.selected_values['glyph_block_size'],
 channel_options_wid.selected_values['glyph_use_negative'],
 channel_options_wid.selected_values['sum_enabled'],
 landmark_options_wid.selected_values['group'],
 landmark_options_wid.selected_values['with_labels'],
 tmp1['render_lines'], tmp1['line_style'], tmp1['line_width'],
 tmp1['line_colour'][:n_labels], tmp2['render_markers'],
 tmp2['marker_style'], tmp2['marker_size'],
 tmp2['marker_edge_width'], tmp2['marker_edge_colour'][0],
 tmp2['marker_face_colour'][0], tmp3['render_numbering'],
 tmp3['numbers_font_name'], tmp3['numbers_font_size'],
 tmp3['numbers_font_style'], tmp3['numbers_font_weight'],
 tmp3['numbers_font_colour'][0], tmp3['numbers_horizontal_align'],
 tmp3['numbers_vertical_align'], tmp4['legend_n_columns'],
 tmp4['legend_border_axes_pad'], tmp4['legend_rounded_corners'],
 tmp4['legend_title'], tmp4['legend_horizontal_spacing'],
 tmp4['legend_shadow'], tmp4['legend_location'],
 tmp4['legend_font_name'], tmp4['legend_bbox_to_anchor'],
 tmp4['legend_border'], tmp4['legend_marker_scale'],
 tmp4['legend_vertical_spacing'], tmp4['legend_font_weight'],
 tmp4['legend_font_size'], tmp4['render_legend'],
 tmp4['legend_font_style'], tmp4['legend_border_padding'],
 new_figure_size, tmp5['render_axes'], tmp5['axes_font_name'],
 tmp5['axes_font_size'], tmp5['axes_font_style'],
 tmp5['axes_x_limits'], tmp5['axes_y_limits'],
 tmp5['axes_font_weight'], tmp6['interpolation'], tmp6['alpha'])

 # save the current figure id
 save_figure_wid.renderer[0] = renderer

 # define function that updates info text
 def update_info(img, image_is_masked, image_has_landmarks, group):
 # Prepare masked (or non-masked) string
 masked_str = 'Masked Image' if image_is_masked else 'Image'
 # get image path, if available
 path_str = img.path if hasattr(img, 'path') else 'No path available.'
 # Display masked pixels if image is masked
 masked_pixels_str = (r'{} masked pixels (attached mask {:.1%} true)'.
 format(img.n_true_pixels(),
 img.mask.proportion_true())
 if image_is_masked else '')
 # Display number of landmarks if image is landmarked
 landmarks_str = (r'{} landmark points.'.
 format(img.landmarks[group].lms.n_points)
 if image_has_landmarks else '')

 info_wid.children[1].children[0].value = "> {} of size {} with {} " \
 "channel{}".\
 format(masked_str, img._str_shape, img.n_channels,
 's' * (img.n_channels > 1))
 info_wid.children[1].children[1].value = "> Path: '{}'".format(path_str)
 info_wid.children[1].children[2].visible = image_is_masked
 info_wid.children[1].children[2].value = "> {}".format(masked_pixels_str)
 info_wid.children[1].children[3].value = "> min={:.3f}, max={:.3f}.".\
 format(img.pixels.min(), img.pixels.max())
 info_wid.children[1].children[4].visible = image_has_landmarks
 info_wid.children[1].children[4].value = "> {}".format(landmarks_str)

 # channel options widget
 channel_options_wid = channel_options(channels_options_default,
 plot_function=plot_function,
 toggle_show_default=True,
 toggle_show_visible=False)

 # landmarks options widget
 # The landmarks checkbox default value if the first image doesn't have
 # landmarks
 landmark_options_wid = landmark_options(landmark_options_default,
 plot_function=plot_function,
 toggle_show_default=True,
 toggle_show_visible=False)
 # if only a single image is passed in and it doesn't have landmarks, then
 # landmarks checkbox should be disabled
 landmark_options_wid.children[1].disabled = not first_has_landmarks

 # viewer options widget
 viewer_options_wid = viewer_options(viewer_options_default,
 ['lines', 'markers', 'numbering',
 'legend', 'figure_one', 'image'],
 objects_names=all_groups,
 plot_function=plot_function,
 toggle_show_visible=False,
 toggle_show_default=True,
 labels=all_labels)
 # make the selection dropdown invisible, as ti is controlled by the
 # landmarks selection
 viewer_options_wid.children[1].children[0].visible = False
 info_wid = info_print(n_bullets=5, toggle_show_default=True,
 toggle_show_visible=False)

 # save figure widget
 initial_renderer = MatplotlibImageViewer2d(figure_id=None, new_figure=True,
 image=np.zeros((10, 10)))
 save_figure_wid = save_figure_options(initial_renderer,
 toggle_show_default=True,
 toggle_show_visible=False)

 # define function that updates options' widgets state
 def update_widgets(name, value):
 # set channels = 0 to make sure that when plotting is triggered by the
 # update_landmark_options, we don't get an error for not enough channels
 tmp_channels = channel_options_wid.selected_values['channels']
 channel_options_wid.selected_values['channels'] = 0

 # get new groups and labels, update landmark options and format them
 im = 0
 if n_images > 1:
 im = image_number_wid.selected_values['index']
 group_keys, labels_keys = _extract_groups_labels(images[im])
 update_landmark_options(landmark_options_wid, group_keys,
 labels_keys, plot_function)
 format_landmark_options(landmark_options_wid,
 container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)

 # update channel options
 channel_options_wid.selected_values['channels'] = tmp_channels
 update_channel_options(channel_options_wid,
 n_channels=images[im].n_channels,
 image_is_masked=isinstance(images[im],
 MaskedImage))

 # set correct group at viewer options' selection
 if not group_keys == [' ']:
 viewer_options_wid.children[1].children[0].value = \
 all_groups.index(landmark_options_wid.selected_values['group'])

 # create final widget
 if n_images > 1:
 # image selection slider
 image_number_wid = animation_options(index_selection_default,
 plot_function=plot_function,
 update_function=update_widgets,
 index_description='Image Number',
 index_minus_description='<',
 index_plus_description='>',
 index_style=browser_style,
 index_text_editable=True,
 loop_default=True,
 interval_default=0.3,
 toggle_show_title='Image Options',
 toggle_show_default=True,
 toggle_show_visible=False)

 # final widget
 logo_wid = ipywidgets.ContainerWidget(children=[logo(),
 image_number_wid])
 button_title = 'Images Menu'
 else:
 # final widget
 logo_wid = logo()
 button_title = 'Image Menu'
 # create popup widget if asked
 cont_wid = ipywidgets.TabWidget(children=[info_wid, channel_options_wid,
 landmark_options_wid,
 viewer_options_wid,
 save_figure_wid])
 if popup:
 wid = ipywidgets.PopupWidget(children=[logo_wid, cont_wid],
 button_text=button_title)
 else:
 wid = ipywidgets.ContainerWidget(children=[logo_wid, cont_wid])

 # display final widget
 ipydisplay.display(wid)

 # set final tab titles
 tab_titles = ['Info', 'Channels options', 'Landmarks options',
 'Viewer options', 'Save figure']
 for (k, tl) in enumerate(tab_titles):
 wid.children[1].set_title(k, tl)

 # update viewer options
 def update_viewer_options(name, value):
 # set correct group at viewer options' selection
 if cont_wid.selected_index == 3:
 viewer_options_wid.children[1].children[0].value = \
 all_groups.index(landmark_options_wid.selected_values['group'])
 cont_wid.on_trait_change(update_viewer_options, 'selected_index')

 # align-start the image number widget and the rest
 if n_images > 1:
 wid.add_class('align-start')

 # format options' widgets
 if n_images > 1:
 wid.children[0].remove_class('vbox')
 wid.children[0].add_class('hbox')
 format_animation_options(image_number_wid, index_text_width='1.0cm',
 container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_channel_options(channel_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_landmark_options(landmark_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False)
 format_viewer_options(viewer_options_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 border_visible=False,
 suboptions_border_visible=True)
 format_info_print(info_wid, font_size_in_pt='10pt', container_padding='6px',
 container_margin='6px',
 container_border='1px solid gray',
 toggle_button_font_weight='bold', border_visible=False)
 format_save_figure_options(save_figure_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 tab_top_margin='0cm', border_visible=False)

 # update widgets' state for image number 0
 update_widgets('', 0)

 # Reset value to trigger initial visualization
 viewer_options_wid.children[1].children[1].children[3].children[1].children[0].value = False

[docs]def save_matplotlib_figure(renderer, popup=True):
 r"""
 Widget that allows to save a figure, which was generated with Matplotlib,
 to file.

 Parameters

 renderer : :map:`MatplotlibRenderer`
 The Matplotlib renderer object.
 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 """
 import IPython.display as ipydisplay
 import IPython.html.widgets as ipywidgets
 # Create sub-widgets
 logo_wid = logo()
 save_figure_wid = save_figure_options(renderer, toggle_show_default=True,
 toggle_show_visible=False)

 # Create final widget
 if popup:
 wid = ipywidgets.PopupWidget(children=[logo_wid, save_figure_wid],
 button_text='Save Figure')
 # set width of popup widget
 wid.set_css({'width': '11cm'}, selector='modal')
 else:
 wid = ipywidgets.ContainerWidget(children=[logo_wid, save_figure_wid])

 # Display widget
 ipydisplay.display(wid)

 # Format widgets
 format_save_figure_options(save_figure_wid, container_padding='6px',
 container_margin='6px',
 container_border='1px solid black',
 toggle_button_font_weight='bold',
 tab_top_margin='0cm', border_visible=True)
 format_logo(logo_wid, border_visible=False)

[docs]def features_selection(popup=True):
 r"""
 Widget that allows selecting a features function and its options. The
 widget supports all features from :ref:`api-feature-index` and has a
 preview tab. It returns a `list` of length 1 with the selected features
 function closure.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.

 Returns

 features_function : `list` of length ``1``
 The function closure of the features function using `functools.partial`.
 So the function can be called as: ::

 features_image = features_function[0](image)

 """
 import IPython.display as ipydisplay
 import IPython.html.widgets as ipywidgets
 # Create sub-widgets
 logo_wid = logo()
 features_options_wid = features_options(toggle_show_default=True,
 toggle_show_visible=False)
 features_wid = ipywidgets.ContainerWidget(children=[logo_wid,
 features_options_wid])
 select_but = ipywidgets.ButtonWidget(description='Select')

 # Create final widget
 if popup:
 wid = ipywidgets.PopupWidget(children=[features_wid, select_but],
 button_text='Features Selection')
 else:
 wid = ipywidgets.ContainerWidget(children=[features_wid, select_but])

 # function for select button
 def select_function(name):
 wid.close()
 output.pop(0)
 output.append(features_options_wid.function)
 select_but.on_click(select_function)

 # Display widget
 ipydisplay.display(wid)

 # Format widgets
 format_features_options(features_options_wid, border_visible=True)
 format_logo(logo_wid, border_visible=False)
 # set popup width
 if popup:
 wid.set_css({
 'width': '13cm'}, selector='modal')
 # align logo at the end
 features_wid.add_class('align-end')
 # align select button at the centre
 wid.add_class('align-center')

 # Initialize output with empty list. It needs to be a list so that
 # it's mutable and synchronizes with frontend.
 output = [features_options_wid.function]

 return output

def _visualize(image, renderer, render_landmarks, image_is_masked,
 masked_enabled, channels, glyph_enabled, glyph_block_size,
 glyph_use_negative, sum_enabled, group, with_labels,
 render_lines, line_style, line_width, line_colour,
 render_markers, marker_style, marker_size,
 marker_edge_width, marker_edge_colour, marker_face_colour,
 render_numbering, numbers_font_name, numbers_font_size,
 numbers_font_style, numbers_font_weight, numbers_font_colour,
 numbers_horizontal_align, numbers_vertical_align,
 legend_n_columns, legend_border_axes_pad, legend_rounded_corners,
 legend_title, legend_horizontal_spacing, legend_shadow,
 legend_location, legend_font_name, legend_bbox_to_anchor,
 legend_border, legend_marker_scale, legend_vertical_spacing,
 legend_font_weight, legend_font_size, render_legend,
 legend_font_style, legend_border_padding, figure_size,
 render_axes, axes_font_name, axes_font_size, axes_font_style,
 axes_x_limits, axes_y_limits, axes_font_weight, interpolation,
 alpha):
 import matplotlib.pyplot as plt

 global glyph
 if glyph is None:
 from menpo.visualize.image import glyph

 # This makes the code shorter for dealing with masked images vs non-masked
 # images
 mask_arguments = ({'masked': masked_enabled}
 if image_is_masked else {})

 # plot
 if render_landmarks and not group == ' ':
 # show image with landmarks
 if glyph_enabled or sum_enabled:
 # image, landmarks, masked, glyph
 renderer = glyph(image, vectors_block_size=glyph_block_size,
 use_negative=glyph_use_negative,
 channels=channels).\
 view_landmarks(
 group=group, with_labels=with_labels, without_labels=None,
 figure_id=renderer.figure_id, new_figure=False,
 render_lines=render_lines, line_colour=line_colour,
 line_style=line_style, line_width=line_width,
 render_markers=render_markers, marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend, legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits,
 figure_size=figure_size, interpolation=interpolation,
 alpha=alpha, **mask_arguments)
 else:
 renderer = image.view_landmarks(
 channels=channels, group=group, with_labels=with_labels,
 without_labels=None, figure_id=renderer.figure_id,
 new_figure=False, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend, legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size,
 interpolation=interpolation, alpha=alpha, **mask_arguments)
 else:
 # either there are not any landmark groups selected or they won't
 # be displayed
 if glyph_enabled or sum_enabled:
 # image, not landmarks, masked, glyph
 renderer = glyph(image, vectors_block_size=glyph_block_size,
 use_negative=glyph_use_negative,
 channels=channels).view(
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size,
 interpolation=interpolation, alpha=alpha, **mask_arguments)
 else:
 # image, not landmarks, masked, not glyph
 renderer = image.view(
 channels=channels, render_axes=render_axes,
 axes_font_name=axes_font_name, axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size,
 interpolation=interpolation, alpha=alpha, **mask_arguments)

 # show plot
 plt.show()

 return renderer

def _extract_groups_labels(image):
 r"""
 Function that extracts the groups and labels from an image's landmarks.

 Parameters

 image : :map:`Image` or subclass
 The input image object.

 Returns

 group_keys : `list` of `str`
 The list of landmark groups found.

 labels_keys : `list` of `str`
 The list of lists of each landmark group's labels.
 """
 groups_keys, labels_keys = _extract_group_labels_landmarks(image.landmarks)
 return groups_keys, labels_keys

def _extract_group_labels_landmarks(landmark_manager):
 r"""
 Function that extracts the groups and labels from a landmark manager object.

 Parameters

 landmark_manager : :map:`LandmarkManager` or subclass
 The input landmark manager object.

 Returns

 group_keys : `list` of `str`
 The list of landmark groups found.

 labels_keys : `list` of `str`
 The list of lists of each landmark group's labels.
 """
 groups_keys = landmark_manager.keys()
 if len(groups_keys) == 0:
 groups_keys = [' ']
 labels_keys = [[' ']]
 else:
 labels_keys = [landmark_manager[g].keys() for g in groups_keys]
 return groups_keys, labels_keys

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/visualize/viewmatplotlib.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.visualize.viewmatplotlib

import numpy as np

from menpo.visualize.base import Renderer

[docs]class MatplotlibRenderer(Renderer):
 r"""
 Abstract class for rendering visualizations using Matplotlib.

 Parameters

 figure_id : `int` or ``None``
 A figure id or ``None``. ``None`` assumes we maintain the Matplotlib
 state machine and use `plt.gcf()`.
 new_figure : `bool`
 If ``True``, it creates a new figure to render on.
 """

 def __init__(self, figure_id, new_figure):
 super(MatplotlibRenderer, self).__init__(figure_id, new_figure)

 # Set up data for saving
 self._supported_ext = self.figure.canvas.get_supported_filetypes().keys()
 # Create the extensions map, have to add . in front of the extensions
 # and map every extension to the savefig method
 n_ext = len(self._supported_ext)
 func_list = [lambda obj, fp: self.figure.savefig(fp, **obj)] * n_ext
 self._extensions_map = dict(zip(['.' + s for s in self._supported_ext],
 func_list))

[docs] def get_figure(self):
 r"""
 Gets the figure specified by the combination of ``self.figure_id`` and
 ``self.new_figure``. If ``self.figure_id == None`` then ``plt.gcf()``
 is used. ``self.figure_id`` is also set to the correct id of the figure
 if a new figure is created.

 Returns

 figure : Matplotlib figure object
 The figure we will be rendering on.
 """
 import matplotlib.pyplot as plt

 if self.new_figure or self.figure_id is not None:
 self.figure = plt.figure(self.figure_id)
 else:
 self.figure = plt.gcf()

 self.figure_id = self.figure.number

 return self.figure

[docs] def save_figure(self, filename, format='png', dpi=None, face_colour='w',
 edge_colour='w', orientation='portrait',
 paper_type='letter', transparent=False, pad_inches=0.1,
 overwrite=False):
 r"""
 Method for saving the figure of the current `figure_id` to file.

 Parameters

 filename : `str` or `file`-like object
 The string path or file-like object to save the figure at/into.
 format : `str`
 The format to use. This must match the file path if the file path is
 a `str`.
 dpi : `int` > 0 or ``None``, optional
 The resolution in dots per inch.
 face_colour : See Below, optional
 The face colour of the figure rectangle.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of len 3

 edge_colour : See Below, optional
 The edge colour of the figure rectangle.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of len 3

 orientation : {``portrait``, ``landscape``}, optional
 The page orientation.
 paper_type : See Below, optional
 The type of the paper.
 Example options ::

 {``letter``, ``legal``, ``executive``, ``ledger``,
 ``a0`` through ``a10``, ``b0` through ``b10``}

 transparent : `bool`, optional
 If ``True``, the axes patches will all be transparent; the figure
 patch will also be transparent unless `face_colour` and/or
 `edge_colour` are specified. This is useful, for example, for
 displaying a plot on top of a coloured background on a web page.
 The transparency of these patches will be restored to their original
 values upon exit of this function.
 pad_inches : `float`, optional
 Amount of padding around the figure.
 overwrite : `bool`, optional
 If ``True``, the file will be overwritten if it already exists.
 """
 from menpo.io.output.base import _export

 save_fig_args = {'dpi': dpi, 'facecolour': face_colour,
 'edgecolour': edge_colour, 'orientation': orientation,
 'papertype': paper_type, 'format': format,
 'transparent': transparent, 'pad_inches': pad_inches,
 'bbox_inches': 'tight', 'frameon': None}
 # Use the export code so that we have a consistent interface
 _export(save_fig_args, filename, self._extensions_map, format,
 overwrite=overwrite)

[docs] def save_figure_widget(self, popup=True):
 r"""
 Method for saving the figure of the current ``figure_id`` to file using
 :func:`menpo.visualize.widgets.base.save_matplotlib_figure` widget.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 """
 from menpo.visualize.widgets import save_matplotlib_figure
 save_matplotlib_figure(self, popup=popup)

class MatplotlibSubplots(object):

 def _subplot_layout(self, num_subplots):
 if num_subplots < 2:
 return [1, 1]
 while self._is_prime(num_subplots) and num_subplots > 4:
 num_subplots += 1
 p = self._factor(num_subplots)
 if len(p) == 1:
 p.insert(0, 1)
 return p
 while len(p) > 2:
 if len(p) >= 4:
 p[0] = p[0] * p[-2]
 p[1] = p[1] * p[-1]
 del p[-2:]
 else:
 p[0] = p[0] * p[1]
 del p[1]
 p.sort()
 # Reformat if the column/row ratio is too large: we want a roughly
 # square design
 while (p[1] / p[0]) > 2.5:
 p = self._subplot_layout(num_subplots + 1)
 return p

 def _factor(self, n):
 gaps = [1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6]
 length, cycle = 11, 3
 f, fs, next_ind = 2, [], 0
 while f * f <= n:
 while n % f == 0:
 fs.append(f)
 n /= f
 f += gaps[next_ind]
 next_ind += 1
 if next_ind == length:
 next_ind = cycle
 if n > 1:
 fs.append(n)
 return fs

 def _is_prime(self, n):
 if n == 2 or n == 3:
 return True
 if n < 2 or n % 2 == 0:
 return False
 if n < 9:
 return True
 if n % 3 == 0:
 return False
 r = int(n ** 0.5)
 f = 5
 while f <= r:
 if n % f == 0:
 return False
 if n % (f + 2) == 0:
 return False
 f += 6
 return True

class MatplotlibImageViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, image):
 super(MatplotlibImageViewer2d, self).__init__(figure_id, new_figure)
 self.image = image
 self.axes_list = []

 def render(self, interpolation='bilinear', alpha=1., render_axes=False,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8)):
 import matplotlib.cm as cm
 import matplotlib.pyplot as plt

 if len(self.image.shape) == 2: # Single channels are viewed in Gray
 plt.imshow(self.image, cmap=cm.Greys_r, interpolation=interpolation,
 alpha=alpha)
 else:
 plt.imshow(self.image, interpolation=interpolation, alpha=alpha)

 # render axes options
 if render_axes:
 plt.axis('on')
 # set font options
 for l in (plt.gca().get_xticklabels() +
 plt.gca().get_yticklabels()):
 l.set_fontsize(axes_font_size)
 l.set_fontname(axes_font_name)
 l.set_fontstyle(axes_font_style)
 l.set_fontweight(axes_font_weight)
 else:
 plt.axis('off')
 plt.xticks([])
 plt.yticks([])

 # Set axes limits
 if axes_x_limits is not None:
 plt.xlim(axes_x_limits)
 if axes_y_limits is not None:
 plt.ylim(axes_y_limits[::-1])

 # Set figure size
 if figure_size is not None:
 self.figure.set_size_inches(np.asarray(figure_size))

 # Store axes object
 ax = plt.gca()
 self.axes_list = [ax]

 return self

class MatplotlibImageSubplotsViewer2d(MatplotlibRenderer, MatplotlibSubplots):
 def __init__(self, figure_id, new_figure, image):
 super(MatplotlibImageSubplotsViewer2d, self).__init__(figure_id,
 new_figure)
 self.image = image
 self.num_subplots = self.image.shape[2]
 self.plot_layout = self._subplot_layout(self.num_subplots)
 self.axes_list = []

 def render(self, interpolation='bilinear', alpha=1., render_axes=False,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8)):
 import matplotlib.cm as cm
 import matplotlib.pyplot as plt

 p = self.plot_layout
 for i in range(self.image.shape[2]):
 ax = plt.subplot(p[0], p[1], 1 + i)
 self.axes_list.append(ax)

 # render axes options
 if render_axes:
 plt.axis('on')
 # set font options
 for l in (plt.gca().get_xticklabels() +
 plt.gca().get_yticklabels()):
 l.set_fontsize(axes_font_size)
 l.set_fontname(axes_font_name)
 l.set_fontstyle(axes_font_style)
 l.set_fontweight(axes_font_weight)
 else:
 plt.axis('off')
 plt.xticks([])
 plt.yticks([])

 # Set axes limits
 if axes_x_limits is not None:
 plt.xlim(axes_x_limits)
 if axes_y_limits is not None:
 plt.ylim(axes_y_limits[::-1])

 # show image
 plt.imshow(self.image[:, :, i], cmap=cm.Greys_r,
 interpolation=interpolation, alpha=alpha)

 # Set figure size
 if figure_size is not None:
 self.figure.set_size_inches(np.asarray(figure_size))
 return self

class MatplotlibPointGraphViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, points, adjacency_array):
 super(MatplotlibPointGraphViewer2d, self).__init__(figure_id,
 new_figure)
 self.points = points
 self.adjacency_array = adjacency_array

 def render(self, image_view=False, render_lines=True, line_colour='r',
 line_style='-', line_width=1, render_markers=True,
 marker_style='o', marker_size=20, marker_face_colour='r',
 marker_edge_colour='k', marker_edge_width=1., render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8),
 label=None):
 from matplotlib import collections as mc
 import matplotlib.cm as cm
 import matplotlib.pyplot as plt

 # Flip x and y for viewing if points are tied to an image
 points = self.points[:, ::-1] if image_view else self.points

 ax = plt.gca()

 # Check if graph has edges to be rendered (for example a PointCLoud
 # won't have any edges)
 if render_lines and np.array(self.adjacency_array).shape[0] > 0:
 # Get edges to be rendered
 lines = zip(points[self.adjacency_array[:, 0], :],
 points[self.adjacency_array[:, 1], :])

 # Draw line objects
 lc = mc.LineCollection(lines, colors=line_colour,
 linestyles=line_style, linewidths=line_width,
 cmap=cm.jet, label=label)
 ax.add_collection(lc)

 # If a label is defined, it should only be applied to the lines, of
 # a PointGraph, which represent each one of the labels, unless a
 # PointCLoud is passed in.
 label = None
 ax.autoscale()

 # Scatter
 if render_markers:
 plt.scatter(points[:, 0], points[:, 1], cmap=cm.jet,
 c=marker_face_colour, s=marker_size,
 marker=marker_style, linewidths=marker_edge_width,
 edgecolors=marker_edge_colour,
 facecolors=marker_face_colour, label=label)

 # Apply axes options
 if render_axes:
 plt.axis('on')
 # set font options
 for l in (plt.gca().get_xticklabels() +
 plt.gca().get_yticklabels()):
 l.set_fontsize(axes_font_size)
 l.set_fontname(axes_font_name)
 l.set_fontstyle(axes_font_style)
 l.set_fontweight(axes_font_weight)
 else:
 plt.axis('off')
 plt.xticks([])
 plt.yticks([])

 # Plot on image mode
 if image_view:
 plt.gca().set_aspect('equal', adjustable='box')
 plt.gca().invert_yaxis()

 # Set axes limits
 if axes_x_limits is not None:
 plt.xlim(axes_x_limits)
 if axes_y_limits is not None:
 plt.ylim(axes_y_limits[::-1]) if image_view \
 else plt.ylim(axes_y_limits)

 # Set figure size
 if figure_size is not None:
 self.figure.set_size_inches(np.asarray(figure_size))

 return self

class MatplotlibLandmarkViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, group, pointcloud,
 labels_to_masks):
 super(MatplotlibLandmarkViewer2d, self).__init__(figure_id, new_figure)
 self.group = group
 self.pointcloud = pointcloud
 self.labels_to_masks = labels_to_masks

 def render(self, image_view=False, render_lines=True, line_colour='r',
 line_style='-', line_width=1, render_markers=True,
 marker_style='o', marker_size=20, marker_face_colour='r',
 marker_edge_colour='k', marker_edge_width=1.,
 render_numbering=False, numbers_horizontal_align='center',
 numbers_vertical_align='bottom',
 numbers_font_name='sans-serif', numbers_font_size=10,
 numbers_font_style='normal',
 numbers_font_weight='normal', numbers_font_colour='k',
 render_legend=True, legend_title='',
 legend_font_name='sans-serif',
 legend_font_style='normal', legend_font_size=10,
 legend_font_weight='normal', legend_marker_scale=None,
 legend_location=2, legend_bbox_to_anchor=(1.05, 1.),
 legend_border_axes_pad=None, legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None, legend_border=True,
 legend_border_padding=None, legend_shadow=False,
 legend_rounded_corners=False, render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8)):
 import matplotlib.pyplot as plt
 import matplotlib.lines as mlines
 from menpo.shape import PointGraph
 # Regarding the labels colours, we may get passed either no colours (in
 # which case we generate random colours) or a single colour to colour
 # all the labels with
 # TODO: All marker and line options could be defined as lists...
 n_labels = len(self.labels_to_masks)
 line_colour = _check_colours_list(
 render_lines, line_colour, n_labels,
 'Must pass a list of line colours with length n_labels or a single '
 'line colour for all labels.')
 marker_face_colour = _check_colours_list(
 render_markers, marker_face_colour, n_labels,
 'Must pass a list of marker face colours with length n_labels or '
 'a single marker face colour for all labels.')
 marker_edge_colour = _check_colours_list(
 render_markers, marker_edge_colour, n_labels,
 'Must pass a list of marker edge colours with length n_labels or '
 'a single marker edge colour for all labels.')

 # Get pointcloud of each label
 sub_pointclouds = self._build_sub_pointclouds()

 # Initialize legend_handles list
 legend_handles = []

 for i, (label, pc) in enumerate(sub_pointclouds):
 # Set kwargs assuming that the pointclouds are viewed using
 # Matplotlib
 pc.points = pc.points[:, ::-1] if image_view else pc.points
 pc.view(figure_id=self.figure_id, image_view=False,
 render_lines=render_lines, line_colour=line_colour[i],
 line_style=line_style, line_width=line_width,
 render_markers=render_markers, marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour[i],
 marker_edge_colour=marker_edge_colour[i],
 marker_edge_width=marker_edge_width,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=None,
 axes_y_limits=None, figure_size=figure_size)

 ax = plt.gca()

 if render_numbering:
 for k, p in enumerate(pc.points):
 ax.annotate(str(k), xy=(p[0], p[1]),
 horizontalalignment=numbers_horizontal_align,
 verticalalignment=numbers_vertical_align,
 size=numbers_font_size,
 family=numbers_font_name,
 fontstyle=numbers_font_style,
 fontweight=numbers_font_weight,
 color=numbers_font_colour)

 # set legend entry
 if render_legend:
 tmp_line = line_style
 if not render_lines or not isinstance(pc, PointGraph):
 tmp_line = 'None'
 tmp_marker = marker_style if render_markers else 'None'
 legend_handles.append(
 mlines.Line2D([], [], linewidth=line_width,
 linestyle=tmp_line, color=line_colour[i],
 marker=tmp_marker,
 markersize=marker_size ** 0.5,
 markeredgewidth=marker_edge_width,
 markeredgecolor=marker_edge_colour[i],
 markerfacecolor=marker_face_colour[i],
 label='{0}: {1}'.format(self.group, label)))

 # Plot on image mode
 if image_view:
 plt.gca().set_aspect('equal', adjustable='box')
 plt.gca().invert_yaxis()

 if render_legend:
 # Options related to legend's font
 prop = {'family': legend_font_name, 'size': legend_font_size,
 'style': legend_font_style,
 'weight': legend_font_weight}

 # Render legend
 ax.legend(handles=legend_handles, title=legend_title, prop=prop,
 loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor,
 borderaxespad=legend_border_axes_pad,
 ncol=legend_n_columns,
 columnspacing=legend_horizontal_spacing,
 labelspacing=legend_vertical_spacing,
 frameon=legend_border,
 borderpad=legend_border_padding, shadow=legend_shadow,
 fancybox=legend_rounded_corners,
 markerscale=legend_marker_scale)

 # Apply axes options
 if render_axes:
 plt.axis('on')
 # set font options
 for l in (plt.gca().get_xticklabels() +
 plt.gca().get_yticklabels()):
 l.set_fontsize(axes_font_size)
 l.set_fontname(axes_font_name)
 l.set_fontstyle(axes_font_style)
 l.set_fontweight(axes_font_weight)
 else:
 plt.axis('off')
 plt.xticks([])
 plt.yticks([])

 # Set axes limits
 if axes_x_limits is not None:
 plt.xlim(axes_x_limits)
 if axes_y_limits is not None:
 plt.ylim(axes_y_limits[::-1]) if image_view \
 else plt.ylim(axes_y_limits)

 # Set figure size
 if figure_size is not None:
 self.figure.set_size_inches(np.asarray(figure_size))

 return self

 def _build_sub_pointclouds(self):
 sub_pointclouds = []
 for label, indices in self.labels_to_masks.iteritems():
 mask = self.labels_to_masks[label]
 sub_pointclouds.append((label, self.pointcloud.from_mask(mask)))
 return sub_pointclouds

class MatplotlibAlignmentViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, alignment_transform):
 super(MatplotlibAlignmentViewer2d, self).__init__(figure_id,
 new_figure)
 self.alignment_transform = alignment_transform

 def render(self, image=False, **kwargs):
 r"""
 Visualize how points are affected by the warp in 2 dimensions.
 """
 import matplotlib.pyplot as plt
 source = self.alignment_transform.source.points
 target = self.alignment_transform.target.points
 # a factor by which the minimum and maximum x and y values of the warp
 # will be increased by.
 x_margin_factor, y_margin_factor = 0.5, 0.5
 # the number of x and y samples to take
 n_x, n_y = 50, 50
 # {x y}_{min max} is the actual bounds on either source or target
 # landmarks
 x_min, y_min = np.vstack(
 [target.min(0), source.min(0)]).min(0)
 x_max, y_max = np.vstack(
 [target.max(0), source.max(0)]).max(0)
 x_margin = x_margin_factor * (x_max - x_min)
 y_margin = y_margin_factor * (y_max - y_min)
 # {x y}_{min max}_m is the bound once it has been grown by the factor
 # of the spread in that dimension
 x_min_m = x_min - x_margin
 x_max_m = x_max + x_margin
 y_min_m = y_min - y_margin
 y_max_m = y_max + y_margin
 # build sample points for the selected region
 x = np.linspace(x_min_m, x_max_m, n_x)
 y = np.linspace(y_min_m, y_max_m, n_y)
 xx, yy = np.meshgrid(x, y)
 sample_points = np.concatenate(
 [xx.reshape([-1, 1]), yy.reshape([-1, 1])], axis=1)
 warped_points = self.alignment_transform.apply(sample_points)
 delta = warped_points - sample_points
 # plot the sample points result
 x, y, = 0, 1
 if image:
 # if we are overlaying points onto an image,
 # we have to account for the fact that axis 0 is typically
 # called 'y' and axis 1 is typically called 'x'. Flip them here
 x, y = y, x
 plt.quiver(sample_points[:, x], sample_points[:, y], delta[:, x],
 delta[:, y])
 delta = target - source
 # plot how the landmarks move from source to target
 plt.quiver(source[:, x], source[:, y], delta[:, x],
 delta[:, y], angles='xy', scale_units='xy', scale=1)
 # rescale to the bounds
 plt.xlim((x_min_m, x_max_m))
 plt.ylim((y_min_m, y_max_m))
 if image:
 # if we are overlaying points on an image, axis0 (the 'y' axis)
 # is flipped.
 plt.gca().invert_yaxis()
 return self

class MatplotlibGraphPlotter(MatplotlibRenderer):

 def __init__(self, figure_id, new_figure, x_axis, y_axis, title=None,
 legend_entries=None, x_label=None, y_label=None,
 x_axis_limits=None, y_axis_limits=None):
 super(MatplotlibGraphPlotter, self).__init__(figure_id, new_figure)
 self.x_axis = x_axis
 self.y_axis = y_axis
 if legend_entries is None:
 legend_entries = ["Curve {}".format(i) for i in range(len(y_axis))]
 self.legend_entries = legend_entries
 self.title = title
 self.x_label = x_label
 self.y_label = y_label
 self.x_axis_limits = x_axis_limits
 self.y_axis_limits = y_axis_limits

 def render(self, render_lines=True, line_colour='r',
 line_style='-', line_width=1, render_markers=True,
 marker_style='o', marker_size=20, marker_face_colour='r',
 marker_edge_colour='k', marker_edge_width=1.,
 render_legend=True, legend_title='',
 legend_font_name='sans-serif', legend_font_style='normal',
 legend_font_size=10, legend_font_weight='normal',
 legend_marker_scale=None, legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.), legend_border_axes_pad=None,
 legend_n_columns=1, legend_horizontal_spacing=None,
 legend_vertical_spacing=None, legend_border=True,
 legend_border_padding=None, legend_shadow=False,
 legend_rounded_corners=False, render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 figure_size=(10, 8), render_grid=True, grid_line_style='--',
 grid_line_width=1):
 import matplotlib.pyplot as plt

 # Check the viewer options that can be different for each plotted curve
 n_curves = len(self.y_axis)
 render_lines = _check_render_flag(render_lines, n_curves,
 'Must pass a list of different '
 'render_lines flag for each curve or '
 'a single render_lines flag for all '
 'curves.')
 render_markers = _check_render_flag(render_markers, n_curves,
 'Must pass a list of different '
 'render_markers flag for each '
 'curve or a single render_markers '
 'flag for all curves.')
 line_colour = _check_colours_list(
 True, line_colour, n_curves,
 'Must pass a list of line colours with length n_curves or a single '
 'line colour for all curves.')
 line_style = _check_colours_list(
 True, line_style, n_curves,
 'Must pass a list of line styles with length n_curves or a single '
 'line style for all curves.')
 line_width = _check_colours_list(
 True, line_width, n_curves,
 'Must pass a list of line widths with length n_curves or a single '
 'line width for all curves.')
 marker_style = _check_colours_list(
 True, marker_style, n_curves,
 'Must pass a list of marker styles with length n_curves or a '
 'single marker style for all curves.')
 marker_size = _check_colours_list(
 True, marker_size, n_curves,
 'Must pass a list of marker sizes with length n_curves or a single '
 'marker size for all curves.')
 marker_face_colour = _check_colours_list(
 True, marker_face_colour, n_curves,
 'Must pass a list of marker face colours with length n_curves or a '
 'single marker face colour for all curves.')
 marker_edge_colour = _check_colours_list(
 True, marker_edge_colour, n_curves,
 'Must pass a list of marker edge colours with length n_curves or a '
 'single marker edge colour for all curves.')
 marker_edge_width = _check_colours_list(
 True, marker_edge_width, n_curves,
 'Must pass a list of marker edge widths with length n_curves or a '
 'single marker edge width for all curves.')

 # plot
 ax = plt.gca()
 for i, y in enumerate(self.y_axis):
 linestyle = line_style[i]
 if not render_lines[i]:
 linestyle = 'None'
 marker = marker_style[i]
 if not render_markers[i]:
 marker = 'None'
 plt.plot(self.x_axis, y, color=line_colour[i],
 linestyle=linestyle,
 linewidth=line_width[i], marker=marker,
 markeredgecolor=marker_edge_colour[i],
 markerfacecolor=marker_face_colour[i],
 markeredgewidth=marker_edge_width[i],
 markersize=marker_size[i], label=self.legend_entries[i])

 if render_legend:
 # Options related to legend's font
 prop = {'family': legend_font_name, 'size': legend_font_size,
 'style': legend_font_style,
 'weight': legend_font_weight}

 # Render legend
 ax.legend(title=legend_title, prop=prop,
 loc=legend_location,
 bbox_to_anchor=legend_bbox_to_anchor,
 borderaxespad=legend_border_axes_pad,
 ncol=legend_n_columns,
 columnspacing=legend_horizontal_spacing,
 labelspacing=legend_vertical_spacing,
 frameon=legend_border, borderpad=legend_border_padding,
 shadow=legend_shadow, fancybox=legend_rounded_corners,
 markerscale=legend_marker_scale)

 # Apply axes options
 if render_axes:
 plt.axis('on')
 ax.set_xlabel(self.x_label, fontsize=axes_font_size,
 fontname=axes_font_name, fontstyle=axes_font_style,
 fontweight=axes_font_weight)
 ax.set_ylabel(self.y_label, fontsize=axes_font_size,
 fontname=axes_font_name, fontstyle=axes_font_style,
 fontweight=axes_font_weight)
 plt.title(self.title, fontsize=axes_font_size,
 fontname=axes_font_name, fontstyle=axes_font_style,
 fontweight=axes_font_weight)
 # set font options
 for l in (plt.gca().get_xticklabels() +
 plt.gca().get_yticklabels()):
 l.set_fontsize(axes_font_size)
 l.set_fontname(axes_font_name)
 l.set_fontstyle(axes_font_style)
 l.set_fontweight(axes_font_weight)
 else:
 plt.axis('off')
 plt.xticks([])
 plt.yticks([])

 # turn grid on/off
 if render_grid:
 plt.grid('on', linestyle=grid_line_style, linewidth=grid_line_width)
 else:
 plt.grid('off')

 # Set axes limits
 if self.x_axis_limits is not None:
 plt.xlim(self.x_axis_limits)
 if self.y_axis_limits is not None:
 plt.ylim(self.y_axis_limits)

 # Set figure size
 if figure_size is not None:
 self.figure.set_size_inches(np.asarray(figure_size))

 return self

class MatplotlibMultiImageViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, image_list):
 super(MatplotlibMultiImageViewer2d, self).__init__(figure_id,
 new_figure)
 self.image_list = image_list

 def render(self, interval=50, **kwargs):
 import matplotlib.pyplot as plt
 import matplotlib.cm as cm
 import matplotlib.animation as animation

 if len(self.image_list[0].shape) == 2:
 # Single channels are viewed in Gray
 _ax = plt.imshow(self.image_list[0], cmap=cm.Greys_r, **kwargs)
 else:
 _ax = plt.imshow(self.image_list[0], **kwargs)

 def init():
 return _ax,

 def animate(j):
 _ax.set_data(self.image_list[j])
 return _ax,

 self._ani = animation.FuncAnimation(self.figure, animate,
 init_func=init,
 frames=len(self.image_list),
 interval=interval, blit=True)
 return self

class MatplotlibMultiImageSubplotsViewer2d(MatplotlibRenderer,
 MatplotlibSubplots):
 def __init__(self, figure_id, new_figure, image_list):
 super(MatplotlibMultiImageSubplotsViewer2d, self).__init__(figure_id,
 new_figure)
 self.image_list = image_list
 self.num_subplots = self.image_list[0].shape[2]
 self.plot_layout = self._subplot_layout(self.num_subplots)

 def render(self, interval=50, **kwargs):
 import matplotlib.cm as cm
 import matplotlib.animation as animation
 import matplotlib.pyplot as plt

 p = self.plot_layout
 _axs = []
 for i in range(self.image_list[0].shape[2]):
 plt.subplot(p[0], p[1], 1 + i)
 # Hide the x and y labels
 plt.axis('off')
 _ax = plt.imshow(self.image_list[0][:, :, i], cmap=cm.Greys_r,
 **kwargs)
 _axs.append(_ax)

 def init():
 return _axs

 def animate(j):
 for k, _ax in enumerate(_axs):
 _ax.set_data(self.image_list[j][:, :, k])
 return _axs

 self._ani = animation.FuncAnimation(self.figure, animate,
 init_func=init,
 frames=len(self.image_list),
 interval=interval, blit=True)
 return self

def sample_colours_from_colourmap(n_colours, colour_map):
 import matplotlib.pyplot as plt
 cm = plt.get_cmap(colour_map)
 return [cm(1.*i/n_colours)[:3] for i in range(n_colours)]

def _check_colours_list(render_flag, colours_list, n_objects, error_str):
 if render_flag:
 if colours_list is None:
 # sample colours from jet colour map
 colours_list = sample_colours_from_colourmap(n_objects, 'jet')
 if isinstance(colours_list, list):
 if len(colours_list) == 1:
 colours_list *= n_objects
 elif len(colours_list) != n_objects:
 raise ValueError(error_str)
 else:
 colours_list = [colours_list] * n_objects
 else:
 colours_list = [None] * n_objects
 return colours_list

def _check_render_flag(render_flag, n_objects, error_str):
 if isinstance(render_flag, bool):
 render_flag = [render_flag] * n_objects
 elif isinstance(render_flag, list):
 if len(render_flag) == 1:
 render_flag *= n_objects
 elif len(render_flag) != n_objects:
 raise ValueError(error_str)
 else:
 raise ValueError(error_str)
 return render_flag

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/landmark/labels.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.landmark.labels

from collections import OrderedDict
import numpy as np
from menpo.landmark.base import LandmarkGroup
from menpo.landmark.exceptions import LabellingError

def _connectivity_from_array(array, close_loop=False):
 r"""
 Build the connectivity over a given array. For example, given ::

 array = [(0, 3, 1, 2)]

 Generate the connectivity of ::

 [(0, 3), (3, 1), (1, 2)]

 If ``close_loop`` is true, add an extra connection from the last point to
 the first.
 """
 conn = zip(array, array[1:])
 if close_loop:
 conn.append((array[-1], array[0]))
 return np.asarray(conn)

def _connectivity_from_range(range_tuple, close_loop=False):
 r"""
 Build the connectivity over a range. For example, given ::

 range_array = np.arange(3)

 Generate the connectivity of ::

 [(0, 1), (1, 2), (2, 3)]

 If ``close_loop`` is true, add an extra connection from the last point to
 the first.
 """
 return _connectivity_from_array(
 np.arange(*range_tuple), close_loop=close_loop)

def _mask_from_range(range_tuple, n_points):
 r"""
 Generate a mask over the range. The mask will be true inside the range.
 """
 mask = np.zeros(n_points, dtype=np.bool)
 range_slice = slice(*range_tuple)
 mask[range_slice] = True
 return mask

def _build_labelling_error_msg(group, n_expected_points,
 n_actual_points):
 return '{} mark-up expects exactly {} ' \
 'points. However, the given landmark group ' \
 'has {} points'.format(group, n_expected_points,
 n_actual_points)

def _validate_input(landmark_group, n_expected_points, group):
 r"""
 Ensure that the input matches the number of expected points.

 Parameters

 landmark_group : :map:`LandmarkGroup`
 Landmark group to validate
 n_expected_points : `int`
 Number of expected points
 group : `str`
 Group label for error message

 Raises

 LabellingError
 If the number of expected points doesn't match the number of given
 points
 """
 n_points = landmark_group.lms.n_points
 if n_points != n_expected_points:
 raise LabellingError(_build_labelling_error_msg(group,
 n_expected_points,
 n_points))

def _relabel_group_from_dict(pointcloud, labels_to_ranges):
 """
 Label the given pointcloud according to the given ordered dictionary
 of labels to ranges. This assumes that you can semantically label the group
 by using ranges in to the existing points e.g ::

 labels_to_ranges = {'jaw': (0, 17, False)}

 The third element of the range tuple is whether the range is a closed loop
 or not. For example, for an eye landmark this would be ``True``, as you
 do want to create a closed loop for an eye.

 Parameters

 pointcloud : :map:`PointCloud`
 The pointcloud to apply semantic labels to.
 labels_to_ranges : `OrderedDict`
 Ordered dictionary of string labels to range tuples.

 Returns

 landmark_group: :map:`LandmarkGroup`
 New landmark group

 Raises

 :class:`menpo.landmark.exceptions.LabellingError`
 If the given pointcloud contains less than ``n_expected_points``
 points.
 """
 from menpo.shape import PointUndirectedGraph

 n_points = pointcloud.n_points
 masks = OrderedDict()
 adjacency_lists = []
 for label, tup in labels_to_ranges.items():
 range_tuple = tup[:-1]
 close_loop = tup[-1]
 adjacency_lists.append(_connectivity_from_range(
 range_tuple, close_loop=close_loop))
 masks[label] = _mask_from_range(range_tuple, n_points)
 adjacency_array = np.vstack(adjacency_lists)

 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(pointcloud.points, adjacency_array), masks)

 return new_landmark_group

[docs]def ibug_face_68(landmark_group):
 """
 Apply the ibug's "standard" 68 point semantic labels (based on the
 original semantic labels of multiPIE) to the landmark group.

 The group label will be ``ibug_face_68``.

 The semantic labels applied are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_face_68``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 68 points

 References

 .. [1] http://www.multipie.org/
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_face_68'
 n_points = 68
 _validate_input(landmark_group, 68, group)

 jaw_indices = np.arange(0, 17)
 lbrow_indices = np.arange(17, 22)
 rbrow_indices = np.arange(22, 27)
 upper_nose_indices = np.arange(27, 31)
 lower_nose_indices = np.arange(31, 36)
 leye_indices = np.arange(36, 42)
 reye_indices = np.arange(42, 48)
 outer_mouth_indices = np.arange(48, 60)
 inner_mouth_indices = np.arange(60, 68)

 jaw_connectivity = _connectivity_from_array(jaw_indices)
 lbrow_connectivity = _connectivity_from_array(lbrow_indices)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack([
 _connectivity_from_array(upper_nose_indices),
 _connectivity_from_array(lower_nose_indices)])
 leye_connectivity = _connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = _connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack([
 _connectivity_from_array(outer_mouth_indices, close_loop=True),
 _connectivity_from_array(inner_mouth_indices, close_loop=True)])

 total_conn = np.vstack([
 jaw_connectivity, lbrow_connectivity, rbrow_connectivity,
 nose_connectivity, leye_connectivity, reye_connectivity,
 mouth_connectivity
])

 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points, total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['jaw'] = jaw_indices
 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['nose'] = np.hstack((upper_nose_indices,
 lower_nose_indices))
 new_landmark_group['left_eye'] = leye_indices
 new_landmark_group['right_eye'] = reye_indices
 new_landmark_group['mouth'] = np.hstack((outer_mouth_indices,
 inner_mouth_indices))

 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def ibug_face_66(landmark_group):
 """
 Apply the ibug's "standard" 66 point semantic labels (based on the
 original semantic labels of multiPIE but ignoring the 2 points
 describing the inner mouth corners) to the landmark group.

 The group label will be ``ibug_face_66``.

 The semantic labels applied are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_face_66``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 68 points

 References

 .. [1] http://www.multipie.org/
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_face_66'
 n_points = 66
 _validate_input(landmark_group, 68, group)

 jaw_indices = np.arange(0, 17)
 lbrow_indices = np.arange(17, 22)
 rbrow_indices = np.arange(22, 27)
 upper_nose_indices = np.arange(27, 31)
 lower_nose_indices = np.arange(31, 36)
 leye_indices = np.arange(36, 42)
 reye_indices = np.arange(42, 48)
 outer_mouth_indices = np.arange(48, 60)
 inner_mouth_indices = np.hstack((48, np.arange(60, 63),
 54, np.arange(63, 66)))

 jaw_connectivity = _connectivity_from_array(jaw_indices)
 lbrow_connectivity = _connectivity_from_array(lbrow_indices)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack([
 _connectivity_from_array(upper_nose_indices),
 _connectivity_from_array(lower_nose_indices)])
 leye_connectivity = _connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = _connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack([
 _connectivity_from_array(outer_mouth_indices, close_loop=True),
 _connectivity_from_array(inner_mouth_indices, close_loop=True)])

 total_conn = np.vstack([
 jaw_connectivity, lbrow_connectivity, rbrow_connectivity,
 nose_connectivity, leye_connectivity, reye_connectivity,
 mouth_connectivity])

 # Ignore the two inner mouth points
 ind = np.hstack((np.arange(60), np.arange(61, 64), np.arange(65, 68)))
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind],
 total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['jaw'] = jaw_indices
 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['nose'] = np.hstack([upper_nose_indices,
 lower_nose_indices])
 new_landmark_group['left_eye'] = leye_indices
 new_landmark_group['right_eye'] = reye_indices
 new_landmark_group['mouth'] = np.hstack([outer_mouth_indices,
 inner_mouth_indices])

 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def ibug_face_51(landmark_group):
 """
 Apply the ibug's "standard" 51 point semantic labels (based on the
 original semantic labels of multiPIE but removing the annotations
 corresponding to the jaw region) to the landmark group.

 The group label will be ``ibug_face_51``.

 The semantic labels applied are as follows:

 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_face_51``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 68 points

 References

 .. [1] http://www.multipie.org/
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_face_51'
 n_points = 51
 _validate_input(landmark_group, 68, group)

 lbrow_indices = np.arange(0, 5)
 rbrow_indices = np.arange(5, 10)
 upper_nose_indices = np.arange(10, 14)
 lower_nose_indices = np.arange(14, 19)
 leye_indices = np.arange(19, 25)
 reye_indices = np.arange(25, 31)
 outer_mouth_indices = np.arange(31, 43)
 inner_mouth_indices = np.arange(43, 51)

 lbrow_connectivity = _connectivity_from_array(lbrow_indices)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack([
 _connectivity_from_array(upper_nose_indices),
 _connectivity_from_array(lower_nose_indices)])
 leye_connectivity = _connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = _connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack([
 _connectivity_from_array(outer_mouth_indices, close_loop=True),
 _connectivity_from_array(inner_mouth_indices, close_loop=True)])

 total_conn = np.vstack([
 lbrow_connectivity, rbrow_connectivity, nose_connectivity,
 leye_connectivity, reye_connectivity, mouth_connectivity])

 # Ignore the two inner mouth points
 ind = np.arange(17, 68)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind],
 total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['nose'] = np.hstack([upper_nose_indices,
 lower_nose_indices])
 new_landmark_group['left_eye'] = leye_indices
 new_landmark_group['right_eye'] = reye_indices
 new_landmark_group['mouth'] = np.hstack([outer_mouth_indices,
 inner_mouth_indices])

 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def ibug_face_49(landmark_group):
 """
 Apply the ibug's "standard" 49 point semantic labels (based on the
 original semantic labels of multiPIE but removing the annotations
 corresponding to the jaw region and the 2 describing the inner mouth
 corners) to the landmark group.

 The group label will be ``ibug_face_49``.

 The semantic labels applied are as follows:

 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_face_49``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 68 points

 References

 .. [1] http://www.multipie.org/
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_face_49'
 n_points = 49
 _validate_input(landmark_group, 68, group)

 lbrow_indices = np.arange(0, 5)
 rbrow_indices = np.arange(5, 10)
 upper_nose_indices = np.arange(10, 14)
 lower_nose_indices = np.arange(14, 19)
 leye_indices = np.arange(19, 25)
 reye_indices = np.arange(25, 31)
 outer_mouth_indices = np.arange(31, 43)
 inner_mouth_indices = np.hstack((31, np.arange(43, 46),
 37, np.arange(46, 49)))

 lbrow_connectivity = _connectivity_from_array(lbrow_indices)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack([
 _connectivity_from_array(upper_nose_indices),
 _connectivity_from_array(lower_nose_indices)])
 leye_connectivity = _connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = _connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack([
 _connectivity_from_array(outer_mouth_indices, close_loop=True),
 _connectivity_from_array(inner_mouth_indices, close_loop=True)])

 total_conn = np.vstack([
 lbrow_connectivity, rbrow_connectivity, nose_connectivity,
 leye_connectivity, reye_connectivity, mouth_connectivity])

 # Ignore the two inner mouth points
 ind = np.hstack((np.arange(17, 60), np.arange(61, 64), np.arange(65, 68)))
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind],
 total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['nose'] = np.hstack([upper_nose_indices,
 lower_nose_indices])
 new_landmark_group['left_eye'] = leye_indices
 new_landmark_group['right_eye'] = reye_indices
 new_landmark_group['mouth'] = np.hstack([outer_mouth_indices,
 inner_mouth_indices])

 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def ibug_face_68_trimesh(landmark_group):
 """
 Apply the ibug's "standard" 68 point triangulation to the landmarks in
 the given landmark group.

 The group label will be ``ibug_face_68_trimesh``.

 The semantic labels applied are as follows:

 - tri

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_face_68_trimesh``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 68 points

 References

 .. [1] http://www.multipie.org/
 """
 from menpo.shape import TriMesh

 group = 'ibug_face_68_trimesh'
 n_expected_points = 68
 n_points = landmark_group.lms.n_points

 _validate_input(landmark_group, n_expected_points, group)

 tri_list = np.array([[47, 29, 28], [44, 43, 23], [38, 20, 21], [47, 28,42],
 [49, 61, 60], [40, 41, 37], [37, 19, 20], [28, 40, 39],
 [38, 21, 39], [36, 1, 	0], [48, 59, 4], [49, 60, 48],
 [67, 59, 60], [13, 53, 14], [61, 51, 62], [57, 8, 7],
 [52, 51, 33], [61, 67, 60], [52, 63, 51], [66, 56, 57],
 [35, 30, 29], [53, 52, 35], [37, 36, 17], [18, 37, 17],
 [37, 38, 40], [38, 37, 20], [19, 37, 18], [38, 39, 40],
 [28, 29, 40], [41, 36, 37], [27, 39, 21], [41, 31, 1],
 [30, 32, 31], [33, 51, 50], [33, 30, 34], [31, 40, 29],
 [36, 0, 17], [31, 2, 1], [31, 41, 40], [1, 36, 41],
 [31, 49, 2], [2, 49, 3], [60, 59, 48], [3, 49, 48],
 [31, 32, 50], [48, 4, 3], [59, 5, 4], [58, 67, 66],
 [5, 59, 58], [58, 59, 67], [7, 6, 58], [66, 57, 58],
 [13, 54, 53], [7, 58, 57], [6, 5, 58], [50, 61, 49],
 [62, 67, 61], [31, 50, 49], [32, 33, 50], [30, 33, 32],
 [34, 52, 33], [35, 52, 34], [53, 63, 52], [62, 63, 65],
 [62, 51, 63], [66, 65, 56], [63, 53, 64], [62, 66, 67],
 [62, 65, 66], [57, 56, 9], [65, 63, 64], [8, 57, 9],
 [9, 56, 10], [10, 56, 11], [11, 56, 55], [11, 55, 12],
 [56, 65, 55], [55, 64, 54], [55, 65, 64], [55, 54, 12],
 [64, 53, 54], [12, 54, 13], [45, 46, 44], [35, 34, 30],
 [14, 53, 35], [15, 46, 45], [27, 28, 39], [27, 42, 28],
 [35, 29, 47], [30, 31, 29], [15, 35, 46], [15, 14, 35],
 [43, 22, 23], [27, 21, 22], [24, 44, 23], [44, 47, 43],
 [43, 47, 42], [46, 35, 47], [26, 45, 44], [46, 47, 44],
 [25, 44, 24], [25, 26, 44], [16, 15, 45], [16, 45, 26],
 [22, 42, 43], [50, 51, 61], [27, 22, 42]])
 new_landmark_group = LandmarkGroup(
 TriMesh(landmark_group.lms.points, tri_list, copy=False),
 OrderedDict([('tri', np.ones(n_points, dtype=np.bool))]))

 return group, new_landmark_group

[docs]def ibug_face_65_closed_mouth(landmark_group):
 """
 Apply the ibug's "standard" 68 point semantic labels (based on the
 original semantic labels of multiPIE) to the landmarks in
 the given landmark group - but ignore the 3 points that are coincident for
 a closed mouth. Therefore, there only 65 points are returned.

 The group label will be ``ibug_face_65_closed_mouth``.

 The semantic labels applied are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_face_65_closed_mouth``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 68 points

 References

 .. [1] http://www.multipie.org/
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_face_65_closed_mouth'
 n_points = 65
 _validate_input(landmark_group, 68, group)

 jaw_indices = np.arange(0, 17)
 lbrow_indices = np.arange(17, 22)
 rbrow_indices = np.arange(22, 27)
 upper_nose_indices = np.arange(27, 31)
 lower_nose_indices = np.arange(31, 36)
 leye_indices = np.arange(36, 42)
 reye_indices = np.arange(42, 48)
 outer_mouth_indices = np.arange(48, 60)
 inner_mouth_indices = np.arange(60, 65)

 jaw_connectivity = _connectivity_from_array(jaw_indices)
 lbrow_connectivity = _connectivity_from_array(lbrow_indices)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack([
 _connectivity_from_array(upper_nose_indices),
 _connectivity_from_array(lower_nose_indices)])
 leye_connectivity = _connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = _connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack([
 _connectivity_from_array(outer_mouth_indices, close_loop=True),
 _connectivity_from_array(inner_mouth_indices)])

 total_conn = np.vstack([
 jaw_connectivity, lbrow_connectivity, rbrow_connectivity,
 nose_connectivity, leye_connectivity, reye_connectivity,
 mouth_connectivity])

 # Ignore the two inner mouth points
 ind = np.arange(65)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind],
 total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['jaw'] = jaw_indices
 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['nose'] = np.hstack([upper_nose_indices,
 lower_nose_indices])
 new_landmark_group['left_eye'] = leye_indices
 new_landmark_group['right_eye'] = reye_indices
 new_landmark_group['mouth'] = np.hstack([outer_mouth_indices,
 inner_mouth_indices])
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def imm_face(landmark_group):
 """
 Apply the 58 point semantic labels from the IMM dataset to the
 landmarks in the given landmark group.

 The group label will be ``imm_face``.

 The semantic labels applied are as follows:

 - jaw
 - left_eye
 - right_eye
 - left_eyebrow
 - right_eyebrow
 - mouth
 - nose

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``imm_face``
 landmark_group : :map:`LandmarkGroup`
 New landmark group

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 58 points

 References

 .. [1] http://www2.imm.dtu.dk/~aam/
 """
 group = 'imm_face'
 _validate_input(landmark_group, 58, group)
 labels = OrderedDict([
 ('jaw', (0, 13, False)),
 ('left_eye', (13, 21, True)),
 ('right_eye', (21, 29, True)),
 ('left _eyebrow', (29, 34, False)),
 ('right_eyebrow', (34, 39, False)),
 ('mouth', (39, 47, True)),
 ('nose', (47, 58, False))
])
 return group, _relabel_group_from_dict(landmark_group.lms, labels)

[docs]def lfpw_face(landmark_group):
 """
 Apply the 29 point semantic labels from the LFPW dataset to the
 landmarks in the given landmark group.

 The group label will be ``lfpw_face``.

 The semantic labels applied are as follows:

 - chin
 - left_eye
 - right_eye
 - left_eyebrow
 - right_eyebrow
 - mouth
 - nose

 Parameters

 landmark_group: :class:`menpo.landmark.base.LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``lfpw_face``
 landmark_group: :map:`LandmarkGroup`
 New landmark group

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 29 points

 References

 .. [1] http://homes.cs.washington.edu/~neeraj/databases/lfpw/
 """
 from menpo.shape import PointUndirectedGraph

 group = 'lfpw_face'
 n_points = 29
 _validate_input(landmark_group, 29, group)

 chin_indices = np.array([28])
 outer_leye_indices = np.array([8, 12, 10, 13])
 pupil_leye_indices = np.array([16])
 outer_reye_indices = np.array([11, 14, 9, 15])
 pupil_reye_indices = np.array([17])
 lbrow_indices = np.array([0, 4, 2, 5])
 rbrow_indices = np.array([3, 6, 1, 7])
 outer_mouth_indices = np.array([22, 24, 23, 27])
 inner_mouth_indices = np.array([22, 25, 23, 26])
 nose_indices = np.array([18, 20, 19, 21])

 # TODO: Not sure this makes a lot of sense...
 chin_connectivity = _connectivity_from_array(chin_indices, close_loop=True)
 leye_connectivity = _connectivity_from_array(outer_leye_indices,
 close_loop=True)
 reye_connectivity = _connectivity_from_array(outer_reye_indices,
 close_loop=True)
 lbrow_connectivity = _connectivity_from_array(lbrow_indices,
 close_loop=True)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices,
 close_loop=True)
 mouth_connectivity = np.vstack(
 (_connectivity_from_array(outer_mouth_indices, close_loop=True),
 _connectivity_from_array(inner_mouth_indices)))
 nose_connectivity = _connectivity_from_array(nose_indices, close_loop=True)

 total_conn = np.vstack(
 (chin_connectivity, leye_connectivity, reye_connectivity,
 lbrow_connectivity, rbrow_connectivity, mouth_connectivity,
 nose_connectivity))

 # Ignore the two inner mouth points
 ind = np.arange(29)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind],
 total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['chin'] = chin_indices
 new_landmark_group['left_eye'] = np.hstack((outer_leye_indices,
 pupil_leye_indices))
 new_landmark_group['right_eye'] = np.hstack((outer_reye_indices,
 pupil_reye_indices))
 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['mouth'] = np.hstack((outer_mouth_indices,
 inner_mouth_indices))
 new_landmark_group['nose'] = nose_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

def _build_upper_eyelid():
 top_indices = np.arange(0, 7)
 middle_indices = np.arange(12, 17)
 upper_eyelid_indices = np.hstack((top_indices, middle_indices))

 upper_eyelid_connectivity = zip(top_indices, top_indices[1:])
 upper_eyelid_connectivity += [(0, 12)]
 upper_eyelid_connectivity += zip(middle_indices, middle_indices[1:])
 upper_eyelid_connectivity += [(16, 6)]

 return upper_eyelid_indices, upper_eyelid_connectivity

[docs]def ibug_open_eye(landmark_group):
 """
 Apply the ibug's "standard" open eye semantic labels to the
 landmarks in the given landmark group.

 The group label will be ``ibug_open_eye``.

 The semantic labels applied are as follows:

 - upper_eyelid
 - lower_eyelid
 - iris
 - pupil
 - sclera

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_open_eye``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 38 points
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_open_eye'
 n_expected_points = 38
 n_points = landmark_group.lms.n_points

 _validate_input(landmark_group, n_expected_points, group)

 upper_el_indices, upper_el_connectivity = _build_upper_eyelid()

 iris_range = (22, 30)
 pupil_range = (30, 38)
 sclera_top = np.arange(12, 17)
 sclera_bottom = np.arange(17, 22)
 sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
 lower_el_top = np.arange(17, 22)
 lower_el_bottom = np.arange(7, 12)
 lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))

 iris_connectivity = _connectivity_from_range(iris_range, close_loop=True)
 pupil_connectivity = _connectivity_from_range(pupil_range, close_loop=True)

 sclera_connectivity = zip(sclera_top, sclera_top[1:])
 sclera_connectivity += [(0, 21)]
 sclera_connectivity += zip(sclera_bottom, sclera_bottom[1:])
 sclera_connectivity += [(6, 17)]

 lower_el_connectivity = zip(lower_el_top, lower_el_top[1:])
 lower_el_connectivity += [(6, 7)]
 lower_el_connectivity += zip(lower_el_bottom, lower_el_bottom[1:])
 lower_el_connectivity += [(11, 0)]

 total_conn = np.asarray(upper_el_connectivity +
 lower_el_connectivity +
 iris_connectivity.tolist() +
 pupil_connectivity.tolist() +
 sclera_connectivity)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points, total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['upper_eyelid'] = upper_el_indices
 new_landmark_group['lower_eyelid'] = lower_el_indices
 new_landmark_group['pupil'] = np.arange(*pupil_range)
 new_landmark_group['iris'] = np.arange(*iris_range)
 new_landmark_group['sclera'] = sclera_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def ibug_close_eye_points(landmark_group):
 """
 Apply the ibug's "standard" close eye semantic labels to the
 landmarks in the given landmark group.

 The group label will be ``ibug_close_eye``.

 The semantic labels applied are as follows:

 - upper_eyelid
 - lower_eyelid

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_close_eye``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 17 points
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_close_eye'
 n_expected_points = 17
 n_points = landmark_group.lms.n_points
 _validate_input(landmark_group, n_expected_points, group)

 upper_indices, upper_connectivity = _build_upper_eyelid()

 middle_indices = np.arange(12, 17)
 bottom_indices = np.arange(6, 12)
 lower_indices = np.hstack((bottom_indices, 0, middle_indices))
 lower_connectivity = zip(bottom_indices, bottom_indices[1:])
 lower_connectivity += [(0, 12)]
 lower_connectivity += zip(middle_indices, middle_indices[1:])
 lower_connectivity += [(11, 0)]

 total_conn = np.asarray(upper_connectivity + lower_connectivity)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points, total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['upper_eyelid'] = upper_indices
 new_landmark_group['lower_eyelid'] = lower_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def ibug_open_eye_trimesh(landmark_group):
 """
 Apply the ibug's "standard" open eye semantic labels to the
 landmarks in the given landmark group.

 The group label will be ``ibug_open_eye_trimesh``.

 The semantic labels applied are as follows:

 - tri

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_open_eye_trimesh``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 38 points
 """
 from menpo.shape import TriMesh

 group = 'ibug_open_eye_trimesh'
 n_expected_points = 38
 n_points = landmark_group.lms.n_points

 _validate_input(landmark_group, n_expected_points, group)

 tri_list = np.array([[29, 36, 28], [22, 13, 23], [12, 1, 2],
 [29, 30, 37], [13, 3, 14], [13, 12, 2],
 [19, 8, 9], [25, 33, 24], [36, 37, 33],
 [24, 32, 31], [33, 37, 31], [35, 34, 27],
 [35, 36, 33], [3, 13, 2], [14, 24, 23],
 [33, 32, 24], [15, 25, 14], [25, 26, 34],
 [22, 30, 29], [31, 37, 30], [24, 31, 23],
 [32, 33, 31], [22, 12, 13], [0, 1, 12],
 [14, 23, 13], [31, 30, 23], [28, 19, 20],
 [21, 11, 0], [12, 21, 0], [20, 11, 21],
 [20, 10, 11], [21, 29, 20], [21, 12, 22],
 [30, 22, 23], [29, 21, 22], [27, 19, 28],
 [29, 37, 36], [29, 28, 20], [36, 35, 28],
 [20, 19, 10], [10, 19, 9], [28, 35, 27],
 [19, 19, 8], [17, 16, 6], [18, 7, 8],
 [25, 34, 33], [18, 27, 17], [18, 19, 27],
 [18, 17, 7], [27, 26, 17], [17, 6, 7],
 [14, 25, 24], [34, 35, 33], [17, 26, 16],
 [27, 34, 26], [3, 15, 14], [15, 26, 25],
 [4, 15, 3], [16, 26, 15], [16, 4, 5],
 [16, 15, 4], [16, 5, 6], [8, 18, 19]])

 new_landmark_group = LandmarkGroup(
 TriMesh(landmark_group.lms.points, tri_list, copy=False),
 OrderedDict([('tri', np.ones(n_points, dtype=np.bool))]))

 return group, new_landmark_group

[docs]def ibug_close_eye_trimesh(landmark_group):
 """
 Apply the ibug's "standard" close eye semantic labels to the
 landmarks in the given landmark group.

 The group label will be ``ibug_close_eye_trimesh``.

 The semantic labels applied are as follows:

 - tri

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_close_eye_trimesh``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 38 points
 """
 from menpo.shape import TriMesh

 group = 'ibug_close_eye_trimesh'
 n_expected_points = 17
 n_points = landmark_group.lms.n_points

 _validate_input(landmark_group, n_expected_points, group)

 tri_list = np.array([[10, 11, 13], [3, 13, 2], [4, 14, 3],
 [15, 5, 16], [12, 11, 0], [13, 14, 10],
 [13, 12, 2], [14, 13, 3], [0, 1, 12],
 [2, 12, 1], [13, 11, 12], [9, 10, 14],
 [15, 9, 14], [7, 8, 15], [5, 6, 16],
 [15, 14, 4], [7, 15, 16], [8, 9, 15],
 [15, 4, 5], [16, 6, 7]])

 new_landmark_group = LandmarkGroup(
 TriMesh(landmark_group.lms.points, tri_list, copy=False),
 OrderedDict([('tri', np.ones(n_points, dtype=np.bool))]))

 return group, new_landmark_group

[docs]def ibug_tongue(landmark_group):
 """
 Apply the ibug's "standard" tongue semantic labels to the landmarks in the
 given landmark group.

 The group label will be ``ibug_tongue``.

 The semantic labels applied are as follows:

 - outline
 - bisector

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_tongue``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 19 points
 """
 group = 'ibug_tongue'
 _validate_input(landmark_group, 19, group)
 labels = OrderedDict([
 ('outline', (0, 13, False)),
 ('bisector', (13, 19, False))
])
 return group, _relabel_group_from_dict(landmark_group.lms, labels)

[docs]def ibug_hand(landmark_group):
 """
 Apply the ibug's "standard" 39 point semantic labels to the landmark group.

 The group label will be ``ibug_hand``.

 The semantic labels applied are as follows:

 - thumb
 - index
 - middle
 - ring
 - pinky
 - palm

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``ibug_hand``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 39 points
 """
 from menpo.shape import PointUndirectedGraph

 group = 'ibug_hand'
 n_points = landmark_group.lms.n_points
 _validate_input(landmark_group, 39, group)

 thumb_indices = np.arange(0, 5)
 index_indices = np.arange(5, 12)
 middle_indices = np.arange(12, 19)
 ring_indices = np.arange(19, 26)
 pinky_indices = np.arange(26, 33)
 palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
 np.arange(35, 39)))

 thumb_connectivity = _connectivity_from_array(thumb_indices,
 close_loop=False)
 index_connectivity = _connectivity_from_array(index_indices,
 close_loop=False)
 middle_connectivity = _connectivity_from_array(middle_indices,
 close_loop=False)
 ring_connectivity = _connectivity_from_array(ring_indices,
 close_loop=False)
 pinky_connectivity = _connectivity_from_array(pinky_indices,
 close_loop=False)
 palm_connectivity = _connectivity_from_array(palm_indices,
 close_loop=True)

 total_conn = np.vstack((thumb_connectivity, index_connectivity,
 middle_connectivity, ring_connectivity,
 pinky_connectivity, palm_connectivity))

 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points, total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['thumb'] = thumb_indices
 new_landmark_group['index'] = index_indices
 new_landmark_group['middle'] = middle_indices
 new_landmark_group['ring'] = ring_indices
 new_landmark_group['pinky'] = pinky_indices
 new_landmark_group['palm'] = palm_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def stickmen_pose(landmark_group):
 """
 Apply the stickmen "standard" 12 point semantic labels to the landmark
 group.

 The group label will be ``stickmen_pose``.

 The semantic labels applied are as follows:

 - torso
 - right_upper_arm
 - left_upper_arm
 - right_lower_arm
 - left_lower_arm
 - head

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``stickmen_pose``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 12 points

 References

 .. [1] http://www.robots.ox.ac.uk/~vgg/data/stickmen/
 """
 group = 'stickmen_pose'
 _validate_input(landmark_group, 12, group)
 labels = OrderedDict([
 ('torso', (0, 2, False)),
 ('right_upper arm', (2, 4, False)),
 ('left_upper arm', (4, 6, False)),
 ('right_lower_arm', (6, 8, False)),
 ('left_lower_arm', (8, 10, False)),
 ('head', (10, 12, False))
])
 return group, _relabel_group_from_dict(landmark_group.lms, labels)

[docs]def lsp_pose(landmark_group):
 """
 Apply the lsp "standard" 14 point semantic labels to the landmark
 group.

 The group label will be ``lsp_pose``.

 The semantic labels applied are as follows:

 - left_leg
 - right_leg
 - left_arm
 - right_arm
 - head

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``lsp_pose``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 14 points

 References

 .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'lsp_pose'
 n_points = landmark_group.lms.n_points
 _validate_input(landmark_group, 14, group)

 left_leg_indices = np.arange(0, 3)
 right_leg_indices = np.arange(3, 6)
 left_arm_indices = np.arange(6, 9)
 right_arm_indices = np.arange(9, 12)
 head_indices = np.arange(12, 14)

 left_leg_connectivity = _connectivity_from_array(left_leg_indices)
 right_leg_connectivity = _connectivity_from_array(right_leg_indices)
 left_arm_connectivity = _connectivity_from_array(left_arm_indices)
 right_arm_connectivity = _connectivity_from_array(right_arm_indices)
 head_connectivity = _connectivity_from_array(head_indices)

 total_conn = np.vstack([left_leg_connectivity,
 right_leg_connectivity,
 left_arm_connectivity,
 right_arm_connectivity,
 head_connectivity])

 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points, total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['left_leg'] = left_leg_indices
 new_landmark_group['right_leg'] = right_leg_indices
 new_landmark_group['left_arm'] = left_arm_indices
 new_landmark_group['right_arm'] = right_arm_indices
 new_landmark_group['head'] = head_indices

 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def flic_pose(landmark_group):
 """
 Apply the flic "standard" 11 point semantic labels to the landmark
 group.

 The group label will be ``flic_pose``.

 The semantic labels applied are as follows:

 - left_arm
 - right_arm
 - hips
 - face

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``flic_pose``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 11 points

 References

 .. [1] http://vision.grasp.upenn.edu/cgi-bin/index.php?n=VideoLearning.FLIC
 """
 group = 'flic_pose'
 _validate_input(landmark_group, 11, group)
 labels = OrderedDict([
 ('left_arm', (0, 3, False)),
 ('right_arm', (3, 6, False)),
 ('hips', (6, 8, False)),
 ('face', (8, 11, True))])

 return group, _relabel_group_from_dict(landmark_group.lms, labels)

[docs]def streetscene_car_view_0(landmark_group):
 """
 Apply the 8 point semantic labels of the view 0 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_0``.

 The semantic labels applied are as follows:

 - front
 - bonnet
 - windshield

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``streetscene_car_view_0``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_0'
 n_points = 8
 _validate_input(landmark_group, 20, group)

 front_indices = np.array([0, 1, 3, 2])
 bonnet_indices = np.array([2, 3, 5, 4])
 windshield_indices = np.array([4, 5, 7, 6])

 front_connectivity = _connectivity_from_array(front_indices,
 close_loop=True)
 bonnet_connectivity = _connectivity_from_array(bonnet_indices,
 close_loop=True)
 windshield_connectivity = _connectivity_from_array(windshield_indices,
 close_loop=True)

 total_conn = np.vstack((front_connectivity, bonnet_connectivity,
 windshield_connectivity))

 ind = np.arange(8)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['front'] = front_indices
 new_landmark_group['bonnet'] = bonnet_indices
 new_landmark_group['windshield'] = windshield_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_1(landmark_group):
 """
 Apply the 14 point semantic labels of the view 1 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_1``.

 The semantic labels applied are as follows:

 - front
 - bonnet
 - windshield
 - left_side

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``streetscene_car_view_1``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_1'
 n_points = 14
 _validate_input(landmark_group, 20, group)

 front_indices = np.array([0, 1, 3, 2])
 bonnet_indices = np.array([2, 3, 5, 4])
 windshield_indices = np.array([4, 5, 7, 6])
 left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

 front_connectivity = _connectivity_from_array(front_indices,
 close_loop=True)
 bonnet_connectivity = _connectivity_from_array(bonnet_indices,
 close_loop=True)
 windshield_connectivity = _connectivity_from_array(windshield_indices,
 close_loop=True)
 left_side_connectivity = _connectivity_from_array(left_side_indices,
 close_loop=True)

 total_conn = np.vstack((front_connectivity, bonnet_connectivity,
 windshield_connectivity, left_side_connectivity))

 ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['front'] = front_indices
 new_landmark_group['bonnet'] = bonnet_indices
 new_landmark_group['windshield'] = windshield_indices
 new_landmark_group['left_side'] = left_side_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_2(landmark_group):
 """
 Apply the 10 point semantic labels of the view 2 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_2``.

 The semantic labels applied are as follows:

 - left_side

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: 'streetscene_car_view_2'
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_2'
 n_points = 10
 _validate_input(landmark_group, 20, group)

 left_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

 left_side_connectivity = _connectivity_from_array(left_side_indices,
 close_loop=True)

 total_conn = left_side_connectivity

 ind = np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['left_side'] = left_side_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_3(landmark_group):
 """
 Apply the 14 point semantic labels of the view 3 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_2``.

 The semantic labels applied are as follows:

 - left_side
 - rear windshield
 - trunk
 - rear

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``streetscene_car_view_3``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_3'
 n_points = 14
 _validate_input(landmark_group, 20, group)

 left_side_indices = np.array([0, 1, 2, 3, 4, 6, 8, 10, 13, 12])
 rear_windshield_indices = np.array([4, 5, 7, 6])
 trunk_indices = np.array([6, 7, 9, 8])
 rear_indices = np.array([8, 9, 11, 10])

 left_side_connectivity = _connectivity_from_array(left_side_indices,
 close_loop=True)
 rear_windshield_connectivity = _connectivity_from_array(
 rear_windshield_indices, close_loop=True)
 trunk_connectivity = _connectivity_from_array(trunk_indices,
 close_loop=True)
 rear_connectivity = _connectivity_from_array(rear_indices, close_loop=True)

 total_conn = np.vstack((left_side_connectivity,
 rear_windshield_connectivity,
 trunk_connectivity, rear_connectivity))

 ind = np.array([0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18])
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['left_side'] = left_side_indices
 new_landmark_group['rear_windshield'] = rear_windshield_indices
 new_landmark_group['trunk'] = trunk_indices
 new_landmark_group['rear'] = rear_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_4(landmark_group):
 """
 Apply the 14 point semantic labels of the view 4 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_4``.

 The semantic labels applied are as follows:

 - front
 - bonnet
 - windshield
 - right_side

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: 'streetscene_car_view_4'
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_4'
 n_points = 14
 _validate_input(landmark_group, 20, group)

 front_indices = np.array([0, 1, 3, 2])
 bonnet_indices = np.array([2, 3, 5, 4])
 windshield_indices = np.array([4, 5, 7, 6])
 right_side_indices = np.array([8, 9, 10, 11, 13, 12, 1, 3, 5, 7])

 front_connectivity = _connectivity_from_array(front_indices,
 close_loop=True)
 bonnet_connectivity = _connectivity_from_array(bonnet_indices,
 close_loop=True)
 windshield_connectivity = _connectivity_from_array(windshield_indices,
 close_loop=True)
 right_side_connectivity = _connectivity_from_array(right_side_indices,
 close_loop=True)

 total_conn = np.vstack((front_connectivity, bonnet_connectivity,
 windshield_connectivity,
 right_side_connectivity))

 ind = np.hstack((np.arange(8), np.array([9, 11, 13, 15, 17, 19])))
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['front'] = front_indices
 new_landmark_group['bonnet'] = bonnet_indices
 new_landmark_group['windshield'] = windshield_indices
 new_landmark_group['right_side'] = right_side_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_5(landmark_group):
 """
 Apply the 10 point semantic labels of the view 5 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_5``.

 The semantic labels applied are as follows:

 - right_side

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``streetscene_car_view_5``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_5'
 n_points = 10
 _validate_input(landmark_group, 20, group)

 right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

 right_side_connectivity = _connectivity_from_array(right_side_indices,
 close_loop=True)

 total_conn = right_side_connectivity

 ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['right_side'] = right_side_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_6(landmark_group):
 """
 Apply the 14 point semantic labels of the view 6 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_6``.

 The semantic labels applied are as follows:

 - right_side
 - rear_windshield
 - trunk
 - rear

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``streetscene_car_view_3``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_6'
 n_points = 14
 _validate_input(landmark_group, 20, group)

 right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
 rear_windshield_indices = np.array([4, 5, 7, 6])
 trunk_indices = np.array([6, 7, 9, 8])
 rear_indices = np.array([8, 9, 11, 10])

 right_side_connectivity = _connectivity_from_array(right_side_indices,
 close_loop=True)
 rear_windshield_connectivity = _connectivity_from_array(
 rear_windshield_indices, close_loop=True)
 trunk_connectivity = _connectivity_from_array(trunk_indices,
 close_loop=True)
 rear_connectivity = _connectivity_from_array(rear_indices, close_loop=True)

 total_conn = np.vstack((right_side_connectivity,
 rear_windshield_connectivity,
 trunk_connectivity, rear_connectivity))

 ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['right_side'] = right_side_indices
 new_landmark_group['rear_windshield'] = rear_windshield_indices
 new_landmark_group['trunk'] = trunk_indices
 new_landmark_group['rear'] = rear_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def streetscene_car_view_7(landmark_group):
 """
 Apply the 8 point semantic labels of the view 0 of the MIT Street Scene
 Car dataset to the landmark group.

 The group label will be ``streetscene_car_view_7``.

 The semantic labels applied are as follows:

 - rear_windshield
 - trunk
 - rear

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``streetscene_car_view_7``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 error : :map:`LabellingError`
 If the given landmark group contains less than 20 points

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'streetscene_car_view_7'
 n_points = 8
 _validate_input(landmark_group, 20, group)

 rear_windshield_indices = np.array([0, 1, 3, 2])
 trunk_indices = np.array([2, 3, 5, 4])
 rear_indices = np.array([4, 5, 7, 6])

 rear_windshield_connectivity = _connectivity_from_array(
 rear_windshield_indices, close_loop=True)
 trunk_connectivity = _connectivity_from_array(trunk_indices,
 close_loop=True)
 rear_connectivity = _connectivity_from_array(rear_indices, close_loop=True)

 total_conn = np.vstack((rear_windshield_connectivity,
 trunk_connectivity, rear_connectivity))

 ind = np.arange(8, 16)
 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points[ind], total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['rear_windshield'] = rear_windshield_indices
 new_landmark_group['trunk'] = trunk_indices
 new_landmark_group['rear'] = rear_indices
 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def bu3dfe_83(landmark_group):
 """
 Apply the BU-3DFE (Binghamton University 3D Facial Expression)
 Database 83 point facial annotation markup to this landmark group.

 The group label will be ``bu3dfe_83``.

 The semantic labels applied are as follows:

 - right_eye
 - left_eye
 - right_eyebrow
 - left_eyebrow
 - right_nose
 - left_nose
 - nostrils
 - outer_mouth
 - inner_mouth
 - jaw

 Parameters

 landmark_group : :map:`LandmarkGroup`
 The landmark group to apply semantic labels to.

 Returns

 group : `str`
 The group label: ``bu3dfe_83``
 landmark_group : :map:`LandmarkGroup`
 New landmark group.

 Raises

 :class:`menpo.landmark.exceptions.LabellingError`
 If the given landmark group contains less than 83 points

 References

 .. [1] http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
 """
 from menpo.shape import PointUndirectedGraph

 group = 'bu3dfe_83'
 n_points = 83
 _validate_input(landmark_group, n_points, group)

 reye_indices = np.arange(0, 8)
 leye_indices = np.arange(8, 16)
 rbrow_indices = np.arange(16, 26)
 lbrow_indices = np.arange(26, 36)
 rnose_indicies = np.arange(36, 39)
 lnose_indicies = np.arange(39, 42)
 nostril_indices = np.arange(42, 48)
 outermouth_indices = np.arange(48, 60)
 innermouth_indices = np.arange(60, 68)
 jaw_indices = np.arange(68, 83)

 reye_connectivity = _connectivity_from_array(reye_indices, close_loop=True)
 leye_connectivity = _connectivity_from_array(leye_indices, close_loop=True)
 rbrow_connectivity = _connectivity_from_array(rbrow_indices,
 close_loop=True)
 lbrow_connectivity = _connectivity_from_array(lbrow_indices,
 close_loop=True)
 rnose_connectivity = _connectivity_from_array(rnose_indicies)
 nostril_connectivity = _connectivity_from_array(nostril_indices)
 lnose_connectivity = _connectivity_from_array(lnose_indicies)
 outermouth_connectivity = _connectivity_from_array(outermouth_indices,
 close_loop=True)
 innermouth_connectivity = _connectivity_from_array(innermouth_indices,
 close_loop=True)
 jaw_connectivity = _connectivity_from_array(jaw_indices)

 total_conn = np.vstack([
 reye_connectivity, leye_connectivity,
 rbrow_connectivity, lbrow_connectivity,
 rnose_connectivity, nostril_connectivity, lnose_connectivity,
 outermouth_connectivity, innermouth_connectivity,
 jaw_connectivity
])

 new_landmark_group = LandmarkGroup(
 PointUndirectedGraph(landmark_group.lms.points, total_conn),
 OrderedDict([('all', np.ones(n_points, dtype=np.bool))]))

 new_landmark_group['right_eye'] = reye_indices
 new_landmark_group['left_eye'] = leye_indices
 new_landmark_group['right_eyebrow'] = rbrow_indices
 new_landmark_group['left_eyebrow'] = lbrow_indices
 new_landmark_group['right_nose'] = rnose_indicies
 new_landmark_group['left_nose'] = lnose_indicies
 new_landmark_group['nostrils'] = nostril_indices
 new_landmark_group['outer_mouth'] = outermouth_indices
 new_landmark_group['inner_mouth'] = innermouth_indices
 new_landmark_group['jaw'] = jaw_indices

 del new_landmark_group['all'] # Remove pointless all group

 return group, new_landmark_group

[docs]def labeller(landmarkable, group, label_func):
 """
 Re-label an existing landmark group on a :map:`Landmarkable` object with a
 new label set.

 Parameters

 landmarkable: :map:`Landmarkable`
 :map:`Landmarkable` that will have it's :map:`LandmarkManager`
 augmented with a new :map:`LandmarkGroup`
 group: `str`
 The group label of the existing landmark group that should be
 re-labelled. A copy of this group will be attached to it's landmark
 manager with new labels. The group label of this new group and the
 labels it will have is determined by ``label_func``
 label_func: `func` -> `(str, LandmarkGroup)`
 A labelling function taken from this module, Takes as input a
 :map:`LandmarkGroup` and returns a tuple of
 (new group label, new LandmarkGroup with semantic labels applied).

 Returns

 landmarkable : :map:`Landmarkable`
 Augmented ``landmarkable`` (this is just for convenience,
 the object will actually be modified in place)
 """
 new_group, lmark_group = label_func(landmarkable.landmarks[group])
 landmarkable.landmarks[new_group] = lmark_group
 return landmarkable

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_modules/menpo/landmark/exceptions.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.landmark.exceptions

class LabellingError(Exception):
[docs] """
 Raised when labelling a landmark manager and the set of landmarks does not
 match the expected semantic layout.
 """
 pass

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_images/vectorizing.jpg
Vector space vl v2

f(vl)

img.from_vector(v2)
imgl.as_vector()

img2

Image space

_modules/menpo/landmark/base.html

 Navigation

 		
 index

 		Menpo 0.4.3-dirty documentation »

 		Module code »

 Source code for menpo.landmark.base

import abc
from collections import OrderedDict, MutableMapping

import numpy as np

from menpo.base import Copyable
from menpo.transform.base import Transformable
from menpo.visualize.base import Viewable

[docs]class Landmarkable(Copyable):
 r"""
 Abstract interface for object that can have landmarks attached to them.
 Landmarkable objects have a public dictionary of landmarks which are
 managed by a :map:`LandmarkManager`. This means that
 different sets of landmarks can be attached to the same object.
 Landmarks can be N-dimensional and are expected to be some
 subclass of :map:`PointCloud`. These landmarks
 are wrapped inside a :map:`LandmarkGroup` object that performs
 useful tasks like label filtering and viewing.
 """

 __metaclass__ = abc.ABCMeta

 def __init__(self):
 self._landmarks = None

 @abc.abstractproperty
 def n_dims(self):
 """
 The total number of dimensions.

 :type: `int`
 """
 pass

 @property
 def landmarks(self):
 """
 The landmarks object.

 :type: :map:`LandmarkManager`
 """
 if self._landmarks is None:
 self._landmarks = LandmarkManager()
 return self._landmarks

 @property
 def has_landmarks(self):
 """
 Whether the object has landmarks.

 :type: `bool`
 """
 return self._landmarks is not None

 @landmarks.setter
 def landmarks(self, value):
 """
 Landmarks setter.

 Parameters

 value : :map:`LandmarkManager`
 The landmarks to set.
 """
 # firstly, make sure the dim is correct. Note that the dim can be None
 lm_n_dims = value.n_dims
 if lm_n_dims is not None and lm_n_dims != self.n_dims:
 raise ValueError(
 "Trying to set {}D landmarks on a "
 "{}D object".format(value.n_dims, self.n_dims))
 self._landmarks = value.copy()

 @property
 def n_landmark_groups(self):
 r"""
 The number of landmark groups on this object.

 :type: `int`
 """
 return self.landmarks.n_groups

[docs]class LandmarkManager(MutableMapping, Transformable):
 """Store for :map:`LandmarkGroup` instances associated with an object

 Every :map:`Landmarkable` instance has an instance of this class available
 at the ``.landmarks`` property. It is through this class that all access
 to landmarks attached to instances is handled. In general the
 :map:`LandmarkManager` provides a dictionary-like interface for storing
 landmarks. :map:`LandmarkGroup` instances are stored under string keys -
 these keys are refereed to as the **group name**. A special case is
 where there is a single unambiguous :map:`LandmarkGroup` attached to a
 :map:`LandmarkManager` - in this case ``None`` can be used as a key to
 access the sole group.

 Note that all landmarks stored on a :map:`Landmarkable` in it's attached
 :map:`LandmarkManager` are automatically transformed and copied with their
 parent object.
 """
 def __init__(self):
 super(LandmarkManager, self).__init__()
 self._landmark_groups = {}

 @property
 def n_dims(self):
 """
 The total number of dimensions.

 :type: `int`
 """
 if self.n_groups != 0:
 # Python version independent way of getting the first value
 for v in self._landmark_groups.values():
 return v.n_dims
 else:
 return None

[docs] def copy(self):
 r"""
 Generate an efficient copy of this :map:`LandmarkManager`.

 Returns

 ``type(self)``
 A copy of this object

 """
 # do a normal copy. The dict will be shallow copied - rectify that here
 new = Copyable.copy(self)
 for k, v in new._landmark_groups.items():
 new._landmark_groups[k] = v.copy()
 return new

 def __iter__(self):
 """
 Iterate over the internal landmark group dictionary
 """
 return iter(self._landmark_groups)

 def __setitem__(self, group, value):
 """
 Sets a new landmark group for the given label. This can be set using
 an existing landmark group, or using a PointCloud. Existing landmark
 groups will have their target reset. If a PointCloud is provided then
 all landmarks belong to a single label `all`.

 Parameters

 group : `string`
 Label of new group.

 value : :map:`LandmarkGroup` or :map:`PointCloud`
 The new landmark group to set.

 Raises

 DimensionalityError
 If the landmarks and the shape are not of the same dimensionality.
 """
 from menpo.shape import PointCloud
 # firstly, make sure the dim is correct
 n_dims = self.n_dims
 if n_dims is not None and value.n_dims != n_dims:
 raise ValueError(
 "Trying to set {}D landmarks on a "
 "{}D LandmarkManager".format(value.n_dims, self.n_dims))
 if isinstance(value, PointCloud):
 # Copy the PointCloud so that we take ownership of the memory
 lmark_group = LandmarkGroup(
 value,
 OrderedDict([('all', np.ones(value.n_points, dtype=np.bool))]))
 elif isinstance(value, LandmarkGroup):
 # Copy the landmark group so that we now own it
 lmark_group = value.copy()
 # check the target is set correctly
 lmark_group._group_label = group
 else:
 raise ValueError('Valid types are PointCloud or LandmarkGroup')

 self._landmark_groups[group] = lmark_group

 def __getitem__(self, group=None):
 """
 Returns the group for the provided label.

 Parameters

 group : `string`, optional
 The label of the group. If None is provided, and if there is only
 one group, the unambiguous group will be returned.
 Returns

 lmark_group : :map:`LandmarkGroup`
 The matching landmark group.
 """
 if group is None:
 if self.n_groups == 1:
 group = self.group_labels[0]
 else:
 raise ValueError("Cannot use None as a key as there are {} "
 "landmark groups".format(self.n_groups))
 return self._landmark_groups[group]

 def __delitem__(self, group):
 """
 Delete the group for the provided label.

 Parameters

 group : `string`
 The label of the group.
 """
 del self._landmark_groups[group]

 def __len__(self):
 return len(self._landmark_groups)

 @property
 def n_groups(self):
 """
 Total number of labels.

 :type: `int`
 """
 return len(self._landmark_groups)

 @property
 def has_landmarks(self):
 """
 Whether the object has landmarks or not

 :type: `int`
 """
 return self.n_groups != 0

 @property
 def group_labels(self):
 """
 All the labels for the landmark set.

 :type: `list` of `str`
 """
 return self._landmark_groups.keys()

 def _transform_inplace(self, transform):
 for group in self._landmark_groups.values():
 group.lms._transform_inplace(transform)
 return self

[docs] def view_widget(self, popup=False, browser_style='buttons',
 figure_size=(10, 8)):
 r"""
 Visualizes the landmark manager object using the
 :map:`visualize_landmarks` widget.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : {``buttons``, ``slider``}, optional
 It defines whether the selector of the landmark managers will have
 the form of plus/minus buttons or a slider.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 """
 from menpo.visualize import visualize_landmarks
 visualize_landmarks(self, figure_size=figure_size, popup=popup,
 browser_style=browser_style)

 def __str__(self):
 out_string = '{}: n_groups: {}'.format(type(self).__name__,
 self.n_groups)
 if self.has_landmarks:
 for label in self:
 out_string += '\n'
 out_string += '({}): {}'.format(label, self[label].__str__())

 return out_string

[docs]class LandmarkGroup(MutableMapping, Copyable, Viewable):
 r"""
 An immutable object that holds a :map:`PointCloud` (or a subclass) and
 stores labels for each point. These labels are defined via masks on the
 :map:`PointCloud`. For this reason, the :map:`PointCloud` is considered to
 be immutable.

 The labels to masks must be within an `OrderedDict` so that semantic
 ordering can be maintained.

 Parameters

 pointcloud : :map:`PointCloud`
 The pointcloud representing the landmarks.
 labels_to_masks : `ordereddict` {`str` -> `bool ndarray`}
 For each label, the mask that specifies the indices in to the
 pointcloud that belong to the label.
 copy : `bool`, optional
 If ``True``, a copy of the :map:`PointCloud` is stored on the group.

 Raises

 ValueError
 If `dict` passed instead of `OrderedDict`
 ValueError
 If no set of label masks is passed.
 ValueError
 If any of the label masks differs in size to the pointcloud.
 ValueError
 If there exists any point in the pointcloud that is not covered
 by a label.
 """
 def __init__(self, pointcloud, labels_to_masks, copy=True):
 super(LandmarkGroup, self).__init__()

 if not labels_to_masks:
 raise ValueError('Landmark groups are designed for their internal '
 'state, other than owernship, to be immutable. '
 'Empty label sets are not permitted.')
 if np.vstack(labels_to_masks.values()).shape[1] != pointcloud.n_points:
 raise ValueError('Each mask must have the same number of points '
 'as the landmark pointcloud.')
 if type(labels_to_masks) is dict:
 raise ValueError('Must provide an OrderedDict to maintain the '
 'semantic meaning of the labels.')

 # Another sanity check
 self._labels_to_masks = labels_to_masks
 self._verify_all_labels_masked()

 if copy:
 self._pointcloud = pointcloud.copy()
 self._labels_to_masks = OrderedDict([(l, m.copy()) for l, m in
 labels_to_masks.items()])
 else:
 self._pointcloud = pointcloud
 self._labels_to_masks = labels_to_masks

[docs] def copy(self):
 r"""
 Generate an efficient copy of this :map:`LandmarkGroup`.

 Returns

 ``type(self)``
 A copy of this object
 """
 new = Copyable.copy(self)
 for k, v in new._labels_to_masks.items():
 new._labels_to_masks[k] = v.copy()
 return new

 def __iter__(self):
 """
 Iterate over the internal label dictionary
 """
 return iter(self._labels_to_masks)

 def __setitem__(self, label, indices):
 """
 Add a new label to the landmark group by adding a new set of indices

 Parameters

 label : `string`
 Label of landmark.

 indices : ``(K,)`` `ndarray`
 Array of indices in to the pointcloud. Each index implies
 membership to the label.
 """
 mask = np.zeros(self._pointcloud.n_points, dtype=np.bool)
 mask[indices] = True
 self._labels_to_masks[label] = mask

 def __getitem__(self, label=None):
 """
 Returns the PointCloud that contains this label represents on the group.
 This will be a subset of the total landmark group PointCloud.

 Parameters

 label : `string`
 Label to filter on.

 Returns

 pcloud : :map:`PointCloud`
 The PointCloud that this label represents. Will be a subset of the
 entire group's landmarks.
 """
 if label is None:
 return self.lms.copy()
 return self._pointcloud.from_mask(self._labels_to_masks[label])

 def __delitem__(self, label):
 """
 Delete the semantic labelling for the provided label.

 .. note::

 You cannot delete a semantic label and leave the landmark group
 partially unlabelled. Landmark groups must contain labels for
 every point.

 Parameters

 label : `string`
 The label to remove.

 Raises

 ValueError
 If deleting the label would leave some points unlabelled
 """
 # Pop the value off, which is akin to deleting it (removes it from the
 # underlying dict). However, we keep it around so we can check if
 # removing it causes an unlabelled point
 value_to_delete = self._labels_to_masks.pop(label)

 try:
 self._verify_all_labels_masked()
 except ValueError as e:
 # Catch the error, restore the value and re-raise the exception!
 self._labels_to_masks[label] = value_to_delete
 raise e

 def __len__(self):
 return len(self._labels_to_masks)

 @property
 def labels(self):
 """
 The list of labels that belong to this group.

 :type: `list` of `str`
 """
 return self._labels_to_masks.keys()

 @property
 def n_labels(self):
 """
 Number of labels in the group.

 :type: `int`
 """
 return len(self.labels)

 @property
 def lms(self):
 """
 The pointcloud representing all the landmarks in the group.

 :type: :map:`PointCloud`
 """
 return self._pointcloud

 @property
 def n_landmarks(self):
 """
 The total number of landmarks in the group.

 :type: `int`
 """
 return self._pointcloud.n_points

 @property
 def n_dims(self):
 """
 The dimensionality of these landmarks.

 :type: `int`
 """
 return self._pointcloud.n_dims

[docs] def with_labels(self, labels=None):
 """A new landmark group that contains only the certain labels

 Parameters

 labels : `str` or `list` of `str`, optional
 Labels that should be kept in the returned landmark group. If
 ``None`` is passed, and if there is only one label on this group,
 the label will be substituted automatically.

 Returns

 landmark_group : :map:`LandmarkGroup`
 A new landmark group with the same group label but containing only
 the given label.
 """
 # make it easier by allowing None when there is only one label
 if labels is None:
 if self.n_labels == 1:
 labels = self.labels
 else:
 raise ValueError("Cannot use None as there are "
 "{} labels".format(self.n_labels))
 # Make it easier to use by accepting a single string as well as a list
 if isinstance(labels, str):
 labels = [labels]
 return self._new_group_with_only_labels(labels)

[docs] def without_labels(self, labels):
 """A new landmark group that excludes certain labels
 label.

 Parameters

 labels : `str` or `list` of `str`
 Labels that should be excluded in the returned landmark group.

 Returns

 landmark_group : :map:`LandmarkGroup`
 A new landmark group with the same group label but containing all
 labels except the given label.
 """
 # Make it easier to use by accepting a single string as well as a list
 if isinstance(labels, str):
 labels = [labels]
 labels_to_keep = list(set(self.labels).difference(labels))
 return self._new_group_with_only_labels(labels_to_keep)

 def _verify_all_labels_masked(self):
 """
 Verify that every point in the pointcloud is associated with a label.
 If any one point is not covered by a label, then raise a
 ``ValueError``.
 """
 unlabelled_points = np.sum(self._labels_to_masks.values(), axis=0) == 0
 if np.any(unlabelled_points):
 nonzero = np.nonzero(unlabelled_points)
 raise ValueError(
 'Every point in the landmark pointcloud must be labelled. '
 'Points {0} were unlabelled.'.format(nonzero))

 def _new_group_with_only_labels(self, labels):
 """
 Deal with changing indices when you add and remove points. In this case
 we only deal with building a new dataset that keeps masks.

 Parameters

 labels : list of `string`
 List of strings of the labels to keep

 Returns

 lmark_group : :map:`LandmarkGroup`
 The new landmark group with only the requested labels.
 """
 set_difference = set(labels).difference(self.labels)
 if len(set_difference) > 0:
 raise ValueError('Labels {0} do not exist in the landmark '
 'group. Available labels are: {1}'.format(
 list(set_difference), self.labels))

 masks_to_keep = [self._labels_to_masks[l] for l in labels
 if l in self._labels_to_masks]
 overlap = np.sum(masks_to_keep, axis=0) > 0
 masks_to_keep = [l[overlap] for l in masks_to_keep]

 return LandmarkGroup(self._pointcloud.from_mask(overlap),
 OrderedDict(zip(labels, masks_to_keep)))

[docs] def tojson(self):
 r"""
 Convert this `LandmarkGroup` to a dictionary JSON representation.

 Returns

 json : ``dict``
 Dictionary conforming to the LJSON v2 specification.
 """
 labels = [{'mask': mask.nonzero()[0].tolist(),
 'label': label}
 for label, mask in self._labels_to_masks.items()]

 return {'landmarks': self.lms.tojson(),
 'labels': labels}

 def _view_2d(self, with_labels=None, without_labels=None, group='group',
 figure_id=None, new_figure=False, image_view=True,
 render_lines=True, line_colour=None, line_style='-',
 line_width=1, render_markers=True, marker_style='o',
 marker_size=20, marker_face_colour=None,
 marker_edge_colour=None, marker_edge_width=1.,
 render_numbering=False, numbers_horizontal_align='center',
 numbers_vertical_align='bottom',
 numbers_font_name='sans-serif', numbers_font_size=10,
 numbers_font_style='normal', numbers_font_weight='normal',
 numbers_font_colour='k', render_legend=True, legend_title='',
 legend_font_name='sans-serif', legend_font_style='normal',
 legend_font_size=10, legend_font_weight='normal',
 legend_marker_scale=None, legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.), legend_border_axes_pad=None,
 legend_n_columns=1, legend_horizontal_spacing=None,
 legend_vertical_spacing=None, legend_border=True,
 legend_border_padding=None, legend_shadow=False,
 legend_rounded_corners=False, render_axes=True,
 axes_font_name='sans-serif', axes_font_size=10,
 axes_font_style='normal', axes_font_weight='normal',
 axes_x_limits=None, axes_y_limits=None, figure_size=(10, 8)):
 """
 Visualize the landmark group.

 Parameters

 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 group : `str` or `None`, optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True``, the x and y axes are flipped.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or
 ``(3,)`` `ndarray` or ``None``, optional
 The colour of the lines. If ``None``, a different colour will be
 automatically selected for each label.
 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}, optional
 The style of the markers.
 marker_size : `int`, optional
 The size of the markers in points^2.
 marker_face_colour : {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or ``(3,)`` `ndarray`, optional
 The face (filling) colour of the markers.
 marker_edge_colour : {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or ``(3,)`` `ndarray`, optional
 The edge colour of the markers.
 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : {``center``, ``right``, ``left``}, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : {``center``, ``top``, ``bottom``,
 ``baseline``}, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : {``serif``, ``sans-serif``, ``cursive``,
 ``fantasy``, ``monospace``}, optional
 The font of the numbers.
 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the numbers.
 numbers_font_weight : {``ultralight``, ``light``, ``normal``,
 ``regular``, ``book``, ``medium``, ``roman``,
 ``semibold``, ``demibold``, ``demi``, ``bold``,
 ``heavy``, ``extra bold``, ``black``}, optional
 The font weight of the numbers.
 numbers_font_colour : {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or ``(3,)`` `ndarray`, optional
 The font colour of the numbers.
 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : {``serif``, ``sans-serif``, ``cursive``,
 ``fantasy``, ``monospace``}, optional
 The font of the legend.
 legend_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : {``ultralight``, ``light``, ``normal``,
 ``regular``, ``book``, ``medium``, ``roman``,
 ``semibold``, ``demibold``, ``demi``, ``bold``,
 ``heavy``, ``extra bold``, ``black``}, optional
 The font weight of the legend.
 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ===
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ===

 legend_bbox_to_anchor : (`float`, `float`), optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}, optional
 The font of the axes.
 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}, optional
 The font weight of the axes.
 axes_x_limits : (`float`, `float`) or `None`, optional
 The limits of the x axis.
 axes_y_limits : (`float`, `float`) or `None`, optional
 The limits of the y axis.
 figure_size : (`float`, `float`) or `None`, optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 """
 from menpo.visualize import LandmarkViewer2d
 if with_labels is not None and without_labels is not None:
 raise ValueError('You may only pass one of `with_labels` or '
 '`without_labels`.')
 elif with_labels is not None:
 lmark_group = self.with_labels(with_labels)
 elif without_labels is not None:
 lmark_group = self.without_labels(without_labels)
 else:
 lmark_group = self # Fall through
 landmark_viewer = LandmarkViewer2d(figure_id, new_figure,
 group, lmark_group._pointcloud,
 lmark_group._labels_to_masks)
 return landmark_viewer.render(
 image_view=image_view, render_lines=render_lines,
 line_colour=line_colour, line_style=line_style,
 line_width=line_width, render_markers=render_markers,
 marker_style=marker_style, marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend, legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes, axes_font_name=axes_font_name,
 axes_font_size=axes_font_size, axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits, figure_size=figure_size)

 def _view_3d(self, figure_id=None, new_figure=False, **kwargs):
 try:
 from menpo3d.visualize import LandmarkViewer3d
 return LandmarkViewer3d(figure_id, new_figure,
 self._pointcloud, self).render(**kwargs)
 except ImportError:
 from menpo.visualize import Menpo3dErrorMessage
 raise ImportError(Menpo3dErrorMessage)

[docs] def view_widget(self, popup=False, browser_style='buttons',
 figure_size=(10, 8)):
 r"""
 Visualizes the landmark group object using the
 :map:`visualize_landmarkgroups` widget.

 Parameters

 popup : `bool`, optional
 If ``True``, the widget will appear as a popup window.
 browser_style : {``buttons``, ``slider``}, optional
 It defines whether the selector of the landmark managers will have
 the form of plus/minus buttons or a slider.
 figure_size : (`int`, `int`), optional
 The initial size of the rendered figure.
 """
 from menpo.visualize import visualize_landmarkgroups
 visualize_landmarkgroups(self, figure_size=figure_size, popup=popup,
 browser_style=browser_style)

 def __str__(self):
 return '{}: n_labels: {}, n_points: {}'.format(
 type(self).__name__, self.n_labels, self.n_landmarks)

 © Copyright 2014, Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou.
 Created using Sphinx 1.3b2.

_images/indexing.jpg

