

Menpo Documentation

Menpo is a Python package designed to make manipulating annotated data more
simple. In particular, sparse locations on either images or meshes, referred
to as landmarks within Menpo, are tightly coupled with their reference
objects. For areas such as Computer Vision that involve learning models
based on prior knowledge of object location (such as object detection
and landmark localisation), Menpo is a very powerful toolkit.

A short example is often more illustrative than a verbose explanation. Let’s
assume that you want to load a set of images that have been annotated with
bounding boxes, and that these bounding box locations live in text files
next to the images. Here’s how we would load the images and extract the
areas within the bounding boxes using Menpo:

import menpo.io as mio

images = []
for image in mio.import_images('./images_folder'):
 images.append(image.crop_to_landmarks())

Where import_images returns a LazyList to keep memory usage low.

Although the above is a very simple example, we believe that being able
to easily manipulate and couple landmarks with images and meshes, is an
important problem for building powerful models in areas such as facial
point localisation.

Installation
Please refer to our detailed installation instructions in menpo.org.

User Guide
To get started, check out the user guide in menpo.org for an explanation of some of the core concepts within Menpo.

Finally, please refer to Menpo’s Changelog for a list of changes per release.

API Documentation

This section attempts to provide a simple browsing experience for the Menpo
documentation. In Menpo, we use legible docstrings, and therefore, all
documentation should be easily accessible in any sensible IDE (or IPython)
via tab completion. However, this section should make most of the core
classes available for viewing online.

	menpo.base
	Core

	Convenience

	Warnings and Exceptions

	menpo.io
	Input

	Output

	Path Operations

	menpo.image
	Image Types

	Exceptions

	menpo.feature
	Features

	Optional Features

	Predefined (Partial Features)

	Normalization

	Visualization

	References

	menpo.landmark
	Abstract Classes

	Exceptions

	Landmarks & Labeller

	Bounding Box Labels

	Labels

	menpo.math
	Decomposition

	Linear Algebra

	Convolution

	menpo.model
	Abstract Classes

	Principal Component Analysis

	Gaussian Markov Random Field

	menpo.shape
	Base Class

	PointCloud

	Graphs

	PointGraphs

	LabelledPointGraph

	Predefined Graphs

	Triangular Meshes

	Group Operations

	Shape Building

	menpo.transform
	Composite Transforms

	Homogeneous Transforms

	Alignments

	Group Alignments

	Composite Transforms

	Radial Basis Functions

	Abstract Bases

	Performance Specializations

	menpo.visualize
	Abstract Classes

	Patches

	Print Utilities

	Various

 menpo.base

menpo.base

Core

Core interfaces of Menpo.

	Copyable

	Vectorizable

	Targetable

	LazyList

Convenience

	menpo_src_dir_path

	name_of_callable

Warnings and Exceptions

	MenpoDeprecationWarning

	MenpoMissingDependencyError

 Copyable

Copyable

	
class menpo.base.Copyable[source]

	Bases: object

Efficient copying of classes containing numpy arrays.

Interface that provides a single method for copying classes very
efficiently.

	
copy()[source]

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

 Vectorizable

Vectorizable

	
class menpo.base.Vectorizable[source]

	Bases: Copyable

Flattening of rich objects to vectors and rebuilding them back.

Interface that provides methods for ‘flattening’ an object into a
vector, and restoring from the same vectorized form. Useful for
statistical analysis of objects, which commonly requires the data
to be provided as a single vector.

	
as_vector(**kwargs)[source]

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
from_vector(vector)[source]

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)[source]

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()[source]

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

 Targetable

Targetable

	
class menpo.base.Targetable[source]

	Bases: Copyable

Interface for objects that can produce a target PointCloud.

This could for instance be the result of an alignment or a generation of a
PointCloud instance from a shape model.

Implementations must define sensible behavior for:

	what a target is: see target

	how to set a target: see set_target()

	how to update the object after a target is set:
see _sync_state_from_target()

	how to produce a new target after the changes:
see _new_target_from_state()

Note that _sync_target_from_state() needs to be triggered as
appropriate by subclasses e.g. when from_vector_inplace is
called. This will in turn trigger _new_target_from_state(), which each
subclass must implement.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
set_target(new_target)[source]

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property target

	The current PointCloud that this object produces.

	Type

	PointCloud

 LazyList

LazyList

	
class menpo.base.LazyList(callables)[source]

	Bases: Sequence, Copyable

An immutable sequence that provides the ability to lazily access objects.
In truth, this sequence simply wraps a list of callables which are then
indexed and invoked. However, if the callable represents a function that
lazily access memory, then this list simply implements a lazy list
paradigm.

When slicing, another LazyList is returned, containing the subset
of callables.

	Parameters

	callables (list of callable) – A list of callable objects that will be invoked if directly indexed.

	
copy()[source]

	Generate an efficient copy of this LazyList - copying the underlying
callables will be lazy and shallow (each callable will not be
called nor copied) but they will reside within in a new list.

	Returns

	type(self) – A copy of this LazyList.

	
count(value) → integer – return number of occurrences of value

	

	
index(value[, start[, stop]]) → integer – return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
classmethod init_from_index_callable(f, n_elements)[source]

	Create a lazy list from a callable that expects a single parameter,
the index into an underlying sequence. This allows for simply
creating a LazyList from a callable that likely wraps
another list in a closure.

	Parameters

	
	f (callable) – Callable expecting a single integer parameter, index. This is an
index into (presumably) an underlying sequence.

	n_elements (int) – The number of elements in the underlying sequence.

	Returns

	lazy (LazyList) – A LazyList where each element returns the underlying indexable
object wrapped by f.

	
classmethod init_from_iterable(iterable, f=None)[source]

	Create a lazy list from an existing iterable (think Python list) and
optionally a callable that expects a single parameter which will be
applied to each element of the list. This allows for simply
creating a LazyList from an existing list and if no callable is
provided the identity function is assumed.

	Parameters

	
	iterable (collections.Iterable) – An iterable object such as a list.

	f (callable, optional) – Callable expecting a single parameter.

	Returns

	lazy (LazyList) – A LazyList where each element returns each item of the provided
iterable, optionally with f applied to it.

	
map(f)[source]

	Create a new LazyList where the passed callable f wraps
each element.

f should take a single parameter, x, that is the result
of the underlying callable - it must also return a value. Note that
mapping is lazy and thus calling this function should return
immediately.

Alternatively, f may be a list of callable, one per entry
in the underlying list, with the same specification as above.

	Parameters

	f (callable or iterable of callable) – Callable to wrap each element with. If an iterable of callables
(think list) is passed then it must by the same length as
this LazyList.

	Returns

	lazy (LazyList) – A new LazyList where each element is wrapped by (each) f.

	
repeat(n)[source]

	Repeat each item of the underlying LazyList n times. Therefore,
if a list currently has D items, the returned list will contain
D * n items and will return immediately (method is lazy).

	Parameters

	n (int) – The number of times to repeat each item.

	Returns

	lazy (LazyList) – A LazyList where each element returns each item of the provided
iterable, optionally with f applied to it.

Examples

>>> from menpo.base import LazyList
>>> ll = LazyList.init_from_list([0, 1])
>>> repeated_ll = ll.repeat(2) # Returns immediately
>>> items = list(repeated_ll) # [0, 0, 1, 1]

 menpo_src_dir_path

menpo_src_dir_path

	
menpo.base.menpo_src_dir_path()[source]

	The path to the top of the menpo Python package.

Useful for locating where the data folder is stored.

	Returns

	path (pathlib.Path) – The full path to the top of the Menpo package

 name_of_callable

name_of_callable

	
menpo.base.name_of_callable(c)[source]

	Return the name of a callable (function or callable class) as a string.
Recurses on partial function to attempt to find the wrapped
methods actual name.

	Parameters

	c (callable) – A callable class or function, or any valid Python object that can
be wrapped with partial.

	Returns

	name (str) – The name of the passed object.

 MenpoDeprecationWarning

MenpoDeprecationWarning

	
class menpo.base.MenpoDeprecationWarning[source]

	Bases: Warning

A warning that functionality in Menpo will be deprecated in a future major
release.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 MenpoMissingDependencyError

MenpoMissingDependencyError

	
class menpo.base.MenpoMissingDependencyError(package_name)[source]

	Bases: ImportError

An exception that a dependency required for the requested functionality
was not detected.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
msg

	exception message

	
name

	module name

	
path

	module path

 menpo.io

menpo.io

Input

	import_image

	import_images

	import_video

	import_videos

	import_landmark_file

	import_landmark_files

	import_pickle

	import_pickles

	import_builtin_asset

	register_image_importer

	register_landmark_importer

	register_pickle_importer

	register_video_importer

Output

	export_image

	export_video

	export_landmark_file

	export_pickle

Path Operations

	image_paths

	landmark_file_paths

	pickle_paths

	video_paths

	data_path_to

	data_dir_path

	ls_builtin_assets

 import_image

import_image

	
menpo.io.import_image(filepath, landmark_resolver=<function same_name>, normalize=None, normalise=None)[source]

	Single image (and associated landmarks) importer.

If an image file is found at filepath, returns an Image or
subclass representing it. By default, landmark files sharing the same
filename stem will be imported and attached with a group name based on the
extension of the landmark file, although this behavior can be customised
(see landmark_resolver). If the image defines a mask, this mask will be
imported.

	Parameters

	
	filepath (pathlib.Path or str) – A relative or absolute filepath to an image file.

	landmark_resolver (function or None, optional) – This function will be used to find landmarks for the
image. The function should take one argument (the path to the image) and
return a dictionary of the form {'group_name': 'landmark_filepath'}
Default finds landmarks with the same name as the image file.
If None, landmark importing will be skipped.

	normalize (bool, optional) – If True, normalize the image pixels between 0 and 1 and convert
to floating point. If false, the native datatype of the image will be
maintained (commonly uint8). Note that in general Menpo assumes
Image instances contain floating point data - if you disable
this flag you will have to manually convert the images you import to
floating point before doing most Menpo operations. This however can be
useful to save on memory usage if you only wish to view or crop images.

	normalise (bool, optional) – Deprecated version of normalize. Please use the normalize arg.

	Returns

	images (Image or list of) – An instantiated Image or subclass thereof or a list of images.

 import_images

import_images

	
menpo.io.import_images(pattern, max_images=None, shuffle=False, landmark_resolver=<function same_name>, normalize=None, normalise=None, as_generator=False, verbose=False)[source]

	Multiple image (and associated landmarks) importer.

For each image found creates an importer than returns a Image or
subclass representing it. By default, landmark files sharing the same
filename stem will be imported and attached with a group name based on the
extension of the landmark file, although this behavior can be customised
(see landmark_resolver). If the image defines a mask, this mask will be
imported.

Note that this is a function returns a LazyList. Therefore, the
function will return immediately and indexing into the returned list
will load an image at run time. If all images should be loaded, then simply
wrap the returned LazyList in a Python list.

	Parameters

	
	pattern (str) – A glob path pattern to search for images. Every image found to match
the glob will be imported one by one. See image_paths for more
details of what images will be found.

	max_images (positive int, optional) – If not None, only import the first max_images found. Else,
import all.

	shuffle (bool, optional) – If True, the order of the returned images will be randomised. If
False, the order of the returned images will be alphanumerically
ordered.

	landmark_resolver (function or None, optional) – This function will be used to find landmarks for the
image. The function should take one argument (the image itself) and
return a dictionary of the form {'group_name': 'landmark_filepath'}
Default finds landmarks with the same name as the image file.
If None, landmark importing will be skipped.

	normalize (bool, optional) – If True, normalize the image pixels between 0 and 1 and convert
to floating point. If false, the native datatype of the image will be
maintained (commonly uint8). Note that in general Menpo assumes
Image instances contain floating point data - if you disable
this flag you will have to manually convert the images you import to
floating point before doing most Menpo operations. This however can be
useful to save on memory usage if you only wish to view or crop images.

	normalise (bool, optional) – Deprecated version of normalize. Please use the normalize arg.

	as_generator (bool, optional) – If True, the function returns a generator and assets will be yielded
one after another when the generator is iterated over.

	verbose (bool, optional) – If True progress of the importing will be dynamically reported with
a progress bar.

	Returns

	lazy_list (LazyList or generator of Image) – A LazyList or generator yielding Image instances found
to match the glob pattern provided.

	Raises

	ValueError – If no images are found at the provided glob.

Examples

Import images at 20% scale from a huge collection:

>>> rescale_20p = lambda x: x.rescale(0.2)
>>> images = menpo.io.import_images('./massive_image_db/*') # Returns immediately
>>> images = images.map(rescale_20p) # Returns immediately
>>> images[0] # Get the first image, resize, lazily loaded

 import_video

import_video

	
menpo.io.import_video(filepath, landmark_resolver=<function same_name_video>, normalize=None, normalise=None, importer_method='ffmpeg', exact_frame_count=True)[source]

	Single video (and associated landmarks) importer.

If a video file is found at filepath, returns an LazyList wrapping
all the frames of the video. By default, landmark files sharing the same
filename stem will be imported and attached with a group name based on the
extension of the landmark file appended with the frame number, although this
behavior can be customised (see landmark_resolver).

Warning

This method currently uses ffmpeg to perform the importing. In order
to recover accurate frame counts from videos it is necessary to use
ffprobe to count the frames. This involves reading the entire
video in to memory which may cause a delay in loading despite the lazy
nature of the video loading within Menpo.
If ffprobe cannot be found, and exact_frame_count is False,
Menpo falls back to ffmpeg itself which is not accurate and the user
should proceed at their own risk.

	Parameters

	
	filepath (pathlib.Path or str) – A relative or absolute filepath to a video file.

	landmark_resolver (function or None, optional) – This function will be used to find landmarks for the
video. The function should take two arguments (the path to the video and
the frame number) and return a dictionary of the form {'group_name':
'landmark_filepath'} Default finds landmarks with the same name as the
video file, appended with ‘_{frame_number}’.
If None, landmark importing will be skipped.

	normalize (bool, optional) – If True, normalize the frame pixels between 0 and 1 and convert
to floating point. If False, the native datatype of the image will
be maintained (commonly uint8). Note that in general Menpo assumes
Image instances contain floating point data - if you disable this
flag you will have to manually convert the farmes you import to floating
point before doing most Menpo operations. This however can be useful to
save on memory usage if you only wish to view or crop the frames.

	normalise (bool, optional) – Deprecated version of normalize. Please use the normalize arg.

	importer_method ({'ffmpeg'}, optional) – A string representing the type of importer to use, by default ffmpeg
is used.

	exact_frame_count (bool, optional) – If True, the import fails if ffprobe is not available
(reading from ffmpeg’s output returns inexact frame count)

	Returns

	frames (LazyList) – An lazy list of Image or subclass thereof which wraps the frames
of the video. This list can be treated as a normal list, but the frame
is only read when the video is indexed or iterated.

Examples

>>> video = menpo.io.import_video('video.avi')
>>> # Lazily load the 100th frame without reading the entire video
>>> frame100 = video[100]

 import_videos

import_videos

	
menpo.io.import_videos(pattern, max_videos=None, shuffle=False, landmark_resolver=<function same_name_video>, normalize=None, normalise=None, importer_method='ffmpeg', exact_frame_count=True, as_generator=False, verbose=False)[source]

	Multiple video (and associated landmarks) importer.

For each video found yields a LazyList. By default, landmark files
sharing the same filename stem will be imported and attached with a group
name based on the extension of the landmark file appended with the frame
number, although this behavior can be customised (see landmark_resolver).

Note that this is a function returns a LazyList. Therefore, the
function will return immediately and indexing into the returned list
will load an image at run time. If all images should be loaded, then simply
wrap the returned LazyList in a Python list.

Warning

This method currently uses ffmpeg to perform the importing. In order
to recover accurate frame counts from videos it is necessary to use
ffprobe to count the frames. This involves reading the entire
video in to memory which may cause a delay in loading despite the lazy
nature of the video loading within Menpo.
If ffprobe cannot be found, and exact_frame_count is False,
Menpo falls back to ffmpeg itself which is not accurate and the user
should proceed at their own risk.

	Parameters

	
	pattern (str) – A glob path pattern to search for videos. Every video found to match
the glob will be imported one by one. See video_paths for more
details of what videos will be found.

	max_videos (positive int, optional) – If not None, only import the first max_videos found. Else,
import all.

	shuffle (bool, optional) – If True, the order of the returned videos will be randomised. If
False, the order of the returned videos will be alphanumerically
ordered.

	landmark_resolver (function or None, optional) – This function will be used to find landmarks for the
video. The function should take two arguments (the path to the video and
the frame number) and return a dictionary of the form {'group_name':
'landmark_filepath'} Default finds landmarks with the same name as the
video file, appended with ‘_{frame_number}’.
If None, landmark importing will be skipped.

	normalize (bool, optional) – If True, normalize the frame pixels between 0 and 1 and convert
to floating point. If False, the native datatype of the image will
be maintained (commonly uint8). Note that in general Menpo assumes
Image instances contain floating point data - if you disable this
flag you will have to manually convert the frames you import to floating
point before doing most Menpo operations. This however can be useful to
save on memory usage if you only wish to view or crop the frames.

	normalise (bool, optional) – Deprecated version of normalize. Please use the normalize arg.

	importer_method ({'ffmpeg'}, optional) – A string representing the type of importer to use, by default ffmpeg
is used.

	as_generator (bool, optional) – If True, the function returns a generator and assets will be yielded
one after another when the generator is iterated over.

	exact_frame_count (bool, optional) – If True, the import fails if ffmprobe is not available
(reading from ffmpeg’s output returns inexact frame count)

	verbose (bool, optional) – If True progress of the importing will be dynamically reported with
a progress bar.

	Returns

	lazy_list (LazyList or generator of LazyList) – A LazyList or generator yielding LazyList instances that
wrap the video object.

	Raises

	ValueError – If no videos are found at the provided glob.

Examples

Import videos at and rescale every frame of each video:

>>> videos = []
>>> for video in menpo.io.import_videos('./set_of_videos/*'):
>>> frames = []
>>> for frame in video:
>>> # rescale to a sensible size as we go
>>> frames.append(frame.rescale(0.2))
>>> videos.append(frames)

 import_landmark_file

import_landmark_file

	
menpo.io.import_landmark_file(filepath, group=None, asset=None)[source]

	Single landmark file importer.

If a landmark file is found at filepath, returns a dictionary
of landmarks where keys are the group names and the values are
PointCloud or subclasses. If the optional group argument is
supplied then a single group with the given name is returned rather than
a dictionary

	Parameters

	
	filepath (pathlib.Path or str) – A relative or absolute filepath to an landmark file.

	group (str, optional) – The name of the landmark group to return from the landmark dictionary.
If None, then a dictionary is returned where keys are the group names
and the values are PointCloud or subclasses.

	asset (object, optional) – The object the landmark belongs to (useful for things like rescaling)

	Returns

	landmarks (dict {str: PointCloud} or PointCloud) – Dictionary mapping landmark groups to PointCloud or subclasses
OR
PointCloud or subclass if group == None

 import_landmark_files

import_landmark_files

	
menpo.io.import_landmark_files(pattern, max_landmarks=None, shuffle=False, as_generator=False, verbose=False)[source]

	Import Multiple landmark files.

For each landmark file found returns an importer then
returns a LabelledPointUndirectedGraph or a PointCloud.

Note that this is a function returns a LazyList. Therefore, the
function will return immediately and indexing into the returned list
will load the landmarks at run time. If all landmarks should be loaded, then
simply wrap the returned LazyList in a Python list.

	Parameters

	
	pattern (str) – A glob path pattern to search for landmark files. Every
landmark file found to match the glob will be imported one by one.
See landmark_file_paths for more details of what landmark files
will be found.

	max_landmarks (positive int, optional) – If not None, only import the first max_landmark_files found.
Else, import all.

	shuffle (bool, optional) – If True, the order of the returned landmark files will be
randomised. If False, the order of the returned landmark files will
be alphanumerically ordered.

	as_generator (bool, optional) – If True, the function returns a generator and assets will be yielded
one after another when the generator is iterated over.

	verbose (bool, optional) – If True progress of the importing will be dynamically reported.

	Returns

	lazy_list (LazyList or generator) – A LazyList or generator yielding PointCloud or
LabelledPointUndirectedGraph instances found to match the glob
pattern provided.

	Raises

	ValueError – If no landmarks are found at the provided glob.

 import_pickle

import_pickle

	
menpo.io.import_pickle(filepath, **kwargs)[source]

	Import a pickle file of arbitrary Python objects.

Menpo unambiguously uses .pkl as it’s choice of extension for Pickle
files. Menpo also supports automatic importing and exporting of gzip
compressed pickle files - just choose a filepath ending pkl.gz and
gzip compression will automatically be applied. Compression can massively
reduce the filesize of a pickle file at the cost of longer import and
export times.

	Parameters

	filepath (pathlib.Path or str) – A relative or absolute filepath to a .pkl or .pkl.gz file.

	Returns

	object (object) – Whatever Python objects are present in the Pickle file

 import_pickles

import_pickles

	
menpo.io.import_pickles(pattern, max_pickles=None, shuffle=False, as_generator=False, verbose=False, **kwargs)[source]

	Multiple pickle importer.

Menpo unambiguously uses .pkl as it’s choice of extension for Pickle
files. Menpo also supports automatic importing and exporting of gzip
compressed pickle files - just choose a filepath ending pkl.gz and
gzip compression will automatically be applied. Compression can massively
reduce the filesize of a pickle file at the cost of longer import and
export times.

Note that this is a function returns a LazyList. Therefore, the
function will return immediately and indexing into the returned list
will load a pickle at run time. If all pickles should be loaded, then simply
wrap the returned LazyList in a Python list.

	Parameters

	
	pattern (str) – A glob path pattern to search for pickles. Every pickle found to match
the glob will be imported one by one. See pickle_paths for more
details of what pickles will be found.

	max_pickles (positive int, optional) – If not None, only import the first max_pickles found. Else,
import all.

	shuffle (bool, optional) – If True, the order of the returned pickles will be randomised. If
False, the order of the returned pickles will be alphanumerically
ordered.

	as_generator (bool, optional) – If True, the function returns a generator and assets will be yielded
one after another when the generator is iterated over.

	verbose (bool, optional) – If True progress of the importing will be dynamically reported with
a progress bar.

	Returns

	lazy_list (LazyList or generator of Python objects) – A LazyList or generator yielding whatever Python objects are
present in the Pickle file instances that match the glob pattern
provided.

	Raises

	ValueError – If no pickles are found at the provided glob.

 import_builtin_asset

import_builtin_asset

	
menpo.io.import_builtin_asset()

	This is a dynamically generated method. This method is designed to
automatically generate import methods for each data file in the data
folder. This method it designed to be tab completed, so you do not need
to call this method explicitly. It should be treated more like a property
that will dynamically generate functions that will import the shipped
data. For example:

>>> import menpo
>>> bb_image = menpo.io.import_builtin_asset.breakingbad_jpg()

 register_image_importer

register_image_importer

	
menpo.io.register_image_importer(extension, callable)

	Register a new importer for the given extension.

	Parameters

	
	ext_map ({‘str’ -> ‘callable’} dict) – Extensions map to callable.

	extension (str) – File extension to support. May be multi-part e.g. ‘.tar.gz’

	callable (callable) – The callable to invoke if a file with the provided extension is
discovered during importing. Should take a single argument (the
filepath) and any number of kwargs.

 register_landmark_importer

register_landmark_importer

	
menpo.io.register_landmark_importer(extension, callable)

	Register a new importer for the given extension.

	Parameters

	
	ext_map ({‘str’ -> ‘callable’} dict) – Extensions map to callable.

	extension (str) – File extension to support. May be multi-part e.g. ‘.tar.gz’

	callable (callable) – The callable to invoke if a file with the provided extension is
discovered during importing. Should take a single argument (the
filepath) and any number of kwargs.

 register_pickle_importer

register_pickle_importer

	
menpo.io.register_pickle_importer(extension, callable)

	Register a new importer for the given extension.

	Parameters

	
	ext_map ({‘str’ -> ‘callable’} dict) – Extensions map to callable.

	extension (str) – File extension to support. May be multi-part e.g. ‘.tar.gz’

	callable (callable) – The callable to invoke if a file with the provided extension is
discovered during importing. Should take a single argument (the
filepath) and any number of kwargs.

 register_video_importer

register_video_importer

	
menpo.io.register_video_importer(extension, callable)

	Register a new importer for the given extension.

	Parameters

	
	ext_map ({‘str’ -> ‘callable’} dict) – Extensions map to callable.

	extension (str) – File extension to support. May be multi-part e.g. ‘.tar.gz’

	callable (callable) – The callable to invoke if a file with the provided extension is
discovered during importing. Should take a single argument (the
filepath) and any number of kwargs.

 export_image

export_image

	
menpo.io.export_image(image, fp, extension=None, overwrite=False)[source]

	Exports a given image. The fp argument can be either
a Path or any Python type that acts like a file. If a file is provided,
the extension kwarg must be provided. If no
extension is provided and a str filepath is provided, then
the export type is calculated based on the filepath extension.

Due to the mix of string and file types, an explicit overwrite argument is
used which is False by default.

	Parameters

	
	image (Image) – The image to export.

	fp (Path or file-like object) – The Path or file-like object to save the object at/into.

	extension (str or None, optional) – The extension to use, this must match the file path if the file
path is a string. Determines the type of exporter that is used.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	Raises

	
	ValueError – File already exists and overwrite != True

	ValueError – fp is a str and the extension is not None
 and the two extensions do not match

	ValueError – fp is a file-like object and extension is
 None

	ValueError – The provided extension does not match to an existing exporter type
 (the output type is not supported).

 export_video

export_video

	
menpo.io.export_video(images, file_path, overwrite=False, fps=30, **kwargs)[source]

	Exports a given list of images as a video. Ensure that all the images
have the same shape, otherwise you might get unexpected results from
the ffmpeg writer. The file_path argument is a Path representing
the path to save the video to. At this time, it is not possible
to export videos directly to a file buffer.

Due to the mix of string and file types, an explicit overwrite argument is
used which is False by default.

Note that exporting of GIF images is also supported.

	Parameters

	
	images (list of Image) – The images to export as a video.

	file_path (Path) – The Path to save the video at. File buffers are not supported, unlike
other exporting formats.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	fps (int, optional) – The number of frames per second.

	**kwargs (dict, optional) – Extra parameters that are passed through directly to the exporter.
Please see the documentation in the menpo.io.output.video package
for information about the supported arguments.

	Raises

	
	ValueError – File already exists and overwrite != True

	ValueError – The input is a buffer and not a valid Path

	ValueError – The provided extension does not match to an existing exporter type
 (the output type is not supported).

 export_landmark_file

export_landmark_file

	
menpo.io.export_landmark_file(landmarks_object, fp, extension=None, overwrite=False)[source]

	Exports a given shape. The fp argument can be either or a str or
any Python type that acts like a file. If a file is provided, the
extension kwarg must be provided. If no extension is provided
and a str filepath is provided, then the export type is calculated
based on the filepath extension.

Due to the mix in string and file types, an explicit overwrite argument is
used which is False by default.

	Parameters

	
	landmarks_object (dict or LandmarkManager or) – PointCloud or subclass of PointCloud
The landmarks to export. The type of PointCloud or
subclass of it are supported by all exporters, while the
rest are available only for the LJSON format.

	fp (Path or file-like object) – The Path or file-like object to save the object at/into.

	extension (str or None, optional) – The extension to use, this must match the file path if the file
path is a string. Determines the type of exporter that is used.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	Raises

	
	ValueError – File already exists and overwrite != True

	ValueError – fp is a str and the extension is not None
 and the two extensions do not match

	ValueError – fp is a file-like object and extension is
 None

	ValueError – The provided extension does not match to an existing exporter type
 (the output type is not supported).

	ValueError – The provided type for landmarks_object is not supported.

 export_pickle

export_pickle

	
menpo.io.export_pickle(obj, fp, overwrite=False, protocol=2)[source]

	Exports a given collection of Python objects with Pickle.

The fp argument can be either a Path or any Python type that acts like
a file.
If fp is a path, it must have the suffix .pkl or .pkl.gz. If
.pkl, the object will be pickled using the selected Pickle protocol.
If .pkl.gz the object will be pickled using the selected Pickle
protocol with gzip compression (at a fixed compression level of 3).

Note that a special exception is made for pathlib.Path objects - they
are pickled down as a pathlib.PurePath so that pickles can be easily
moved between different platforms.

	Parameters

	
	obj (object) – The object to export.

	fp (Path or file-like object) – The string path or file-like object to save the object at/into.

	overwrite (bool, optional) – Whether or not to overwrite a file if it already exists.

	protocol (int, optional) – The Pickle protocol used to serialize the file.
The protocols were introduced in different versions of python, thus
it is recommended to save with the highest protocol version that
your python distribution can support.
The protocol refers to:

	Protocol

	Functionality

	0

	Simplest protocol for text mode, backwards compatible.

	1

	Protocol for binary mode, backwards compatible.

	2

	Wider support for classes, compatible with python >= 2.3.

	3

	Support for byte objects, compatible with python >= 3.0.

	4

	Support for large objects, compatible with python >= 3.4.

	Raises

	
	ValueError – File already exists and overwrite != True

	ValueError – fp is a file-like object and extension is
 None

	ValueError – The provided extension does not match to an existing exporter type
 (the output type is not supported).

 image_paths

image_paths

	
menpo.io.image_paths(pattern)[source]

	Return image filepaths that Menpo can import that match the glob pattern.

 landmark_file_paths

landmark_file_paths

	
menpo.io.landmark_file_paths(pattern)[source]

	Return landmark file filepaths that Menpo can import that match the glob
pattern.

 pickle_paths

pickle_paths

	
menpo.io.pickle_paths(pattern)[source]

	Return pickle filepaths that Menpo can import that match the glob
pattern.

 video_paths

video_paths

	
menpo.io.video_paths(pattern)[source]

	Return video filepaths that Menpo can import that match the glob pattern.

 data_path_to

data_path_to

	
menpo.io.data_path_to(asset_filename)

	The path to a builtin asset in the ./data folder on this machine.

	Parameters

	asset_filename (str) – The filename (with extension) of a file builtin to Menpo. The full
set of allowed names is given by ls_builtin_assets()

	Returns

	data_path (pathlib.Path) – The path to a given asset in the ./data folder

	Raises

	ValueError – If the asset_filename doesn’t exist in the data folder.

 data_dir_path

data_dir_path

	
menpo.io.data_dir_path()

	A path to the built in ./data folder on this machine.

	Returns

	path (pathlib.Path) – The path to the local ./data folder

 ls_builtin_assets

ls_builtin_assets

	
menpo.io.ls_builtin_assets()

	List all the builtin asset examples provided.

	Returns

	file_paths (list of str) – Filenames of all assets in the data directory shipped with the
project.

 menpo.image

menpo.image

Image Types

	Image

	BooleanImage

	MaskedImage

Exceptions

	ImageBoundaryError

	OutOfMaskSampleError

 Image

Image

	
class menpo.image.Image(image_data, copy=True)[source]

	Bases: Vectorizable, Landmarkable, Viewable, LandmarkableViewable

An n-dimensional image.

Images are n-dimensional homogeneous regular arrays of data. Each
spatially distinct location in the array is referred to as a pixel.
At a pixel, k distinct pieces of information can be stored. Each
datum at a pixel is refereed to as being in a channel. All pixels in
the image have the same number of channels, and all channels have the
same data-type (float64).

	Parameters

	
	image_data ((C, M, N ..., Q) ndarray) – Array representing the image pixels, with the first axis being
channels.

	copy (bool, optional) – If False, the image_data will not be copied on assignment.
Note that this will miss out on additional checks. Further note that we
still demand that the array is C-contiguous - if it isn’t, a copy will
be generated anyway.
In general, this should only be used if you know what you are doing.

	Raises

	
	Warning – If copy=False cannot be honoured

	ValueError – If the pixel array is malformed

	
_view_2d(figure_id=None, new_figure=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	View the image using the default image viewer. This method will appear
on the Image as view if the Image is 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36,
hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
bessel, mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	Returns

	viewer (ImageViewer) – The image viewing object.

	
_view_landmarks_2d(channels=None, group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, interpolation='bilinear', cmap_name=None, alpha=1.0, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters

	
	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_PILImage(out_dtype=<class 'numpy.uint8'>)[source]

	Return a PIL copy of the image scaled and cast to the correct
values for the provided out_dtype.

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 floating point images must be in the range [0, 1] to be
converted.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	pil_image (PILImage) – PIL copy of image

	Raises

	
	ValueError – If image is not 2D and has 1 channel or 3 channels.

	ValueError – If pixels data type is float32 or float64 and the pixel
 range is outside of [0, 1]

	ValueError – If the output dtype is unsupported. Currently uint8 is supported.

	
as_greyscale(mode='luminosity', channel=None)[source]

	Returns a greyscale version of the image. If the image does not
represent a 2D RGB image, then the luminosity mode will fail.

	Parameters

	
	mode ({average, luminosity, channel}, optional) –

	mode

	Greyscale Algorithm

	average

	Equal average of all channels

	luminosity

	Calculates the luminance using the CCIR 601 formula:

	

	
\[Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'\]

	channel

	A specific channel is chosen as the intensity value.

	channel (int, optional) – The channel to be taken. Only used if mode is channel.

	Returns

	greyscale_image (MaskedImage) – A copy of this image in greyscale.

	
as_histogram(keep_channels=True, bins='unique')[source]

	Histogram binning of the values of this image.

	Parameters

	
	keep_channels (bool, optional) – If set to False, it returns a single histogram for all the
channels of the image. If set to True, it returns a list of
histograms, one for each channel.

	bins ({unique}, positive int or sequence of scalars, optional) – If set equal to 'unique', the bins of the histograms are centred
on the unique values of each channel. If set equal to a positive
int, then this is the number of bins. If set equal to a
sequence of scalars, these will be used as bins centres.

	Returns

	
	hist (ndarray or list with n_channels ndarrays inside) – The histogram(s). If keep_channels=False, then hist is an
ndarray. If keep_channels=True, then hist is a list with
len(hist)=n_channels.

	bin_edges (ndarray or list with n_channels ndarrays inside) – An array or a list of arrays corresponding to the above histograms
that store the bins’ edges.

	Raises

	ValueError – Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples

Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

	
as_imageio(out_dtype=<class 'numpy.uint8'>)[source]

	Return an Imageio copy of the image scaled and cast to the correct
values for the provided out_dtype.

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 floating point images must be in the range [0, 1] to be
converted.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	imageio_image (ndarray) – Imageio image (which is just a numpy ndarray with the channels
as the last axis).

	Raises

	
	ValueError – If image is not 2D and has 1 channel or 3 channels.

	ValueError – If pixels data type is float32 or float64 and the pixel
 range is outside of [0, 1]

	ValueError – If the output dtype is unsupported. Currently uint8 and uint16
 are supported.

	
as_masked(mask=None, copy=True)[source]

	Return a copy of this image with an attached mask behavior.

A custom mask may be provided, or None. See the MaskedImage
constructor for details of how the kwargs will be handled.

	Parameters

	
	mask ((self.shape) ndarray or BooleanImage) – A mask to attach to the newly generated masked image.

	copy (bool, optional) – If False, the produced MaskedImage will share pixels with
self. Only suggested to be used for performance.

	Returns

	masked_image (MaskedImage) – An image with the same pixels and landmarks as this one, but with
a mask.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounds()[source]

	The bounds of the image, minimum is always (0, 0). The maximum is
the maximum index that can be used to index into the image for each
dimension. Therefore, bounds will be of the form:
((0, 0), (self.height - 1, self.width - 1)) for a 2D image.

Note that this is akin to supporting a nearest neighbour interpolation.
Although the actual maximum subpixel value would be something
like self.height - eps where eps is some value arbitrarily
close to 0, this value at least allows sampling without worrying about
floating point error.

	Type

	tuple

	
centre()[source]

	The geometric centre of the Image - the subpixel that is in the
middle.

Useful for aligning shapes and images.

	Type

	(n_dims,) ndarray

	
clip_pixels(minimum=None, maximum=None)[source]

	A copy of this image with pixels linearly clipped to fit a range.

	Parameters

	
	minimum (float, optional) – The minimal value of the clipped pixels. If None is provided, the
default value will be 0.

	maximum (float, optional) – The maximal value of the clipped pixels. If None is provided, the
default value will depend on the dtype.

	Returns

	rescaled_image (type(self)) – A copy of this image with pixels linearly rescaled to fit in the
range provided.

	
constrain_landmarks_to_bounds()[source]

	Deprecated - please use the equivalent constrain_to_bounds method
now on PointCloud, in conjunction with the new Image bounds()
method. For example:

>>> im.constrain_landmarks_to_bounds() # Equivalent to below
>>> im.landmarks['test'] = im.landmarks['test'].constrain_to_bounds(im.bounds())

	
constrain_points_to_bounds(points)[source]

	Constrains the points provided to be within the bounds of this image.

	Parameters

	points ((d,) ndarray) – Points to be snapped to the image boundaries.

	Returns

	bounded_points ((d,) ndarray) – Points snapped to not stray outside the image edges.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
crop(min_indices, max_indices, constrain_to_boundary=False, return_transform=False)[source]

	Return a cropped copy of this image using the given minimum and
maximum indices. Landmarks are correctly adjusted so they maintain
their position relative to the newly cropped image.

	Parameters

	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	cropped_image (type(self)) – A new instance of self, but cropped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	
	ValueError – min_indices and max_indices both have to be of length
 n_dims. All max_indices must be greater than
 min_indices.

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_landmarks(group=None, boundary=0, constrain_to_boundary=True, return_transform=False)[source]

	Return a copy of this image cropped so that it is bounded around a set
of landmarks with an optional n_pixel boundary

	Parameters

	
	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to its landmarks.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_proportion(boundary_proportion, group=None, minimum=True, constrain_to_boundary=True, return_transform=False)[source]

	Crop this image to be bounded around a set of landmarks with a
border proportional to the landmark spread or range.

	Parameters

	
	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – This image, cropped to its landmarks with a border proportional to
the landmark spread or range.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_pointcloud(pointcloud, boundary=0, constrain_to_boundary=True, return_transform=False)[source]

	Return a copy of this image cropped so that it is bounded around a
pointcloud with an optional n_pixel boundary.

	Parameters

	
	pointcloud (PointCloud) – The pointcloud to crop around.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to the bounds of the pointcloud.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_pointcloud_proportion(pointcloud, boundary_proportion, minimum=True, constrain_to_boundary=True, return_transform=False)[source]

	Return a copy of this image cropped so that it is bounded around a
pointcloud with a border proportional to the pointcloud spread or range.

	Parameters

	
	pointcloud (PointCloud) – The pointcloud to crop around.

	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the pointclouds’ per-dimension range; if False w.r.t.
the maximum value of the pointclouds’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to the border proportional to
the pointcloud spread or range.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
diagonal()[source]

	The diagonal size of this image

	Type

	float

	
extract_channels(channels)[source]

	A copy of this image with only the specified channels.

	Parameters

	channels (int or [int]) – The channel index or list of channel indices to retain.

	Returns

	image (type(self)) – A copy of this image with only the channels requested.

	
extract_patches(patch_centers, patch_shape=(16, 16), sample_offsets=None, as_single_array=True, order=0, mode='constant', cval=0.0)[source]

	Extract a set of patches from an image. Given a set of patch centers
and a patch size, patches are extracted from within the image, centred
on the given coordinates. Sample offsets denote a set of offsets to
extract from within a patch. This is very useful if you want to extract
a dense set of features around a set of landmarks and simply sample the
same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you
need to slice the resulting list. So for 2 offsets, the first centers
offset patches would be patches[:2].

Currently only 2D images are supported.

Note that the default is nearest neighbour sampling for the patches
which is achieved via slicing and is much more efficient than using
sampling/interpolation. Note that a significant performance decrease
will be measured if the order or mode parameters are modified
from order = 0 and mode = 'constant' as internally sampling
will be used rather than slicing.

	Parameters

	
	patch_centers (PointCloud) – The centers to extract patches around.

	patch_shape ((1, n_dims) tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre.
If None, then no offsets are applied.

	as_single_array (bool, optional) – If True, an (n_center, n_offset, n_channels, patch_shape)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of n_center * n_offset
Image objects is returned representing each patch.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5].
See warp_to_shape for more information.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according to
the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside the
image boundaries.

	Returns

	patches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises

	ValueError – If image is not 2D

	
extract_patches_around_landmarks(group=None, patch_shape=(16, 16), sample_offsets=None, as_single_array=True)[source]

	Extract patches around landmarks existing on this image. Provided the
group label and optionally the landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.

	Parameters

	
	group (str or None, optional) – The landmark group to use as patch centres.

	patch_shape (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre.
If None, then no offsets are applied.

	as_single_array (bool, optional) – If True, an (n_center, n_offset, n_channels, patch_shape)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of n_center * n_offset
Image objects is returned representing each patch.

	Returns

	patches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises

	ValueError – If image is not 2D

	
from_vector(vector, n_channels=None, copy=True)[source]

	Takes a flattened vector and returns a new image formed by reshaping
the vector to the correct pixels and channels.

The n_channels argument is useful for when we want to add an extra
channel to an image but maintain the shape. For example, when
calculating the gradient.

Note that landmarks are transferred in the process.

	Parameters

	
	vector ((n_parameters,) ndarray) – A flattened vector of all pixels and channels of an image.

	n_channels (int, optional) – If given, will assume that vector is the same shape as this image,
but with a possibly different number of channels.

	copy (bool, optional) – If False, the vector will not be copied in creating the new
image.

	Returns

	image (Image) – New image of same shape as this image and the number of
specified channels.

	Raises

	Warning – If the copy=False flag cannot be honored

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
gaussian_pyramid(n_levels=3, downscale=2, sigma=None)[source]

	Return the gaussian pyramid of this image. The first image of the
pyramid will be a copy of the original, unmodified, image, and counts
as level 1.

	Parameters

	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	sigma (float, optional) – Sigma for gaussian filter. Default is downscale / 3. which
corresponds to a filter mask twice the size of the scale factor
that covers more than 99% of the gaussian distribution.

	Yields

	image_pyramid (generator) – Generator yielding pyramid layers as Image objects.

	
has_landmarks_outside_bounds()[source]

	Indicates whether there are landmarks located outside the image bounds.

	Type

	bool

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
indices()[source]

	Return the indices of all pixels in this image.

	Type

	(n_dims, n_pixels) ndarray

	
classmethod init_blank(shape, n_channels=1, fill=0, dtype=<class 'float'>)[source]

	Returns a blank image.

	Parameters

	
	shape (tuple or list) – The shape of the image. Any floating point values are rounded up
to the nearest integer.

	n_channels (int, optional) – The number of channels to create the image with.

	fill (int, optional) – The value to fill all pixels with.

	dtype (numpy data type, optional) – The data type of the image.

	Returns

	blank_image (Image) – A new image of the requested size.

	
classmethod init_from_channels_at_back(pixels)[source]

	Create an Image from a set of pixels where the channels axis is on
the last axis (the back). This is common in other frameworks, and
therefore this method provides a convenient means of creating a menpo
Image from such data. Note that a copy is always created due to the
need to rearrange the data.

	Parameters

	pixels ((M, N ..., Q, C) ndarray) – Array representing the image pixels, with the last axis being
channels.

	Returns

	image (Image) – A new image from the given pixels, with the FIRST axis as the
channels.

	Raises

	ValueError – If image is not at least 2D, i.e. has at least 2 dimensions plus
 the channels in the end.

	
classmethod init_from_pointcloud(pointcloud, group=None, boundary=0, n_channels=1, fill=0, dtype=<class 'float'>, return_transform=False)[source]

	Create an Image that is big enough to contain the given pointcloud.
The pointcloud will be translated to the origin and then translated
according to its bounds in order to fit inside the new image.
An optional boundary can be provided in order to increase the space
around the boundary of the pointcloud. The boundary will be added
to all sides of the image and so a boundary of 5 provides 10 pixels
of boundary total for each dimension.

	Parameters

	
	pointcloud (PointCloud) – Pointcloud to place inside the newly created image.

	group (str, optional) – If None, the pointcloud will only be used to create the image.
If a str then the pointcloud will be attached as a landmark
group to the image, with the given string as key.

	boundary (float) – A optional padding distance that is added to the pointcloud bounds.
Default is 0, meaning the max/min of tightest possible
containing image is returned.

	n_channels (int, optional) – The number of channels to create the image with.

	fill (int, optional) – The value to fill all pixels with.

	dtype (numpy data type, optional) – The data type of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
adjust the PointCloud in order to build the image, is returned.

	Returns

	
	image (type(cls) Image or subclass) – A new image with the same size as the given pointcloud, optionally
with the pointcloud attached as landmarks.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
classmethod init_from_rolled_channels(pixels)[source]

	Deprecated - please use the equivalent init_from_channels_at_back method.

	
mirror(axis=1, order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, mirrored/flipped about a certain axis.

	Parameters

	
	axis (int, optional) – The axis about which to mirror the image.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5].

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the mirroring is also returned.

	Returns

	
	mirrored_image (type(self)) – The mirrored image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	
	ValueError – axis cannot be negative

	ValueError – axis={} but the image has {} dimensions

	
normalize_norm(mode='all', **kwargs)[source]

	Returns a copy of this image normalized such that its pixel values
have zero mean and its norm equals 1.

	Parameters

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
unit norm.

	Returns

	image (type(self)) – A copy of this image, normalized.

	
normalize_std(mode='all', **kwargs)[source]

	Returns a copy of this image normalized such that its
pixel values have zero mean and unit variance.

	Parameters

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	Returns

	image (type(self)) – A copy of this image, normalized.

	
pixels_range()[source]

	The range of the pixel values (min and max pixel values).

	Returns

	min_max ((dtype, dtype)) – The minimum and maximum value of the pixels array.

	
pixels_with_channels_at_back(out_dtype=None)[source]

	Returns the pixels matrix, with the channels rolled to the back axis.
This may be required for interacting with external code bases that
require images to have channels as the last axis, rather than the
Menpo convention of channels as the first axis.

If this image is single channel, the final axis is dropped.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	rolled_channels (ndarray) – Pixels with channels as the back (last) axis. If single channel,
the last axis will be dropped.

	
pyramid(n_levels=3, downscale=2)[source]

	Return a rescaled pyramid of this image. The first image of the
pyramid will be a copy of the original, unmodified, image, and counts
as level 1.

	Parameters

	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	Yields

	image_pyramid (generator) – Generator yielding pyramid layers as Image objects.

	
rasterize_landmarks(group=None, render_lines=True, line_style='-', line_colour='b', line_width=1, render_markers=True, marker_style='o', marker_size=1, marker_face_colour='b', marker_edge_colour='b', marker_edge_width=1, backend='matplotlib')[source]

	This method provides the ability to rasterize 2D landmarks onto the
image. The returned image has the specified landmark groups rasterized
onto the image - which is useful for things like creating result
examples or rendering videos with annotations.

Since multiple landmark groups can be specified, all arguments can take
lists of parameters that map to the provided groups list. Therefore, the
parameters must be lists of the correct length or a single parameter to
apply to every landmark group.

Multiple backends are provided, all with different strengths. The
‘pillow’ backend is very fast, but not very flexible. The matplotlib
backend should be feature compatible with other Menpo rendering methods,
but is much slower due to the overhead of creating a figure to render
into.

	Parameters

	
	group (str or list of str, optional) – The landmark group key, or a list of keys.

	render_lines (bool, optional) – If True, and the provided landmark group is a
PointDirectedGraph, the edges are rendered.

	line_style (str, optional) – The style of the edge line. Not all backends support this argument.

	line_colour (str or tuple, optional) – A Matplotlib style colour or a backend dependant colour.

	line_width (int, optional) – The width of the line to rasterize.

	render_markers (bool, optional) – If True, render markers at the coordinates of each landmark.

	marker_style (str, optional) – A Matplotlib marker style. Not all backends support all marker
styles.

	marker_size (int, optional) – The size of the marker - different backends use different scale
spaces so consistent output may by difficult.

	marker_face_colour (str, optional) – A Matplotlib style colour or a backend dependant colour.

	marker_edge_colour (str, optional) – A Matplotlib style colour or a backend dependant colour.

	marker_edge_width (int, optional) – The width of the marker edge. Not all backends support this.

	backend ({'matplotlib', 'pillow'}, optional) – The backend to use.

	Returns

	rasterized_image (Image) – The image with the landmarks rasterized directly into the pixels.

	Raises

	
	ValueError – Only 2D images are supported.

	ValueError – Only RGB (3-channel) or Greyscale (1-channel) images are supported.

	
rescale(scale, round='ceil', order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, rescaled by a given factor.
Landmarks are rescaled appropriately.

	Parameters

	
	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError: – If less scales than dimensions are provided.
 If any scale is less than or equal to 0.

	
rescale_landmarks_to_diagonal_range(diagonal_range, group=None, round='ceil', order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, rescaled so that the diagonal_range of
the bounding box containing its landmarks matches the specified
diagonal_range range.

	Parameters

	
	diagonal_range ((n_dims,) ndarray) – The diagonal_range range that we want the landmarks of the returned
image to have.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
rescale_pixels(minimum, maximum, per_channel=True)[source]

	A copy of this image with pixels linearly rescaled to fit a range.

Note that the only pixels that will be considered and rescaled are those
that feature in the vectorized form of this image. If you want to use
this routine on all the pixels in a MaskedImage, consider
using as_unmasked() prior to this call.

	Parameters

	
	minimum (float) – The minimal value of the rescaled pixels

	maximum (float) – The maximal value of the rescaled pixels

	per_channel (boolean, optional) – If True, each channel will be rescaled independently. If
False, the scaling will be over all channels.

	Returns

	rescaled_image (type(self)) – A copy of this image with pixels linearly rescaled to fit in the
range provided.

	
rescale_to_diagonal(diagonal, round='ceil', warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, rescaled so that the it’s diagonal is a
new size.

	Parameters

	
	diagonal (int) – The diagonal size of the new image.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
rescale_to_pointcloud(pointcloud, group=None, round='ceil', order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, rescaled so that the scale of a
particular group of landmarks matches the scale of the passed
reference pointcloud.

	Parameters

	
	pointcloud (PointCloud) – The reference pointcloud to which the landmarks specified by
group will be scaled to match.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
resize(shape, order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, resized to a particular shape.
All image information (landmarks, and mask in the case of
MaskedImage) is resized appropriately.

	Parameters

	
	shape (tuple) – The new shape to resize to.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the resize is also returned.

	Returns

	
	resized_image (type(self)) – A copy of this image, resized.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError: – If the number of dimensions of the new shape does not match
 the number of dimensions of the image.

	
rolled_channels()[source]

	Deprecated - please use the equivalent pixels_with_channels_at_back method.

	
rotate_ccw_about_centre(theta, degrees=True, retain_shape=False, mode='constant', cval=0.0, round='round', order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, rotated counter-clockwise about its centre.

Note that the retain_shape argument defines the shape of the rotated
image. If retain_shape=True, then the shape of the rotated image
will be the same as the one of current image, so some regions will
probably be cropped. If retain_shape=False, then the returned image
has the correct size so that the whole area of the current image is
included.

	Parameters

	
	theta (float) – The angle of rotation about the centre.

	degrees (bool, optional) – If True, theta is interpreted in degrees. If False,
theta is interpreted as radians.

	retain_shape (bool, optional) – If True, then the shape of the rotated image will be the same as
the one of current image, so some regions will probably be cropped.
If False, then the returned image has the correct size so that
the whole area of the current image is included.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – The value to be set outside the rotated image boundaries.

	round ({'ceil', 'floor', 'round'}, optional) – Rounding function to be applied to floating point shapes. This is
only used in case retain_shape=True.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5]. This is only used in case retain_shape=True.

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rotation is also returned.

	Returns

	
	rotated_image (type(self)) – The rotated image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError – Image rotation is presently only supported on 2D images

	
sample(points_to_sample, order=1, mode='constant', cval=0.0)[source]

	Sample this image at the given sub-pixel accurate points. The input
PointCloud should have the same number of dimensions as the image e.g.
a 2D PointCloud for a 2D multi-channel image. A numpy array will be
returned the has the values for every given point across each channel
of the image.

	Parameters

	
	points_to_sample (PointCloud) – Array of points to sample from the image. Should be
(n_points, n_dims)

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5].
See warp_to_shape for more information.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns

	sampled_pixels ((n_points, n_channels) ndarray) – The interpolated values taken across every channel of the image.

	
set_patches(patches, patch_centers, offset=None, offset_index=None)[source]

	Set the values of a group of patches into the correct regions of a copy
of this image. Given an array of patches and a set of patch centers,
the patches’ values are copied in the regions of the image that are
centred on the coordinates of the given centers.

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

Currently only 2D images are supported.

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that
are returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image
objects.

	patch_centers (PointCloud) – The centers to set the patches around.

	offset (list or tuple or (1, 2) ndarray or None, optional) – The offset to apply on the patch centers within the image.
If None, then (0, 0) is used.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the
index of the second dimension from which to sample. If None,
then 0 is used.

	Raises

	
	ValueError – If image is not 2D

	ValueError – If offset does not have shape (1, 2)

	
set_patches_around_landmarks(patches, group=None, offset=None, offset_index=None)[source]

	Set the values of a group of patches around the landmarks existing in a
copy of this image. Given an array of patches, a group and a label, the
patches’ values are copied in the regions of the image that are
centred on the coordinates of corresponding landmarks.

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

Currently only 2D images are supported.

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that
are returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image
objects.

	group (str or None optional) – The landmark group to use as patch centres.

	offset (list or tuple or (1, 2) ndarray or None, optional) – The offset to apply on the patch centers within the image.
If None, then (0, 0) is used.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the
index of the second dimension from which to sample. If None,
then 0 is used.

	Raises

	
	ValueError – If image is not 2D

	ValueError – If offset does not have shape (1, 2)

	
transform_about_centre(transform, retain_shape=False, mode='constant', cval=0.0, round='round', order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, transformed about its centre.

Note that the retain_shape argument defines the shape of the
transformed image. If retain_shape=True, then the shape of the
transformed image will be the same as the one of current image, so some
regions will probably be cropped. If retain_shape=False, then the
returned image has the correct size so that the whole area of the
current image is included.

Note

This method will not work for transforms that result in a transform
chain as TransformChain is not invertible.

Note

Be careful when defining transforms for warping imgaes. All pixel
locations must fall within a valid range as expected by the
transform. Therefore, your transformation must accept ‘negative’
pixel locations as the pixel locations provided to your transform
will have the object centre subtracted from them.

	Parameters

	
	transform (ComposableTransform and VInvertible type) – A composable transform. pseudoinverse will be invoked on the
resulting transform so it must implement a valid inverse.

	retain_shape (bool, optional) – If True, then the shape of the sheared image will be the same as
the one of current image, so some regions will probably be cropped.
If False, then the returned image has the correct size so that
the whole area of the current image is included.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – The value to be set outside the sheared image boundaries.

	round ({'ceil', 'floor', 'round'}, optional) – Rounding function to be applied to floating point shapes. This is
only used in case retain_shape=True.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5]. This is only used in case retain_shape=True.

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the shearing is also returned.

	Returns

	
	transformed_image (type(self)) – The transformed image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

Examples

This is an example for rotating an image about its center. Let’s
first load an image, create the rotation transform and then apply it

import matplotlib.pyplot as plt
import menpo.io as mio
from menpo.transform import Rotation

Load image
im = mio.import_builtin_asset.lenna_png()

Create shearing transform
rot_tr = Rotation.init_from_2d_ccw_angle(45)

Render original image
plt.subplot(131)
im.view_landmarks()
plt.title('Original')

Render rotated image
plt.subplot(132)
im.transform_about_centre(rot_tr).view_landmarks()
plt.title('Rotated')

Render rotated image that has shape equal as original image
plt.subplot(133)
im.transform_about_centre(rot_tr, retain_shape=True).view_landmarks()
plt.title('Rotated (Retain original shape)')

Similarly, in order to apply a shear transform

import matplotlib.pyplot as plt
import menpo.io as mio
from menpo.transform import Affine

Load image
im = mio.import_builtin_asset.lenna_png()

Create shearing transform
shear_tr = Affine.init_from_2d_shear(25, 10)

Render original image
plt.subplot(131)
im.view_landmarks()
plt.title('Original')

Render sheared image
plt.subplot(132)
im.transform_about_centre(shear_tr).view_landmarks()
plt.title('Sheared')

Render sheared image that has shape equal as original image
plt.subplot(133)
im.transform_about_centre(shear_tr,
 retain_shape=True).view_landmarks()
plt.title('Sheared (Retain original shape)')

	
warp_to_mask(template_mask, transform, warp_landmarks=True, order=1, mode='constant', cval=0.0, batch_size=None, return_transform=False)[source]

	Return a copy of this image warped into a different reference space.

Note that warping into a mask is slower than warping into a full image.
If you don’t need a non-linear mask, consider :meth:warp_to_shape
instead.

	Parameters

	
	template_mask (BooleanImage) – Defines the shape of the result, and what pixels should be sampled.

	transform (Transform) – Transform from the template space back to this image.
Defines, for each pixel location on the template, which pixel
location should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this
value can cause warping to become much slower, particular for
cached warps such as Piecewise Affine. This size indicates
how many points in the image should be warped at a time, which
keeps memory usage low. If None, no batching is used and all
points are warped at once.

	return_transform (bool, optional) – This argument is for internal use only. If True, then the
Transform object is also returned.

	Returns

	
	warped_image (MaskedImage) – A copy of this image, warped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
warp_to_shape(template_shape, transform, warp_landmarks=True, order=1, mode='constant', cval=0.0, batch_size=None, return_transform=False)[source]

	Return a copy of this image warped into a different reference space.

	Parameters

	
	template_shape (tuple or ndarray) – Defines the shape of the result, and what pixel indices should be
sampled (all of them).

	transform (Transform) – Transform from the template_shape space back to this image.
Defines, for each index on template_shape, which pixel location
should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this
value can cause warping to become much slower, particular for
cached warps such as Piecewise Affine. This size indicates
how many points in the image should be warped at a time, which
keeps memory usage low. If None, no batching is used and all
points are warped at once.

	return_transform (bool, optional) – This argument is for internal use only. If True, then the
Transform object is also returned.

	Returns

	
	warped_image (type(self)) – A copy of this image, warped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
zoom(scale, order=1, warp_landmarks=True, return_transform=False)[source]

	Return a copy of this image, zoomed about the centre point. scale
values greater than 1.0 denote zooming in to the image and values
less than 1.0 denote zooming out of the image. The size of the
image will not change, if you wish to scale an image, please see
rescale().

	Parameters

	
	scale (float) – scale > 1.0 denotes zooming in. Thus the image will appear
larger and areas at the edge of the zoom will be ‘cropped’ out.
scale < 1.0 denotes zooming out. The image will be padded
by the value of cval.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the zooming is also returned.

	Returns

	
	zoomed_image (type(self)) – A copy of this image, zoomed.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property height

	The height of the image.

This is the height according to image semantics, and is thus the size
of the second to last dimension.

	Type

	int

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property n_channels

	The number of channels on each pixel in the image.

	Type

	int

	
property n_dims

	The number of dimensions in the image. The minimum possible n_dims
is 2.

	Type

	int

	
property n_elements

	Total number of data points in the image
(prod(shape), n_channels)

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_pixels

	Total number of pixels in the image (prod(shape),)

	Type

	int

	
property shape

	The shape of the image
(with n_channel values at each point).

	Type

	tuple

	
property width

	The width of the image.

This is the width according to image semantics, and is thus the size
of the last dimension.

	Type

	int

 BooleanImage

BooleanImage

	
class menpo.image.BooleanImage(mask_data, copy=True)[source]

	Bases: Image

A mask image made from binary pixels. The region of the image that is
left exposed by the mask is referred to as the ‘masked region’. The
set of ‘masked’ pixels is those pixels corresponding to a True value in
the mask.

	Parameters

	
	mask_data ((M, N, ..., L) ndarray) – The binary mask data. Note that there is no channel axis - a 2D Mask
Image is built from just a 2D numpy array of mask_data.
Automatically coerced in to boolean values.

	copy (bool, optional) – If False, the image_data will not be copied on assignment. Note that
if the array you provide is not boolean, there will still be copy.
In general this should only be used if you know what you are doing.

	
all_true()[source]

	True iff every element of the mask is True.

	Type

	bool

	
as_PILImage(out_dtype=<class 'numpy.uint8'>)

	Return a PIL copy of the image scaled and cast to the correct
values for the provided out_dtype.

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 floating point images must be in the range [0, 1] to be
converted.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	pil_image (PILImage) – PIL copy of image

	Raises

	
	ValueError – If image is not 2D and has 1 channel or 3 channels.

	ValueError – If pixels data type is float32 or float64 and the pixel
 range is outside of [0, 1]

	ValueError – If the output dtype is unsupported. Currently uint8 is supported.

	
as_greyscale(mode='luminosity', channel=None)

	Returns a greyscale version of the image. If the image does not
represent a 2D RGB image, then the luminosity mode will fail.

	Parameters

	
	mode ({average, luminosity, channel}, optional) –

	mode

	Greyscale Algorithm

	average

	Equal average of all channels

	luminosity

	Calculates the luminance using the CCIR 601 formula:

	

	
\[Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'\]

	channel

	A specific channel is chosen as the intensity value.

	channel (int, optional) – The channel to be taken. Only used if mode is channel.

	Returns

	greyscale_image (MaskedImage) – A copy of this image in greyscale.

	
as_histogram(keep_channels=True, bins='unique')

	Histogram binning of the values of this image.

	Parameters

	
	keep_channels (bool, optional) – If set to False, it returns a single histogram for all the
channels of the image. If set to True, it returns a list of
histograms, one for each channel.

	bins ({unique}, positive int or sequence of scalars, optional) – If set equal to 'unique', the bins of the histograms are centred
on the unique values of each channel. If set equal to a positive
int, then this is the number of bins. If set equal to a
sequence of scalars, these will be used as bins centres.

	Returns

	
	hist (ndarray or list with n_channels ndarrays inside) – The histogram(s). If keep_channels=False, then hist is an
ndarray. If keep_channels=True, then hist is a list with
len(hist)=n_channels.

	bin_edges (ndarray or list with n_channels ndarrays inside) – An array or a list of arrays corresponding to the above histograms
that store the bins’ edges.

	Raises

	ValueError – Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples

Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

	
as_imageio(out_dtype=<class 'numpy.uint8'>)

	Return an Imageio copy of the image scaled and cast to the correct
values for the provided out_dtype.

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 floating point images must be in the range [0, 1] to be
converted.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	imageio_image (ndarray) – Imageio image (which is just a numpy ndarray with the channels
as the last axis).

	Raises

	
	ValueError – If image is not 2D and has 1 channel or 3 channels.

	ValueError – If pixels data type is float32 or float64 and the pixel
 range is outside of [0, 1]

	ValueError – If the output dtype is unsupported. Currently uint8 and uint16
 are supported.

	
as_masked(mask=None, copy=True)[source]

	Impossible for a BooleanImage to be transformed to a
MaskedImage.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounds()

	The bounds of the image, minimum is always (0, 0). The maximum is
the maximum index that can be used to index into the image for each
dimension. Therefore, bounds will be of the form:
((0, 0), (self.height - 1, self.width - 1)) for a 2D image.

Note that this is akin to supporting a nearest neighbour interpolation.
Although the actual maximum subpixel value would be something
like self.height - eps where eps is some value arbitrarily
close to 0, this value at least allows sampling without worrying about
floating point error.

	Type

	tuple

	
bounds_false(boundary=0, constrain_to_bounds=True)[source]

	Returns the minimum to maximum indices along all dimensions that the
mask includes which fully surround the False mask values. In the case
of a 2D Image for instance, the min and max define two corners of a
rectangle bounding the False pixel values.

	Parameters

	
	boundary (int >= 0, optional) – A number of pixels that should be added to the extent. A
negative value can be used to shrink the bounds in.

	constrain_to_bounds (bool, optional) – If True, the bounding extent is snapped to not go beyond
the edge of the image. If False, the bounds are left unchanged.

	Returns

	
	min_b ((D,) ndarray) – The minimum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	max_b ((D,) ndarray) – The maximum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	
bounds_true(boundary=0, constrain_to_bounds=True)[source]

	Returns the minimum to maximum indices along all dimensions that the
mask includes which fully surround the True mask values. In the case
of a 2D Image for instance, the min and max define two corners of a
rectangle bounding the True pixel values.

	Parameters

	
	boundary (int, optional) – A number of pixels that should be added to the extent. A
negative value can be used to shrink the bounds in.

	constrain_to_bounds (bool, optional) – If True, the bounding extent is snapped to not go beyond
the edge of the image. If False, the bounds are left unchanged.

	Returns

	
	min_b ((D,) ndarray) – The minimum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	max_b ((D,) ndarray) – The maximum extent of the True mask region with the boundary
along each dimension. If constrain_to_bounds=True,
is clipped to legal image bounds.

	
centre()

	The geometric centre of the Image - the subpixel that is in the
middle.

Useful for aligning shapes and images.

	Type

	(n_dims,) ndarray

	
clip_pixels(minimum=None, maximum=None)

	A copy of this image with pixels linearly clipped to fit a range.

	Parameters

	
	minimum (float, optional) – The minimal value of the clipped pixels. If None is provided, the
default value will be 0.

	maximum (float, optional) – The maximal value of the clipped pixels. If None is provided, the
default value will depend on the dtype.

	Returns

	rescaled_image (type(self)) – A copy of this image with pixels linearly rescaled to fit in the
range provided.

	
constrain_landmarks_to_bounds()

	Deprecated - please use the equivalent constrain_to_bounds method
now on PointCloud, in conjunction with the new Image bounds()
method. For example:

>>> im.constrain_landmarks_to_bounds() # Equivalent to below
>>> im.landmarks['test'] = im.landmarks['test'].constrain_to_bounds(im.bounds())

	
constrain_points_to_bounds(points)

	Constrains the points provided to be within the bounds of this image.

	Parameters

	points ((d,) ndarray) – Points to be snapped to the image boundaries.

	Returns

	bounded_points ((d,) ndarray) – Points snapped to not stray outside the image edges.

	
constrain_to_landmarks(group=None, batch_size=None)[source]

	Returns a copy of this image whereby the True values in the image
are restricted to be equal to the convex hull around the landmarks
chosen. This is not a per-pixel convex hull, but instead relies on a
triangulated approximation. If the landmarks in question are an instance
of TriMesh, the triangulation of the landmarks will be used in
the convex hull calculation. If the landmarks are an instance of
PointCloud, Delaunay triangulation will be used to create a
triangulation.

	Parameters

	
	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this value
will cause constraining to become much slower. This size indicates
how many points in the image should be checked at a time, which
keeps memory usage low. If None, no batching is used and all
points are checked at once.

	Returns

	constrained (BooleanImage) – The new boolean image, constrained by the given landmark group.

	
constrain_to_pointcloud(pointcloud, batch_size=None, point_in_pointcloud='pwa')[source]

	Returns a copy of this image whereby the True values in the image
are restricted to be equal to the convex hull around a pointcloud. The
choice of whether a pixel is inside or outside of the pointcloud is
determined by the point_in_pointcloud parameter. By default a
Piecewise Affine transform is used to test for containment, which is
useful when aligning images by their landmarks. Triangluation will be
decided by Delauny - if you wish to customise it, a TriMesh
instance can be passed for the pointcloud argument. In this case,
the triangulation of the Trimesh will be used to define the retained
region.

For large images, a faster and pixel-accurate method can be used (
‘convex_hull’). Here, there is no specialization for
TriMesh instances. Alternatively, a callable can be provided to
override the test. By default, the provided implementations are only
valid for 2D images.

	Parameters

	
	pointcloud (PointCloud or TriMesh) – The pointcloud of points that should be constrained to. See
point_in_pointcloud for how in some cases a TriMesh may be
used to control triangulation.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this value
will cause constraining to become much slower. This size indicates
how many points in the image should be checked at a time, which
keeps memory usage low. If None, no batching is used and all
points are checked at once. By default, this is only used for
the ‘pwa’ point_in_pointcloud choice.

	point_in_pointcloud ({‘pwa’, ‘convex_hull’} or callable) – The method used to check if pixels in the image fall inside the
pointcloud or not. If ‘pwa’, Menpo’s PiecewiseAffine
transform will be used to test for containment. In this case
pointcloud should be a TriMesh. If it isn’t, Delauny
triangulation will be used to first triangulate pointcloud into
a TriMesh before testing for containment.
If a callable is passed, it should take two parameters,
the PointCloud to constrain with and the pixel locations
((d, n_dims) ndarray) to test and should return a (d, 1) boolean
ndarray of whether the pixels were inside (True) or outside (False)
of the PointCloud.

	Returns

	constrained (BooleanImage) – The new boolean image, constrained by the given pointcloud.

	Raises

	
	ValueError – If the image is not 2D and a default implementation is chosen.

	ValueError – If the chosen point_in_pointcloud is unknown.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
crop(min_indices, max_indices, constrain_to_boundary=False, return_transform=False)

	Return a cropped copy of this image using the given minimum and
maximum indices. Landmarks are correctly adjusted so they maintain
their position relative to the newly cropped image.

	Parameters

	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	cropped_image (type(self)) – A new instance of self, but cropped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	
	ValueError – min_indices and max_indices both have to be of length
 n_dims. All max_indices must be greater than
 min_indices.

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_landmarks(group=None, boundary=0, constrain_to_boundary=True, return_transform=False)

	Return a copy of this image cropped so that it is bounded around a set
of landmarks with an optional n_pixel boundary

	Parameters

	
	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to its landmarks.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_proportion(boundary_proportion, group=None, minimum=True, constrain_to_boundary=True, return_transform=False)

	Crop this image to be bounded around a set of landmarks with a
border proportional to the landmark spread or range.

	Parameters

	
	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – This image, cropped to its landmarks with a border proportional to
the landmark spread or range.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_pointcloud(pointcloud, boundary=0, constrain_to_boundary=True, return_transform=False)

	Return a copy of this image cropped so that it is bounded around a
pointcloud with an optional n_pixel boundary.

	Parameters

	
	pointcloud (PointCloud) – The pointcloud to crop around.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to the bounds of the pointcloud.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_pointcloud_proportion(pointcloud, boundary_proportion, minimum=True, constrain_to_boundary=True, return_transform=False)

	Return a copy of this image cropped so that it is bounded around a
pointcloud with a border proportional to the pointcloud spread or range.

	Parameters

	
	pointcloud (PointCloud) – The pointcloud to crop around.

	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the pointclouds’ per-dimension range; if False w.r.t.
the maximum value of the pointclouds’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to the border proportional to
the pointcloud spread or range.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
diagonal()

	The diagonal size of this image

	Type

	float

	
extract_channels(channels)

	A copy of this image with only the specified channels.

	Parameters

	channels (int or [int]) – The channel index or list of channel indices to retain.

	Returns

	image (type(self)) – A copy of this image with only the channels requested.

	
extract_patches(patch_centers, patch_shape=(16, 16), sample_offsets=None, as_single_array=True, order=0, mode='constant', cval=0.0)

	Extract a set of patches from an image. Given a set of patch centers
and a patch size, patches are extracted from within the image, centred
on the given coordinates. Sample offsets denote a set of offsets to
extract from within a patch. This is very useful if you want to extract
a dense set of features around a set of landmarks and simply sample the
same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you
need to slice the resulting list. So for 2 offsets, the first centers
offset patches would be patches[:2].

Currently only 2D images are supported.

Note that the default is nearest neighbour sampling for the patches
which is achieved via slicing and is much more efficient than using
sampling/interpolation. Note that a significant performance decrease
will be measured if the order or mode parameters are modified
from order = 0 and mode = 'constant' as internally sampling
will be used rather than slicing.

	Parameters

	
	patch_centers (PointCloud) – The centers to extract patches around.

	patch_shape ((1, n_dims) tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre.
If None, then no offsets are applied.

	as_single_array (bool, optional) – If True, an (n_center, n_offset, n_channels, patch_shape)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of n_center * n_offset
Image objects is returned representing each patch.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5].
See warp_to_shape for more information.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according to
the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside the
image boundaries.

	Returns

	patches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises

	ValueError – If image is not 2D

	
extract_patches_around_landmarks(group=None, patch_shape=(16, 16), sample_offsets=None, as_single_array=True)

	Extract patches around landmarks existing on this image. Provided the
group label and optionally the landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.

	Parameters

	
	group (str or None, optional) – The landmark group to use as patch centres.

	patch_shape (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre.
If None, then no offsets are applied.

	as_single_array (bool, optional) – If True, an (n_center, n_offset, n_channels, patch_shape)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of n_center * n_offset
Image objects is returned representing each patch.

	Returns

	patches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises

	ValueError – If image is not 2D

	
false_indices()[source]

	The indices of pixels that are Flase.

	Type

	(n_dims, n_false) ndarray

	
from_vector(vector, copy=True)[source]

	Takes a flattened vector and returns a new BooleanImage formed
by reshaping the vector to the correct dimensions. Note that this is
rebuilding a boolean image itself from boolean values. The mask
is in no way interpreted in performing the operation, in contrast to
MaskedImage, where only the masked region is used in
from_vector() and :meth`as_vector`. Any image landmarks are
transferred in the process.

	Parameters

	
	vector ((n_pixels,) bool ndarray) – A flattened vector of all the pixels of a BooleanImage.

	copy (bool, optional) – If False, no copy of the vector will be taken.

	Returns

	image (BooleanImage) – New BooleanImage of same shape as this image

	Raises

	Warning – If copy=False cannot be honored.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
gaussian_pyramid(n_levels=3, downscale=2, sigma=None)

	Return the gaussian pyramid of this image. The first image of the
pyramid will be a copy of the original, unmodified, image, and counts
as level 1.

	Parameters

	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	sigma (float, optional) – Sigma for gaussian filter. Default is downscale / 3. which
corresponds to a filter mask twice the size of the scale factor
that covers more than 99% of the gaussian distribution.

	Yields

	image_pyramid (generator) – Generator yielding pyramid layers as Image objects.

	
has_landmarks_outside_bounds()

	Indicates whether there are landmarks located outside the image bounds.

	Type

	bool

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
indices()

	Return the indices of all pixels in this image.

	Type

	(n_dims, n_pixels) ndarray

	
classmethod init_blank(shape, fill=True, round='ceil', **kwargs)[source]

	Returns a blank BooleanImage of the requested shape

	Parameters

	
	shape (tuple or list) – The shape of the image. Any floating point values are rounded
according to the round kwarg.

	fill (bool, optional) – The mask value to be set everywhere.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	Returns

	blank_image (BooleanImage) – A blank mask of the requested size

	
classmethod init_from_channels_at_back(pixels)[source]

	This method is not required for BooleanImage types as boolean images
do not expect a channel axis for construction.

	Parameters

	pixels ((M, N ..., Q) ndarray) – Array representing the image pixels, with NO channel axis.

	Returns

	image (BooleanImage) – A new image from the given boolean pixels.

	
classmethod init_from_pointcloud(pointcloud, group=None, boundary=0, constrain=True, fill=True)[source]

	Create an Image that is big enough to contain the given pointcloud.
The pointcloud will be translated to the origin and then translated
according to its bounds in order to fit inside the new image.
An optional boundary can be provided in order to increase the space
around the boundary of the pointcloud. The boundary will be added
to all sides of the image and so a boundary of 5 provides 10 pixels
of boundary total for each dimension.

By default, the mask will be constrained to the convex hull of the
provided pointcloud.

	Parameters

	
	pointcloud (PointCloud) – Pointcloud to place inside the newly created image.

	group (str, optional) – If None, the pointcloud will only be used to create the image.
If a str then the pointcloud will be attached as a landmark
group to the image, with the given string as key.

	boundary (float) – A optional padding distance that is added to the pointcloud bounds.
Default is 0, meaning the max/min of tightest possible
containing image is returned.

	fill (int, optional) – The value to fill all pixels with.

	constrain (bool, optional) – If True, the True values will be image will be constrained
to the convex hull of the provided pointcloud. If False,
the mask will be the value of fill.

	Returns

	image (MaskedImage) – A new image with the same size as the given pointcloud, optionally
with the pointcloud attached as landmarks and the mask constrained
to the convex hull of the pointcloud.

	
classmethod init_from_rolled_channels(pixels)

	Deprecated - please use the equivalent init_from_channels_at_back method.

	
invert()[source]

	Returns a copy of this boolean image, which is inverted.

	Returns

	inverted (BooleanImage) – A copy of this boolean mask, where all True values are False
and all False values are True.

	
mirror(axis=1, order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, mirrored/flipped about a certain axis.

	Parameters

	
	axis (int, optional) – The axis about which to mirror the image.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5].

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the mirroring is also returned.

	Returns

	
	mirrored_image (type(self)) – The mirrored image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	
	ValueError – axis cannot be negative

	ValueError – axis={} but the image has {} dimensions

	
n_false()[source]

	The number of False values in the mask.

	Type

	int

	
n_true()[source]

	The number of True values in the mask.

	Type

	int

	
normalize_norm(mode='all', **kwargs)

	Returns a copy of this image normalized such that its pixel values
have zero mean and its norm equals 1.

	Parameters

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
unit norm.

	Returns

	image (type(self)) – A copy of this image, normalized.

	
normalize_std(mode='all', **kwargs)

	Returns a copy of this image normalized such that its
pixel values have zero mean and unit variance.

	Parameters

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	Returns

	image (type(self)) – A copy of this image, normalized.

	
pixels_range()

	The range of the pixel values (min and max pixel values).

	Returns

	min_max ((dtype, dtype)) – The minimum and maximum value of the pixels array.

	
pixels_with_channels_at_back(out_dtype=None)

	Returns the pixels matrix, with the channels rolled to the back axis.
This may be required for interacting with external code bases that
require images to have channels as the last axis, rather than the
Menpo convention of channels as the first axis.

If this image is single channel, the final axis is dropped.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	rolled_channels (ndarray) – Pixels with channels as the back (last) axis. If single channel,
the last axis will be dropped.

	
proportion_false()[source]

	The proportion of the mask which is False

	Type

	float

	
proportion_true()[source]

	The proportion of the mask which is True.

	Type

	float

	
pyramid(n_levels=3, downscale=2)

	Return a rescaled pyramid of this image. The first image of the
pyramid will be a copy of the original, unmodified, image, and counts
as level 1.

	Parameters

	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	Yields

	image_pyramid (generator) – Generator yielding pyramid layers as Image objects.

	
rasterize_landmarks(group=None, render_lines=True, line_style='-', line_colour='b', line_width=1, render_markers=True, marker_style='o', marker_size=1, marker_face_colour='b', marker_edge_colour='b', marker_edge_width=1, backend='matplotlib')

	This method provides the ability to rasterize 2D landmarks onto the
image. The returned image has the specified landmark groups rasterized
onto the image - which is useful for things like creating result
examples or rendering videos with annotations.

Since multiple landmark groups can be specified, all arguments can take
lists of parameters that map to the provided groups list. Therefore, the
parameters must be lists of the correct length or a single parameter to
apply to every landmark group.

Multiple backends are provided, all with different strengths. The
‘pillow’ backend is very fast, but not very flexible. The matplotlib
backend should be feature compatible with other Menpo rendering methods,
but is much slower due to the overhead of creating a figure to render
into.

	Parameters

	
	group (str or list of str, optional) – The landmark group key, or a list of keys.

	render_lines (bool, optional) – If True, and the provided landmark group is a
PointDirectedGraph, the edges are rendered.

	line_style (str, optional) – The style of the edge line. Not all backends support this argument.

	line_colour (str or tuple, optional) – A Matplotlib style colour or a backend dependant colour.

	line_width (int, optional) – The width of the line to rasterize.

	render_markers (bool, optional) – If True, render markers at the coordinates of each landmark.

	marker_style (str, optional) – A Matplotlib marker style. Not all backends support all marker
styles.

	marker_size (int, optional) – The size of the marker - different backends use different scale
spaces so consistent output may by difficult.

	marker_face_colour (str, optional) – A Matplotlib style colour or a backend dependant colour.

	marker_edge_colour (str, optional) – A Matplotlib style colour or a backend dependant colour.

	marker_edge_width (int, optional) – The width of the marker edge. Not all backends support this.

	backend ({'matplotlib', 'pillow'}, optional) – The backend to use.

	Returns

	rasterized_image (Image) – The image with the landmarks rasterized directly into the pixels.

	Raises

	
	ValueError – Only 2D images are supported.

	ValueError – Only RGB (3-channel) or Greyscale (1-channel) images are supported.

	
rescale(scale, round='ceil', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled by a given factor.
Landmarks are rescaled appropriately.

	Parameters

	
	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError: – If less scales than dimensions are provided.
 If any scale is less than or equal to 0.

	
rescale_landmarks_to_diagonal_range(diagonal_range, group=None, round='ceil', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled so that the diagonal_range of
the bounding box containing its landmarks matches the specified
diagonal_range range.

	Parameters

	
	diagonal_range ((n_dims,) ndarray) – The diagonal_range range that we want the landmarks of the returned
image to have.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
rescale_pixels(minimum, maximum, per_channel=True)

	A copy of this image with pixels linearly rescaled to fit a range.

Note that the only pixels that will be considered and rescaled are those
that feature in the vectorized form of this image. If you want to use
this routine on all the pixels in a MaskedImage, consider
using as_unmasked() prior to this call.

	Parameters

	
	minimum (float) – The minimal value of the rescaled pixels

	maximum (float) – The maximal value of the rescaled pixels

	per_channel (boolean, optional) – If True, each channel will be rescaled independently. If
False, the scaling will be over all channels.

	Returns

	rescaled_image (type(self)) – A copy of this image with pixels linearly rescaled to fit in the
range provided.

	
rescale_to_diagonal(diagonal, round='ceil', warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled so that the it’s diagonal is a
new size.

	Parameters

	
	diagonal (int) – The diagonal size of the new image.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
rescale_to_pointcloud(pointcloud, group=None, round='ceil', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled so that the scale of a
particular group of landmarks matches the scale of the passed
reference pointcloud.

	Parameters

	
	pointcloud (PointCloud) – The reference pointcloud to which the landmarks specified by
group will be scaled to match.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
resize(shape, order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, resized to a particular shape.
All image information (landmarks, and mask in the case of
MaskedImage) is resized appropriately.

	Parameters

	
	shape (tuple) – The new shape to resize to.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the resize is also returned.

	Returns

	
	resized_image (type(self)) – A copy of this image, resized.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError: – If the number of dimensions of the new shape does not match
 the number of dimensions of the image.

	
rolled_channels()

	Deprecated - please use the equivalent pixels_with_channels_at_back method.

	
rotate_ccw_about_centre(theta, degrees=True, retain_shape=False, mode='constant', cval=0.0, round='round', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rotated counter-clockwise about its centre.

Note that the retain_shape argument defines the shape of the rotated
image. If retain_shape=True, then the shape of the rotated image
will be the same as the one of current image, so some regions will
probably be cropped. If retain_shape=False, then the returned image
has the correct size so that the whole area of the current image is
included.

	Parameters

	
	theta (float) – The angle of rotation about the centre.

	degrees (bool, optional) – If True, theta is interpreted in degrees. If False,
theta is interpreted as radians.

	retain_shape (bool, optional) – If True, then the shape of the rotated image will be the same as
the one of current image, so some regions will probably be cropped.
If False, then the returned image has the correct size so that
the whole area of the current image is included.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – The value to be set outside the rotated image boundaries.

	round ({'ceil', 'floor', 'round'}, optional) – Rounding function to be applied to floating point shapes. This is
only used in case retain_shape=True.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5]. This is only used in case retain_shape=True.

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rotation is also returned.

	Returns

	
	rotated_image (type(self)) – The rotated image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError – Image rotation is presently only supported on 2D images

	
sample(points_to_sample, mode='constant', cval=False, **kwargs)[source]

	Sample this image at the given sub-pixel accurate points. The input
PointCloud should have the same number of dimensions as the image e.g.
a 2D PointCloud for a 2D multi-channel image. A numpy array will be
returned the has the values for every given point across each channel
of the image.

	Parameters

	
	points_to_sample (PointCloud) – Array of points to sample from the image. Should be
(n_points, n_dims)

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	Returns

	sampled_pixels ((n_points, n_channels) bool ndarray) – The interpolated values taken across every channel of the image.

	
set_patches(patches, patch_centers, offset=None, offset_index=None)

	Set the values of a group of patches into the correct regions of a copy
of this image. Given an array of patches and a set of patch centers,
the patches’ values are copied in the regions of the image that are
centred on the coordinates of the given centers.

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

Currently only 2D images are supported.

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that
are returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image
objects.

	patch_centers (PointCloud) – The centers to set the patches around.

	offset (list or tuple or (1, 2) ndarray or None, optional) – The offset to apply on the patch centers within the image.
If None, then (0, 0) is used.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the
index of the second dimension from which to sample. If None,
then 0 is used.

	Raises

	
	ValueError – If image is not 2D

	ValueError – If offset does not have shape (1, 2)

	
set_patches_around_landmarks(patches, group=None, offset=None, offset_index=None)

	Set the values of a group of patches around the landmarks existing in a
copy of this image. Given an array of patches, a group and a label, the
patches’ values are copied in the regions of the image that are
centred on the coordinates of corresponding landmarks.

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

Currently only 2D images are supported.

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that
are returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image
objects.

	group (str or None optional) – The landmark group to use as patch centres.

	offset (list or tuple or (1, 2) ndarray or None, optional) – The offset to apply on the patch centers within the image.
If None, then (0, 0) is used.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the
index of the second dimension from which to sample. If None,
then 0 is used.

	Raises

	
	ValueError – If image is not 2D

	ValueError – If offset does not have shape (1, 2)

	
transform_about_centre(transform, retain_shape=False, mode='constant', cval=0.0, round='round', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, transformed about its centre.

Note that the retain_shape argument defines the shape of the
transformed image. If retain_shape=True, then the shape of the
transformed image will be the same as the one of current image, so some
regions will probably be cropped. If retain_shape=False, then the
returned image has the correct size so that the whole area of the
current image is included.

Note

This method will not work for transforms that result in a transform
chain as TransformChain is not invertible.

Note

Be careful when defining transforms for warping imgaes. All pixel
locations must fall within a valid range as expected by the
transform. Therefore, your transformation must accept ‘negative’
pixel locations as the pixel locations provided to your transform
will have the object centre subtracted from them.

	Parameters

	
	transform (ComposableTransform and VInvertible type) – A composable transform. pseudoinverse will be invoked on the
resulting transform so it must implement a valid inverse.

	retain_shape (bool, optional) – If True, then the shape of the sheared image will be the same as
the one of current image, so some regions will probably be cropped.
If False, then the returned image has the correct size so that
the whole area of the current image is included.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – The value to be set outside the sheared image boundaries.

	round ({'ceil', 'floor', 'round'}, optional) – Rounding function to be applied to floating point shapes. This is
only used in case retain_shape=True.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5]. This is only used in case retain_shape=True.

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the shearing is also returned.

	Returns

	
	transformed_image (type(self)) – The transformed image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

Examples

This is an example for rotating an image about its center. Let’s
first load an image, create the rotation transform and then apply it

import matplotlib.pyplot as plt
import menpo.io as mio
from menpo.transform import Rotation

Load image
im = mio.import_builtin_asset.lenna_png()

Create shearing transform
rot_tr = Rotation.init_from_2d_ccw_angle(45)

Render original image
plt.subplot(131)
im.view_landmarks()
plt.title('Original')

Render rotated image
plt.subplot(132)
im.transform_about_centre(rot_tr).view_landmarks()
plt.title('Rotated')

Render rotated image that has shape equal as original image
plt.subplot(133)
im.transform_about_centre(rot_tr, retain_shape=True).view_landmarks()
plt.title('Rotated (Retain original shape)')

Similarly, in order to apply a shear transform

import matplotlib.pyplot as plt
import menpo.io as mio
from menpo.transform import Affine

Load image
im = mio.import_builtin_asset.lenna_png()

Create shearing transform
shear_tr = Affine.init_from_2d_shear(25, 10)

Render original image
plt.subplot(131)
im.view_landmarks()
plt.title('Original')

Render sheared image
plt.subplot(132)
im.transform_about_centre(shear_tr).view_landmarks()
plt.title('Sheared')

Render sheared image that has shape equal as original image
plt.subplot(133)
im.transform_about_centre(shear_tr,
 retain_shape=True).view_landmarks()
plt.title('Sheared (Retain original shape)')

	
true_indices()[source]

	The indices of pixels that are True.

	Type

	(n_dims, n_true) ndarray

	
warp_to_mask(template_mask, transform, warp_landmarks=True, mode='constant', cval=False, batch_size=None, return_transform=False)[source]

	Return a copy of this BooleanImage warped into a different
reference space.

Note that warping into a mask is slower than warping into a full image.
If you don’t need a non-linear mask, consider warp_to_shape instead.

	Parameters

	
	template_mask (BooleanImage) – Defines the shape of the result, and what pixels should be
sampled.

	transform (Transform) – Transform from the template space back to this image.
Defines, for each pixel location on the template, which pixel
location should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	mode ({constant, nearest, reflect or wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this
value can cause warping to become much slower, particular for
cached warps such as Piecewise Affine. This size indicates
how many points in the image should be warped at a time, which
keeps memory usage low. If None, no batching is used and all
points are warped at once.

	return_transform (bool, optional) – This argument is for internal use only. If True, then the
Transform object is also returned.

	Returns

	
	warped_image (BooleanImage) – A copy of this image, warped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
warp_to_shape(template_shape, transform, warp_landmarks=True, mode='constant', cval=False, order=None, batch_size=None, return_transform=False)[source]

	Return a copy of this BooleanImage warped into a different
reference space.

Note that the order keyword argument is in fact ignored, as any order
other than 0 makes no sense on a binary image. The keyword argument is
present only for compatibility with the Image warp_to_shape API.

	Parameters

	
	template_shape ((n_dims,) tuple or ndarray) – Defines the shape of the result, and what pixel indices should be
sampled (all of them).

	transform (Transform) – Transform from the template_shape space back to this image.
Defines, for each index on template_shape, which pixel location
should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	mode ({constant, nearest, reflect or wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this
value can cause warping to become much slower, particular for
cached warps such as Piecewise Affine. This size indicates
how many points in the image should be warped at a time, which
keeps memory usage low. If None, no batching is used and all
points are warped at once.

	return_transform (bool, optional) – This argument is for internal use only. If True, then the
Transform object is also returned.

	Returns

	
	warped_image (BooleanImage) – A copy of this image, warped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
zoom(scale, order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, zoomed about the centre point. scale
values greater than 1.0 denote zooming in to the image and values
less than 1.0 denote zooming out of the image. The size of the
image will not change, if you wish to scale an image, please see
rescale().

	Parameters

	
	scale (float) – scale > 1.0 denotes zooming in. Thus the image will appear
larger and areas at the edge of the zoom will be ‘cropped’ out.
scale < 1.0 denotes zooming out. The image will be padded
by the value of cval.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the zooming is also returned.

	Returns

	
	zoomed_image (type(self)) – A copy of this image, zoomed.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property height

	The height of the image.

This is the height according to image semantics, and is thus the size
of the second to last dimension.

	Type

	int

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property mask

	Returns the pixels of the mask with no channel axis. This is what
should be used to mask any k-dimensional image.

	Type

	(M, N, ..., L), bool ndarray

	
property n_channels

	The number of channels on each pixel in the image.

	Type

	int

	
property n_dims

	The number of dimensions in the image. The minimum possible n_dims
is 2.

	Type

	int

	
property n_elements

	Total number of data points in the image
(prod(shape), n_channels)

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_pixels

	Total number of pixels in the image (prod(shape),)

	Type

	int

	
property shape

	The shape of the image
(with n_channel values at each point).

	Type

	tuple

	
property width

	The width of the image.

This is the width according to image semantics, and is thus the size
of the last dimension.

	Type

	int

 MaskedImage

MaskedImage

	
class menpo.image.MaskedImage(image_data, mask=None, copy=True)[source]

	Bases: Image

Represents an n-dimensional k-channel image, which has a mask.
Images can be masked in order to identify a region of interest. All
images implicitly have a mask that is defined as the the entire image.
The mask is an instance of BooleanImage.

	Parameters

	
	image_data ((C, M, N ..., Q) ndarray) – The pixel data for the image, where the first axis represents the
number of channels.

	mask ((M, N) bool ndarray or BooleanImage, optional) – A binary array representing the mask. Must be the same
shape as the image. Only one mask is supported for an image (so the
mask is applied to every channel equally).

	copy (bool, optional) – If False, the image_data will not be copied on assignment. If a
mask is provided, this also won’t be copied. In general this should only
be used if you know what you are doing.

	Raises

	ValueError – Mask is not the same shape as the image

	
_view_2d(figure_id=None, new_figure=False, channels=None, masked=True, interpolation='bilinear', cmap_name=None, alpha=1.0, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	View the image using the default image viewer. This method will appear
on the Image as view if the Image is 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	masked (bool, optional) – If True, only the masked pixels will be rendered.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36,
hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
bessel, mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	Raises

	ValueError – If Image is not 2D

	
_view_landmarks_2d(channels=None, masked=True, group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, interpolation='bilinear', cmap_name=None, alpha=1.0, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	Visualize the landmarks. This method will appear on the Image as
view_landmarks if the Image is 2D.

	Parameters

	
	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	masked (bool, optional) – If True, only the masked pixels will be rendered.

	group (str or``None`` optionals) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_PILImage(out_dtype=<class 'numpy.uint8'>)

	Return a PIL copy of the image scaled and cast to the correct
values for the provided out_dtype.

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 floating point images must be in the range [0, 1] to be
converted.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	pil_image (PILImage) – PIL copy of image

	Raises

	
	ValueError – If image is not 2D and has 1 channel or 3 channels.

	ValueError – If pixels data type is float32 or float64 and the pixel
 range is outside of [0, 1]

	ValueError – If the output dtype is unsupported. Currently uint8 is supported.

	
as_greyscale(mode='luminosity', channel=None)

	Returns a greyscale version of the image. If the image does not
represent a 2D RGB image, then the luminosity mode will fail.

	Parameters

	
	mode ({average, luminosity, channel}, optional) –

	mode

	Greyscale Algorithm

	average

	Equal average of all channels

	luminosity

	Calculates the luminance using the CCIR 601 formula:

	

	
\[Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'\]

	channel

	A specific channel is chosen as the intensity value.

	channel (int, optional) – The channel to be taken. Only used if mode is channel.

	Returns

	greyscale_image (MaskedImage) – A copy of this image in greyscale.

	
as_histogram(keep_channels=True, bins='unique')

	Histogram binning of the values of this image.

	Parameters

	
	keep_channels (bool, optional) – If set to False, it returns a single histogram for all the
channels of the image. If set to True, it returns a list of
histograms, one for each channel.

	bins ({unique}, positive int or sequence of scalars, optional) – If set equal to 'unique', the bins of the histograms are centred
on the unique values of each channel. If set equal to a positive
int, then this is the number of bins. If set equal to a
sequence of scalars, these will be used as bins centres.

	Returns

	
	hist (ndarray or list with n_channels ndarrays inside) – The histogram(s). If keep_channels=False, then hist is an
ndarray. If keep_channels=True, then hist is a list with
len(hist)=n_channels.

	bin_edges (ndarray or list with n_channels ndarrays inside) – An array or a list of arrays corresponding to the above histograms
that store the bins’ edges.

	Raises

	ValueError – Bins can be either ‘unique’, positive int or a sequence of scalars.

Examples

Visualizing the histogram when a list of array bin edges is provided:

>>> hist, bin_edges = image.as_histogram()
>>> for k in range(len(hist)):
>>> plt.subplot(1,len(hist),k)
>>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
>>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
>>> plt.bar(centre, hist[k], align='center', width=width)

	
as_imageio(out_dtype=<class 'numpy.uint8'>)

	Return an Imageio copy of the image scaled and cast to the correct
values for the provided out_dtype.

Image must only have 1 or 3 channels and be 2 dimensional.
Non uint8 floating point images must be in the range [0, 1] to be
converted.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	imageio_image (ndarray) – Imageio image (which is just a numpy ndarray with the channels
as the last axis).

	Raises

	
	ValueError – If image is not 2D and has 1 channel or 3 channels.

	ValueError – If pixels data type is float32 or float64 and the pixel
 range is outside of [0, 1]

	ValueError – If the output dtype is unsupported. Currently uint8 and uint16
 are supported.

	
as_masked(mask=None, copy=True)

	Return a copy of this image with an attached mask behavior.

A custom mask may be provided, or None. See the MaskedImage
constructor for details of how the kwargs will be handled.

	Parameters

	
	mask ((self.shape) ndarray or BooleanImage) – A mask to attach to the newly generated masked image.

	copy (bool, optional) – If False, the produced MaskedImage will share pixels with
self. Only suggested to be used for performance.

	Returns

	masked_image (MaskedImage) – An image with the same pixels and landmarks as this one, but with
a mask.

	
as_unmasked(copy=True, fill=None)[source]

	Return a copy of this image without the masking behavior.

By default the mask is simply discarded. However, there is an optional
kwarg, fill, that can be set which will fill the non-masked
areas with the given value.

	Parameters

	
	copy (bool, optional) – If False, the produced Image will share pixels with
self. Only suggested to be used for performance.

	fill (float or (n_channels,) iterable or None, optional) – If None the mask is simply discarded. If a scalar or iterable,
the unmasked regions are filled with the given value.

	Returns

	image (Image) – An image with the same pixels and landmarks as this one, but with
no mask.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounds()

	The bounds of the image, minimum is always (0, 0). The maximum is
the maximum index that can be used to index into the image for each
dimension. Therefore, bounds will be of the form:
((0, 0), (self.height - 1, self.width - 1)) for a 2D image.

Note that this is akin to supporting a nearest neighbour interpolation.
Although the actual maximum subpixel value would be something
like self.height - eps where eps is some value arbitrarily
close to 0, this value at least allows sampling without worrying about
floating point error.

	Type

	tuple

	
build_mask_around_landmarks(patch_shape, group=None)[source]

	Deprecated - please use the equivalent
constrain_mask_to_patches_around_landmarks method.

	
centre()

	The geometric centre of the Image - the subpixel that is in the
middle.

Useful for aligning shapes and images.

	Type

	(n_dims,) ndarray

	
clip_pixels(minimum=None, maximum=None)

	A copy of this image with pixels linearly clipped to fit a range.

	Parameters

	
	minimum (float, optional) – The minimal value of the clipped pixels. If None is provided, the
default value will be 0.

	maximum (float, optional) – The maximal value of the clipped pixels. If None is provided, the
default value will depend on the dtype.

	Returns

	rescaled_image (type(self)) – A copy of this image with pixels linearly rescaled to fit in the
range provided.

	
constrain_landmarks_to_bounds()

	Deprecated - please use the equivalent constrain_to_bounds method
now on PointCloud, in conjunction with the new Image bounds()
method. For example:

>>> im.constrain_landmarks_to_bounds() # Equivalent to below
>>> im.landmarks['test'] = im.landmarks['test'].constrain_to_bounds(im.bounds())

	
constrain_mask_to_landmarks(group=None, batch_size=None, point_in_pointcloud='pwa')[source]

	Returns a copy of this image whereby the mask is restricted to be equal
to the convex hull around the chosen landmarks.

The choice of whether a pixel is inside or outside of the pointcloud
is determined by the point_in_pointcloud parameter. By default
a Piecewise Affine transform is used to test for containment, which
is useful when building efficiently aligning images. For large images,
a faster and pixel-accurate method can be used (‘convex_hull’).
Alternatively, a callable can be provided to override the test. By
default, the provided implementations are only valid for 2D images.

	Parameters

	
	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.
If the landmarks in question are an instance of TriMesh,
the triangulation of the landmarks will be used in the convex
hull calculation. If the landmarks are an instance of
PointCloud, Delaunay triangulation will be used to
create a triangulation.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this value
will cause constraining to become much slower. This size indicates
how many points in the image should be checked at a time, which
keeps memory usage low. If None, no batching is used and all
points are checked at once. By default, this is only used for
the ‘pwa’ point_in_pointcloud choice.

	point_in_pointcloud ({‘pwa’, ‘convex_hull’} or callable) – The method used to check if pixels in the image fall inside the
pointcloud or not. Can be accurate to a Piecewise Affine transform,
a pixel accurate convex hull or any arbitrary callable.
If a callable is passed, it should take two parameters,
the PointCloud to constrain with and the pixel locations
((d, n_dims) ndarray) to test and should return a (d, 1) boolean
ndarray of whether the pixels were inside (True) or outside (False)
of the PointCloud.

	Returns

	constrained (MaskedImage) – A new image where the mask is constrained by the provided
landmarks.

	
constrain_mask_to_patches_around_landmarks(patch_shape, group=None)[source]

	Returns a copy of this image whereby the mask is restricted to be
patches around each landmark in the chosen landmark group. The
patch will be centred on the nearest pixel for each point in
the chosen landmark group.

	Parameters

	
	patch_shape (tuple) – The size of the patch.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	Returns

	constrained (MaskedImage) – A new image where the mask is constrained as patches centred on each
point in the provided landmarks.

	
constrain_points_to_bounds(points)

	Constrains the points provided to be within the bounds of this image.

	Parameters

	points ((d,) ndarray) – Points to be snapped to the image boundaries.

	Returns

	bounded_points ((d,) ndarray) – Points snapped to not stray outside the image edges.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
crop(min_indices, max_indices, constrain_to_boundary=False, return_transform=False)

	Return a cropped copy of this image using the given minimum and
maximum indices. Landmarks are correctly adjusted so they maintain
their position relative to the newly cropped image.

	Parameters

	
	min_indices ((n_dims,) ndarray) – The minimum index over each dimension.

	max_indices ((n_dims,) ndarray) – The maximum index over each dimension.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	cropped_image (type(self)) – A new instance of self, but cropped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	
	ValueError – min_indices and max_indices both have to be of length
 n_dims. All max_indices must be greater than
 min_indices.

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_landmarks(group=None, boundary=0, constrain_to_boundary=True, return_transform=False)

	Return a copy of this image cropped so that it is bounded around a set
of landmarks with an optional n_pixel boundary

	Parameters

	
	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to its landmarks.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_landmarks_proportion(boundary_proportion, group=None, minimum=True, constrain_to_boundary=True, return_transform=False)

	Crop this image to be bounded around a set of landmarks with a
border proportional to the landmark spread or range.

	Parameters

	
	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the landmarks’ per-dimension range; if False w.r.t. the
maximum value of the landmarks’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – This image, cropped to its landmarks with a border proportional to
the landmark spread or range.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_pointcloud(pointcloud, boundary=0, constrain_to_boundary=True, return_transform=False)

	Return a copy of this image cropped so that it is bounded around a
pointcloud with an optional n_pixel boundary.

	Parameters

	
	pointcloud (PointCloud) – The pointcloud to crop around.

	boundary (int, optional) – An extra padding to be added all around the landmarks bounds.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an :map`ImageBoundaryError` will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to the bounds of the pointcloud.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_pointcloud_proportion(pointcloud, boundary_proportion, minimum=True, constrain_to_boundary=True, return_transform=False)

	Return a copy of this image cropped so that it is bounded around a
pointcloud with a border proportional to the pointcloud spread or range.

	Parameters

	
	pointcloud (PointCloud) – The pointcloud to crop around.

	boundary_proportion (float) – Additional padding to be added all around the landmarks
bounds defined as a proportion of the landmarks range. See
the minimum parameter for a definition of how the range is
calculated.

	minimum (bool, optional) – If True the specified proportion is relative to the minimum
value of the pointclouds’ per-dimension range; if False w.r.t.
the maximum value of the pointclouds’ per-dimension range.

	constrain_to_boundary (bool, optional) – If True, the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	image (Image) – A copy of this image cropped to the border proportional to
the pointcloud spread or range.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if constrain_to_boundary=False, and an attempt is made
 to crop the image in a way that violates the image bounds.

	
crop_to_true_mask(boundary=0, constrain_to_boundary=True, return_transform=False)[source]

	Crop this image to be bounded just the True values of it’s mask.

	Parameters

	
	boundary (int, optional) – An extra padding to be added all around the true mask region.

	constrain_to_boundary (bool, optional) – If True the crop will be snapped to not go beyond this images
boundary. If False, an ImageBoundaryError will be raised
if an attempt is made to go beyond the edge of the image. Note that
is only possible if boundary != 0.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the cropping is also returned.

	Returns

	
	cropped_image (type(self)) – A copy of this image, cropped to the true mask.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ImageBoundaryError – Raised if 11constrain_to_boundary=False`1, and an attempt is
 made to crop the image in a way that violates the image bounds.

	
diagonal()

	The diagonal size of this image

	Type

	float

	
dilate(n_pixels=1)[source]

	Returns a copy of this MaskedImage in which its mask has
been expanded by n pixels along its boundary.

	Parameters

	n_pixels (int, optional) – The number of pixels by which we want to expand the mask along
its own boundary.

	Returns

	dilated_image (MaskedImage) – The copy of the masked image in which the mask has been expanded
by n pixels along its boundary.

	
erode(n_pixels=1)[source]

	Returns a copy of this MaskedImage in which the mask has been
shrunk by n pixels along its boundary.

	Parameters

	n_pixels (int, optional) – The number of pixels by which we want to shrink the mask along
its own boundary.

	Returns

	eroded_image (MaskedImage) – The copy of the masked image in which the mask has been shrunk
by n pixels along its boundary.

	
extract_channels(channels)

	A copy of this image with only the specified channels.

	Parameters

	channels (int or [int]) – The channel index or list of channel indices to retain.

	Returns

	image (type(self)) – A copy of this image with only the channels requested.

	
extract_patches(patch_centers, patch_shape=(16, 16), sample_offsets=None, as_single_array=True, order=0, mode='constant', cval=0.0)

	Extract a set of patches from an image. Given a set of patch centers
and a patch size, patches are extracted from within the image, centred
on the given coordinates. Sample offsets denote a set of offsets to
extract from within a patch. This is very useful if you want to extract
a dense set of features around a set of landmarks and simply sample the
same grid of patches around the landmarks.

If sample offsets are used, to access the offsets for each patch you
need to slice the resulting list. So for 2 offsets, the first centers
offset patches would be patches[:2].

Currently only 2D images are supported.

Note that the default is nearest neighbour sampling for the patches
which is achieved via slicing and is much more efficient than using
sampling/interpolation. Note that a significant performance decrease
will be measured if the order or mode parameters are modified
from order = 0 and mode = 'constant' as internally sampling
will be used rather than slicing.

	Parameters

	
	patch_centers (PointCloud) – The centers to extract patches around.

	patch_shape ((1, n_dims) tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre.
If None, then no offsets are applied.

	as_single_array (bool, optional) – If True, an (n_center, n_offset, n_channels, patch_shape)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of n_center * n_offset
Image objects is returned representing each patch.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5].
See warp_to_shape for more information.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according to
the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside the
image boundaries.

	Returns

	patches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises

	ValueError – If image is not 2D

	
extract_patches_around_landmarks(group=None, patch_shape=(16, 16), sample_offsets=None, as_single_array=True)

	Extract patches around landmarks existing on this image. Provided the
group label and optionally the landmark label extract a set of patches.

See extract_patches for more information.

Currently only 2D images are supported.

	Parameters

	
	group (str or None, optional) – The landmark group to use as patch centres.

	patch_shape (tuple or ndarray, optional) – The size of the patch to extract

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre.
If None, then no offsets are applied.

	as_single_array (bool, optional) – If True, an (n_center, n_offset, n_channels, patch_shape)
ndarray, thus a single numpy array is returned containing each
patch. If False, a list of n_center * n_offset
Image objects is returned representing each patch.

	Returns

	patches (list or ndarray) – Returns the extracted patches. Returns a list if
as_single_array=True and an ndarray if
as_single_array=False.

	Raises

	ValueError – If image is not 2D

	
from_vector(vector, n_channels=None)[source]

	Takes a flattened vector and returns a new image formed by reshaping
the vector to the correct pixels and channels. Note that the only
region of the image that will be filled is the masked region.

On masked images, the vector is always copied.

The n_channels argument is useful for when we want to add an extra
channel to an image but maintain the shape. For example, when
calculating the gradient.

Note that landmarks are transferred in the process.

	Parameters

	
	vector ((n_pixels,)) – A flattened vector of all pixels and channels of an image.

	n_channels (int, optional) – If given, will assume that vector is the same shape as this image,
but with a possibly different number of channels.

	Returns

	image (MaskedImage) – New image of same shape as this image and the number of
specified channels.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
gaussian_pyramid(n_levels=3, downscale=2, sigma=None)

	Return the gaussian pyramid of this image. The first image of the
pyramid will be a copy of the original, unmodified, image, and counts
as level 1.

	Parameters

	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	sigma (float, optional) – Sigma for gaussian filter. Default is downscale / 3. which
corresponds to a filter mask twice the size of the scale factor
that covers more than 99% of the gaussian distribution.

	Yields

	image_pyramid (generator) – Generator yielding pyramid layers as Image objects.

	
has_landmarks_outside_bounds()

	Indicates whether there are landmarks located outside the image bounds.

	Type

	bool

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
indices()[source]

	Return the indices of all true pixels in this image.

	Type

	(n_dims, n_true_pixels) ndarray

	
classmethod init_blank(shape, n_channels=1, fill=0, dtype=<class 'float'>, mask=None)[source]

	Generate a blank masked image

	Parameters

	
	shape (tuple or list) – The shape of the image. Any floating point values are rounded up
to the nearest integer.

	n_channels (int, optional) – The number of channels to create the image with.

	fill (int, optional) – The value to fill all pixels with.

	dtype (numpy datatype, optional) – The datatype of the image.

	mask ((M, N) bool ndarray or BooleanImage) – An optional mask that can be applied to the image. Has to have a
shape equal to that of the image.

Notes

Subclasses of MaskedImage need to overwrite this method and
explicitly call this superclass method

super(SubClass, cls).init_blank(shape,**kwargs)

in order to appropriately propagate the subclass type to cls.

	Returns

	blank_image (MaskedImage) – A new masked image of the requested size.

	
classmethod init_from_channels_at_back(pixels, mask=None)[source]

	Create an Image from a set of pixels where the channels axis is on
the last axis (the back). This is common in other frameworks, and
therefore this method provides a convenient means of creating a menpo
Image from such data. Note that a copy is always created due to the
need to rearrange the data.

	Parameters

	
	pixels ((M, N ..., Q, C) ndarray) – Array representing the image pixels, with the last axis being
channels.

	mask ((M, N) bool ndarray or BooleanImage, optional) – A binary array representing the mask. Must be the same
shape as the image. Only one mask is supported for an image (so the
mask is applied to every channel equally).

	Returns

	image (Image) – A new image from the given pixels, with the FIRST axis as the
channels.

	
classmethod init_from_pointcloud(pointcloud, group=None, boundary=0, constrain_mask=True, n_channels=1, fill=0, dtype=<class 'float'>)[source]

	Create an Image that is big enough to contain the given pointcloud.
The pointcloud will be translated to the origin and then translated
according to its bounds in order to fit inside the new image.
An optional boundary can be provided in order to increase the space
around the boundary of the pointcloud. The boundary will be added
to all sides of the image and so a boundary of 5 provides 10 pixels
of boundary total for each dimension.

By default, the mask will be constrained to the convex hull of the
provided pointcloud.

	Parameters

	
	pointcloud (PointCloud) – Pointcloud to place inside the newly created image.

	group (str, optional) – If None, the pointcloud will only be used to create the image.
If a str then the pointcloud will be attached as a landmark
group to the image, with the given string as key.

	boundary (float) – A optional padding distance that is added to the pointcloud bounds.
Default is 0, meaning the max/min of tightest possible
containing image is returned.

	n_channels (int, optional) – The number of channels to create the image with.

	fill (int, optional) – The value to fill all pixels with.

	dtype (numpy data type, optional) – The data type of the image.

	constrain_mask (bool, optional) – If True, the mask will be constrained to the convex hull
of the provided pointcloud. If False, the mask will be all
True.

	Returns

	image (MaskedImage) – A new image with the same size as the given pointcloud, optionally
with the pointcloud attached as landmarks and the mask constrained
to the convex hull of the pointcloud.

	
classmethod init_from_rolled_channels(pixels)

	Deprecated - please use the equivalent init_from_channels_at_back method.

	
masked_pixels()[source]

	Get the pixels covered by the True values in the mask.

	Type

	(n_channels, mask.n_true) ndarray

	
mirror(axis=1, order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, mirrored/flipped about a certain axis.

	Parameters

	
	axis (int, optional) – The axis about which to mirror the image.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5].

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the mirroring is also returned.

	Returns

	
	mirrored_image (type(self)) – The mirrored image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	
	ValueError – axis cannot be negative

	ValueError – axis={} but the image has {} dimensions

	
n_false_elements()[source]

	The number of False elements of the image over all the channels.

	Type

	int

	
n_false_pixels()[source]

	The number of False values in the mask.

	Type

	int

	
n_true_elements()[source]

	The number of True elements of the image over all the channels.

	Type

	int

	
n_true_pixels()[source]

	The number of True values in the mask.

	Type

	int

	
normalize_norm(mode='all', limit_to_mask=True, **kwargs)[source]

	Returns a copy of this image normalized such that it’s pixel values
have zero mean and its norm equals 1.

	Parameters

	
	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	limit_to_mask (bool, optional) – If True, the normalization is only performed wrt the masked
pixels.
If False, the normalization is wrt all pixels, regardless of
their masking value.

	Returns

	image (type(self)) – A copy of this image, normalized.

	
normalize_std(mode='all', limit_to_mask=True)[source]

	Returns a copy of this image normalized such that it’s pixel values
have zero mean and unit variance.

	Parameters

	
	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	limit_to_mask (bool, optional) – If True, the normalization is only performed wrt the masked
pixels.
If False, the normalization is wrt all pixels, regardless of
their masking value.

	Returns

	image (type(self)) – A copy of this image, normalized.

	
pixels_range()

	The range of the pixel values (min and max pixel values).

	Returns

	min_max ((dtype, dtype)) – The minimum and maximum value of the pixels array.

	
pixels_with_channels_at_back(out_dtype=None)

	Returns the pixels matrix, with the channels rolled to the back axis.
This may be required for interacting with external code bases that
require images to have channels as the last axis, rather than the
Menpo convention of channels as the first axis.

If this image is single channel, the final axis is dropped.

	Parameters

	out_dtype (np.dtype, optional) – The dtype the output array should be.

	Returns

	rolled_channels (ndarray) – Pixels with channels as the back (last) axis. If single channel,
the last axis will be dropped.

	
pyramid(n_levels=3, downscale=2)

	Return a rescaled pyramid of this image. The first image of the
pyramid will be a copy of the original, unmodified, image, and counts
as level 1.

	Parameters

	
	n_levels (int, optional) – Total number of levels in the pyramid, including the original
unmodified image

	downscale (float, optional) – Downscale factor.

	Yields

	image_pyramid (generator) – Generator yielding pyramid layers as Image objects.

	
rasterize_landmarks(group=None, render_lines=True, line_style='-', line_colour='b', line_width=1, render_markers=True, marker_style='o', marker_size=1, marker_face_colour='b', marker_edge_colour='b', marker_edge_width=1, backend='matplotlib')[source]

	This method provides the ability to rasterize 2D landmarks onto the
image. The returned image has the specified landmark groups rasterized
onto the image - which is useful for things like creating result
examples or rendering videos with annotations.

Since multiple landmark groups can be specified, all arguments can take
lists of parameters that map to the provided groups list. Therefore, the
parameters must be lists of the correct length or a single parameter to
apply to every landmark group.

Multiple backends are provided, all with different strengths. The
‘pillow’ backend is very fast, but not very flexible. The matplotlib
backend should be feature compatible with other Menpo rendering methods,
but is much slower due to the overhead of creating a figure to render
into.

Images will always be rendered masked with a black background.
If an unmasked image is required, please use as_unmasked().

	Parameters

	
	group (str or list of str, optional) – The landmark group key, or a list of keys.

	render_lines (bool, optional) – If True, and the provided landmark group is a
PointDirectedGraph, the edges are rendered.

	line_style (str, optional) – The style of the edge line. Not all backends support this argument.

	line_colour (str or tuple, optional) – A Matplotlib style colour or a backend dependant colour.

	line_width (int, optional) – The width of the line to rasterize.

	render_markers (bool, optional) – If True, render markers at the coordinates of each landmark.

	marker_style (str, optional) – A Matplotlib marker style. Not all backends support all marker
styles.

	marker_size (int, optional) – The size of the marker - different backends use different scale
spaces so consistent output may by difficult.

	marker_face_colour (str, optional) – A Matplotlib style colour or a backend dependant colour.

	marker_edge_colour (str, optional) – A Matplotlib style colour or a backend dependant colour.

	marker_edge_width (int, optional) – The width of the marker edge. Not all backends support this.

	backend ({'matplotlib', 'pillow'}, optional) – The backend to use.

	Returns

	rasterized_image (Image) – The image with the landmarks rasterized directly into the pixels.

	Raises

	
	ValueError – Only 2D images are supported.

	ValueError – Only RGB (3-channel) or Greyscale (1-channel) images are supported.

	
rescale(scale, round='ceil', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled by a given factor.
Landmarks are rescaled appropriately.

	Parameters

	
	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError: – If less scales than dimensions are provided.
 If any scale is less than or equal to 0.

	
rescale_landmarks_to_diagonal_range(diagonal_range, group=None, round='ceil', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled so that the diagonal_range of
the bounding box containing its landmarks matches the specified
diagonal_range range.

	Parameters

	
	diagonal_range ((n_dims,) ndarray) – The diagonal_range range that we want the landmarks of the returned
image to have.

	group (str, optional) – The key of the landmark set that should be used. If None
and if there is only one set of landmarks, this set will be used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
rescale_pixels(minimum, maximum, per_channel=True)

	A copy of this image with pixels linearly rescaled to fit a range.

Note that the only pixels that will be considered and rescaled are those
that feature in the vectorized form of this image. If you want to use
this routine on all the pixels in a MaskedImage, consider
using as_unmasked() prior to this call.

	Parameters

	
	minimum (float) – The minimal value of the rescaled pixels

	maximum (float) – The maximal value of the rescaled pixels

	per_channel (boolean, optional) – If True, each channel will be rescaled independently. If
False, the scaling will be over all channels.

	Returns

	rescaled_image (type(self)) – A copy of this image with pixels linearly rescaled to fit in the
range provided.

	
rescale_to_diagonal(diagonal, round='ceil', warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled so that the it’s diagonal is a
new size.

	Parameters

	
	diagonal (int) – The diagonal size of the new image.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
rescale_to_pointcloud(pointcloud, group=None, round='ceil', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rescaled so that the scale of a
particular group of landmarks matches the scale of the passed
reference pointcloud.

	Parameters

	
	pointcloud (PointCloud) – The reference pointcloud to which the landmarks specified by
group will be scaled to match.

	group (str, optional) – The key of the landmark set that should be used. If None,
and if there is only one set of landmarks, this set will be used.

	round ({ceil, floor, round}, optional) – Rounding function to be applied to floating point shapes.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rescale is also returned.

	Returns

	
	rescaled_image (type(self)) – A copy of this image, rescaled.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
resize(shape, order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, resized to a particular shape.
All image information (landmarks, and mask in the case of
MaskedImage) is resized appropriately.

	Parameters

	
	shape (tuple) – The new shape to resize to.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the resize is also returned.

	Returns

	
	resized_image (type(self)) – A copy of this image, resized.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError: – If the number of dimensions of the new shape does not match
 the number of dimensions of the image.

	
rolled_channels()

	Deprecated - please use the equivalent pixels_with_channels_at_back method.

	
rotate_ccw_about_centre(theta, degrees=True, retain_shape=False, mode='constant', cval=0.0, round='round', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, rotated counter-clockwise about its centre.

Note that the retain_shape argument defines the shape of the rotated
image. If retain_shape=True, then the shape of the rotated image
will be the same as the one of current image, so some regions will
probably be cropped. If retain_shape=False, then the returned image
has the correct size so that the whole area of the current image is
included.

	Parameters

	
	theta (float) – The angle of rotation about the centre.

	degrees (bool, optional) – If True, theta is interpreted in degrees. If False,
theta is interpreted as radians.

	retain_shape (bool, optional) – If True, then the shape of the rotated image will be the same as
the one of current image, so some regions will probably be cropped.
If False, then the returned image has the correct size so that
the whole area of the current image is included.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – The value to be set outside the rotated image boundaries.

	round ({'ceil', 'floor', 'round'}, optional) – Rounding function to be applied to floating point shapes. This is
only used in case retain_shape=True.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5]. This is only used in case retain_shape=True.

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the rotation is also returned.

	Returns

	
	rotated_image (type(self)) – The rotated image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	Raises

	ValueError – Image rotation is presently only supported on 2D images

	
sample(points_to_sample, order=1, mode='constant', cval=0.0, verify_mask=False)[source]

	Sample this image at the given sub-pixel accurate points. The input
PointCloud should have the same number of dimensions as the image e.g.
a 2D PointCloud for a 2D multi-channel image. A numpy array will be
returned the has the values for every given point across each channel
of the image.

If verify_mask is True and the points to sample are outside of the
mask (fall on a False value in the mask), an exception is raised.
This exception contains the information of which points were outside
of the mask (False) and also returns the sampled points. Note this
is more expensive and thus may be disabled by setting verify_mask
to False.

	Parameters

	
	points_to_sample (PointCloud) – Array of points to sample from the image. Should be
(n_points, n_dims)

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5].
See warp_to_shape for more information.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	verify_mask (bool, optional) – If True, also sample the mask at the given points and check the
mask is valid at all points. Note that sampling masks with higher
order splines may cause interpolated mask values that are rounded
to zero and thus cause false positives.

	Returns

	sampled_pixels ((n_points, n_channels) ndarray) – The interpolated values taken across every channel of the image.

	Raises

	OutOfMaskSampleError – One of the points to sample was outside of the valid area of the
 mask (False in the mask). This exception contains both the
 mask of valid sample points, as well as the sampled points
 themselves, in case you want to ignore the error. Only raised
 if verify_mask is True.

	
set_boundary_pixels(value=0.0, n_pixels=1)[source]

	Returns a copy of this MaskedImage for which n pixels along
the its mask boundary have been set to a particular value. This is
useful in situations where there is absent data in the image which
can cause, for example, erroneous computations of gradient or features.

	Parameters

	
	value (float or (n_channels, 1) ndarray) –

	n_pixels (int, optional) – The number of pixels along the mask boundary that will be set to 0.

	Returns

	new_image (MaskedImage) – The copy of the image for which the n pixels along its mask
boundary have been set to a particular value.

	
set_masked_pixels(pixels, copy=True)[source]

	Deprecated - please use the equivalent from_vector

	
set_patches(patches, patch_centers, offset=None, offset_index=None)

	Set the values of a group of patches into the correct regions of a copy
of this image. Given an array of patches and a set of patch centers,
the patches’ values are copied in the regions of the image that are
centred on the coordinates of the given centers.

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

Currently only 2D images are supported.

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that
are returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image
objects.

	patch_centers (PointCloud) – The centers to set the patches around.

	offset (list or tuple or (1, 2) ndarray or None, optional) – The offset to apply on the patch centers within the image.
If None, then (0, 0) is used.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the
index of the second dimension from which to sample. If None,
then 0 is used.

	Raises

	
	ValueError – If image is not 2D

	ValueError – If offset does not have shape (1, 2)

	
set_patches_around_landmarks(patches, group=None, offset=None, offset_index=None)

	Set the values of a group of patches around the landmarks existing in a
copy of this image. Given an array of patches, a group and a label, the
patches’ values are copied in the regions of the image that are
centred on the coordinates of corresponding landmarks.

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

Currently only 2D images are supported.

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that
are returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image
objects.

	group (str or None optional) – The landmark group to use as patch centres.

	offset (list or tuple or (1, 2) ndarray or None, optional) – The offset to apply on the patch centers within the image.
If None, then (0, 0) is used.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the
index of the second dimension from which to sample. If None,
then 0 is used.

	Raises

	
	ValueError – If image is not 2D

	ValueError – If offset does not have shape (1, 2)

	
transform_about_centre(transform, retain_shape=False, mode='constant', cval=0.0, round='round', order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, transformed about its centre.

Note that the retain_shape argument defines the shape of the
transformed image. If retain_shape=True, then the shape of the
transformed image will be the same as the one of current image, so some
regions will probably be cropped. If retain_shape=False, then the
returned image has the correct size so that the whole area of the
current image is included.

Note

This method will not work for transforms that result in a transform
chain as TransformChain is not invertible.

Note

Be careful when defining transforms for warping imgaes. All pixel
locations must fall within a valid range as expected by the
transform. Therefore, your transformation must accept ‘negative’
pixel locations as the pixel locations provided to your transform
will have the object centre subtracted from them.

	Parameters

	
	transform (ComposableTransform and VInvertible type) – A composable transform. pseudoinverse will be invoked on the
resulting transform so it must implement a valid inverse.

	retain_shape (bool, optional) – If True, then the shape of the sheared image will be the same as
the one of current image, so some regions will probably be cropped.
If False, then the returned image has the correct size so that
the whole area of the current image is included.

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – The value to be set outside the sheared image boundaries.

	round ({'ceil', 'floor', 'round'}, optional) – Rounding function to be applied to floating point shapes. This is
only used in case retain_shape=True.

	order (int, optional) – The order of interpolation. The order has to be in the range
[0,5]. This is only used in case retain_shape=True.

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the shearing is also returned.

	Returns

	
	transformed_image (type(self)) – The transformed image.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

Examples

This is an example for rotating an image about its center. Let’s
first load an image, create the rotation transform and then apply it

import matplotlib.pyplot as plt
import menpo.io as mio
from menpo.transform import Rotation

Load image
im = mio.import_builtin_asset.lenna_png()

Create shearing transform
rot_tr = Rotation.init_from_2d_ccw_angle(45)

Render original image
plt.subplot(131)
im.view_landmarks()
plt.title('Original')

Render rotated image
plt.subplot(132)
im.transform_about_centre(rot_tr).view_landmarks()
plt.title('Rotated')

Render rotated image that has shape equal as original image
plt.subplot(133)
im.transform_about_centre(rot_tr, retain_shape=True).view_landmarks()
plt.title('Rotated (Retain original shape)')

Similarly, in order to apply a shear transform

import matplotlib.pyplot as plt
import menpo.io as mio
from menpo.transform import Affine

Load image
im = mio.import_builtin_asset.lenna_png()

Create shearing transform
shear_tr = Affine.init_from_2d_shear(25, 10)

Render original image
plt.subplot(131)
im.view_landmarks()
plt.title('Original')

Render sheared image
plt.subplot(132)
im.transform_about_centre(shear_tr).view_landmarks()
plt.title('Sheared')

Render sheared image that has shape equal as original image
plt.subplot(133)
im.transform_about_centre(shear_tr,
 retain_shape=True).view_landmarks()
plt.title('Sheared (Retain original shape)')

	
warp_to_mask(template_mask, transform, warp_landmarks=False, order=1, mode='constant', cval=0.0, batch_size=None, return_transform=False)[source]

	Warps this image into a different reference space.

	Parameters

	
	template_mask (BooleanImage) – Defines the shape of the result, and what pixels should be sampled.

	transform (Transform) – Transform from the template space back to this image.
Defines, for each pixel location on the template, which pixel
location should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this
value can cause warping to become much slower, particular for
cached warps such as Piecewise Affine. This size indicates
how many points in the image should be warped at a time, which
keeps memory usage low. If None, no batching is used and all
points are warped at once.

	return_transform (bool, optional) – This argument is for internal use only. If True, then the
Transform object is also returned.

	Returns

	
	warped_image (type(self)) – A copy of this image, warped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
warp_to_shape(template_shape, transform, warp_landmarks=False, order=1, mode='constant', cval=0.0, batch_size=None, return_transform=False)[source]

	Return a copy of this MaskedImage warped into a different
reference space.

	Parameters

	
	template_shape (tuple or ndarray) – Defines the shape of the result, and what pixel indices should be
sampled (all of them).

	transform (Transform) – Transform from the template_shape space back to this image.
Defines, for each index on template_shape, which pixel location
should be sampled from on this image.

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	mode ({constant, nearest, reflect, wrap}, optional) – Points outside the boundaries of the input are filled according
to the given mode.

	cval (float, optional) – Used in conjunction with mode constant, the value outside
the image boundaries.

	batch_size (int or None, optional) – This should only be considered for large images. Setting this
value can cause warping to become much slower, particular for
cached warps such as Piecewise Affine. This size indicates
how many points in the image should be warped at a time, which
keeps memory usage low. If None, no batching is used and all
points are warped at once.

	return_transform (bool, optional) – This argument is for internal use only. If True, then the
Transform object is also returned.

	Returns

	
	warped_image (MaskedImage) – A copy of this image, warped.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
zoom(scale, order=1, warp_landmarks=True, return_transform=False)

	Return a copy of this image, zoomed about the centre point. scale
values greater than 1.0 denote zooming in to the image and values
less than 1.0 denote zooming out of the image. The size of the
image will not change, if you wish to scale an image, please see
rescale().

	Parameters

	
	scale (float) – scale > 1.0 denotes zooming in. Thus the image will appear
larger and areas at the edge of the zoom will be ‘cropped’ out.
scale < 1.0 denotes zooming out. The image will be padded
by the value of cval.

	order (int, optional) – The order of interpolation. The order has to be in the range [0,5]

	Order

	Interpolation

	0

	Nearest-neighbor

	1

	Bi-linear (default)

	2

	Bi-quadratic

	3

	Bi-cubic

	4

	Bi-quartic

	5

	Bi-quintic

	warp_landmarks (bool, optional) – If True, result will have the same landmark dictionary
as self, but with each landmark updated to the warped position.

	return_transform (bool, optional) – If True, then the Transform object that was used to
perform the zooming is also returned.

	Returns

	
	zoomed_image (type(self)) – A copy of this image, zoomed.

	transform (Transform) – The transform that was used. It only applies if
return_transform is True.

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property height

	The height of the image.

This is the height according to image semantics, and is thus the size
of the second to last dimension.

	Type

	int

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property n_channels

	The number of channels on each pixel in the image.

	Type

	int

	
property n_dims

	The number of dimensions in the image. The minimum possible n_dims
is 2.

	Type

	int

	
property n_elements

	Total number of data points in the image
(prod(shape), n_channels)

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_pixels

	Total number of pixels in the image (prod(shape),)

	Type

	int

	
property shape

	The shape of the image
(with n_channel values at each point).

	Type

	tuple

	
property width

	The width of the image.

This is the width according to image semantics, and is thus the size
of the last dimension.

	Type

	int

 ImageBoundaryError

ImageBoundaryError

	
class menpo.image.ImageBoundaryError(requested_min, requested_max, snapped_min, snapped_max)[source]

	Bases: ValueError

Exception that is thrown when an attempt is made to crop an image beyond
the edge of it’s boundary.

	Parameters

	
	requested_min ((d,) ndarray) – The per-dimension minimum index requested for the crop

	requested_max ((d,) ndarray) – The per-dimension maximum index requested for the crop

	snapped_min ((d,) ndarray) – The per-dimension minimum index that could be used if the crop was
constrained to the image boundaries.

	requested_max – The per-dimension maximum index that could be used if the crop was
constrained to the image boundaries.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 OutOfMaskSampleError

OutOfMaskSampleError

	
class menpo.image.OutOfMaskSampleError(sampled_mask, sampled_values)[source]

	Bases: ValueError

Exception that is thrown when an attempt is made to sample an MaskedImage
in an area that is masked out (where the mask is False).

	Parameters

	
	sampled_mask (bool ndarray) – The sampled mask, True where the image’s mask was True and
False otherwise. Useful for masking out the sampling array.

	sampled_values (ndarray) – The sampled values, no attempt at masking is made.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 menpo.feature

menpo.feature

Features

	no_op

	gradient

	gaussian_filter

	igo

	es

	daisy

Optional Features

The following features are optional and may or may not be available depending
on whether the required packages that implement them are available. If
conda was used to install menpo then it is highly likely that all the optional
packages will be available.

Vlfeat:
Features that have been wrapped from the Vlfeat 1 project. Currently,
the wrapped features are all variants on the SIFT 2 algorithm.

	dsift

	fast_dsift

	vector_128_dsift

	hellinger_vector_128_dsift

Predefined (Partial Features)

The following features are are built from the features listed above, but are
partial functions. This implies that some sensible parameter choices have
already been made that provides a unique set of properties.

	double_igo

Normalization

The following functions perform some kind of normalization on an image.

	normalize

	normalize_norm

	normalize_std

	normalize_var

Visualization

	sum_channels

References

	1

	Vedaldi, Andrea, and Brian Fulkerson. “VLFeat: An open and portable
library of computer vision algorithms.” Proceedings of the international
conference on Multimedia. ACM, 2010.

	2

	Lowe, David G. “Distinctive image features from scale-invariant
keypoints.” International journal of computer vision 60.2 (2004): 91-110.

 no_op

no_op

	
menpo.feature.no_op(pixels)[source]

	A no operation feature - does nothing but return a copy of the pixels
passed in.

	Parameters

	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	Returns

	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – A copy of the image that was passed in.

 gradient

gradient

	
menpo.feature.gradient(pixels)[source]

	Calculates the gradient of an input image. The image is assumed to have
channel information on the first axis. In the case of multiple channels,
it returns the gradient over each axis over each channel as the first axis.

The gradient is computed using second order accurate central differences in
the interior and first order accurate one-side (forward or backwards)
differences at the boundaries.

	Parameters

	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array where the first dimension
is interpreted as channels. This means an N-dimensional image is
represented by an N+1 dimensional array.
If the image is 2-dimensional the pixels should be of type
float/double (int is not supported).

	Returns

	gradient (ndarray) – The gradient over each axis over each channel. Therefore, the
first axis of the gradient of a 2D, single channel image, will have
length 2. The first axis of the gradient of a 2D, 3-channel image,
will have length 6, the ordering being
I[:, 0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]. To be clear,
all the y-gradients are returned over each channel, then all
the x-gradients.

 gaussian_filter

gaussian_filter

	
menpo.feature.gaussian_filter(pixels, sigma)[source]

	Calculates the convolution of the input image with a multidimensional
Gaussian filter.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	sigma (float or list of float) – The standard deviation for Gaussian kernel. The standard deviations of
the Gaussian filter are given for each axis as a list, or as a single
float, in which case it is equal for all axes.

	Returns

	output_image (Image or subclass or (X, Y, ..., Z, C) ndarray) – The filtered image has the same type and size as the input pixels.

 igo

igo

	
menpo.feature.igo(pixels, double_angles=False, verbose=False)[source]

	Extracts Image Gradient Orientation (IGO) features from the input image.
The output image has N * C number of channels, where N is the
number of channels of the original image and C = 2 or C = 4
depending on whether double angles are used.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	double_angles (bool, optional) – Assume that phi represents the gradient orientations.

If this flag is False, the features image is the concatenation of
cos(phi) and sin(phi), thus 2 channels.

If True, the features image is the concatenation of
cos(phi), sin(phi), cos(2 * phi), sin(2 * phi), thus 4
channels.

	verbose (bool, optional) – Flag to print IGO related information.

	Returns

	igo (Image or subclass or (X, Y, ..., Z, C) ndarray) – The IGO features image. It has the same type and shape as the input
pixels. The output number of channels depends on the
double_angles flag.

	Raises

	ValueError – Image has to be 2D in order to extract IGOs.

References

	1

	G. Tzimiropoulos, S. Zafeiriou and M. Pantic, “Subspace learning
from image gradient orientations”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, num. 12, p. 2454–2466, 2012.

 es

es

	
menpo.feature.es(pixels, verbose=False)[source]

	Extracts Edge Structure (ES) features from the input image. The output image
has N * C number of channels, where N is the number of channels of
the original image and C = 2.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either an image object itself or an array where the first axis
represents the number of channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	verbose (bool, optional) – Flag to print ES related information.

	Returns

	es (Image or subclass or (X, Y, ..., Z, C) ndarray) – The ES features image. It has the same type and shape as the input
pixels. The output number of channels is C = 2.

	Raises

	ValueError – Image has to be 2D in order to extract ES features.

References

	1

	T. Cootes, C. Taylor, “On representing edge structure for model
matching”, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2001.

 daisy

daisy

	
menpo.feature.daisy(pixels, step=1, radius=15, rings=2, histograms=2, orientations=8, normalization='l1', sigmas=None, ring_radii=None, verbose=False)[source]

	Extracts Daisy features from the input image. The output image has N * C
number of channels, where N is the number of channels of the original
image and C is the feature channels determined by the input options.
Specifically, C = (rings * histograms + 1) * orientations.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	step (int, optional) – The sampling step that defines the density of the output image.

	radius (int, optional) – The radius (in pixels) of the outermost ring.

	rings (int, optional) – The number of rings to be used.

	histograms (int, optional) – The number of histograms sampled per ring.

	orientations (int, optional) – The number of orientations (bins) per histogram.

	normalization (['l1', 'l2', 'daisy', None], optional) – It defines how to normalize the descriptors
If ‘l1’ then L1-normalization is applied at each descriptor.
If ‘l2’ then L2-normalization is applied at each descriptor.
If ‘daisy’ then L2-normalization is applied at individual histograms.
If None then no normalization is employed.

	sigmas (list of float or None, optional) – Standard deviation of spatial Gaussian smoothing for the centre
histogram and for each ring of histograms. The list of sigmas should
be sorted from the centre and out. I.e. the first sigma value defines
the spatial smoothing of the centre histogram and the last sigma value
defines the spatial smoothing of the outermost ring. Specifying sigmas
overrides the rings parameter by setting rings = len(sigmas) - 1.

	ring_radii (list of float or None, optional) – Radius (in pixels) for each ring. Specifying ring_radii overrides the
rings and radius parameters by setting rings = len(ring_radii)
and radius = ring_radii[-1].

If both sigmas and ring_radii are given, they must satisfy

len(ring_radii) == len(sigmas) + 1

since no radius is needed for the centre histogram.

	verbose (bool) – Flag to print Daisy related information.

	Returns

	daisy (Image or subclass or (X, Y, ..., Z, C) ndarray) – The ES features image. It has the same type and shape as the input
pixels. The output number of channels is
C = (rings * histograms + 1) * orientations.

	Raises

	
	ValueError – len(sigmas)-1 != len(ring_radii)

	ValueError – Invalid normalization method.

References

	1

	E. Tola, V. Lepetit and P. Fua, “Daisy: An efficient dense descriptor
applied to wide-baseline stereo”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, num. 5, p. 815-830, 2010.

 dsift

dsift

 fast_dsift

fast_dsift

 vector_128_dsift

vector_128_dsift

 hellinger_vector_128_dsift

hellinger_vector_128_dsift

 double_igo

double_igo

	
menpo.feature.double_igo(pixels, *, double_angles=True, verbose=False)

	Extracts Image Gradient Orientation (IGO) features from the input image.
The output image has N * C number of channels, where N is the
number of channels of the original image and C = 2 or C = 4
depending on whether double angles are used.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	double_angles (bool, optional) – Assume that phi represents the gradient orientations.

If this flag is False, the features image is the concatenation of
cos(phi) and sin(phi), thus 2 channels.

If True, the features image is the concatenation of
cos(phi), sin(phi), cos(2 * phi), sin(2 * phi), thus 4
channels.

	verbose (bool, optional) – Flag to print IGO related information.

	Returns

	igo (Image or subclass or (X, Y, ..., Z, C) ndarray) – The IGO features image. It has the same type and shape as the input
pixels. The output number of channels depends on the
double_angles flag.

	Raises

	ValueError – Image has to be 2D in order to extract IGOs.

References

	1

	G. Tzimiropoulos, S. Zafeiriou and M. Pantic, “Subspace learning
from image gradient orientations”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, num. 12, p. 2454–2466, 2012.

 normalize

normalize

	
menpo.feature.normalize(img, scale_func=None, mode='all', error_on_divide_by_zero=True)[source]

	Normalize the pixel values via mean centering and an optional scaling. By
default the scaling will be 1.0. The mode parameter selects
whether the normalisation is computed across all pixels in the image or
per-channel.

	Parameters

	
	img (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	scale_func (callable, optional) – Compute the scaling factor. Expects a single parameter and an optional
axis keyword argument and will be passed the entire pixel array.
Should return a 1D numpy array of one or more values.

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	error_on_divide_by_zero (bool, optional) – If True, will raise a ValueError on dividing by zero.
If False, will merely raise a warning and only those values
with non-zero denominators will be normalized.

	Returns

	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – A normalized copy of the image that was passed in.

	Raises

	ValueError – If any of the denominators are 0 and error_on_divide_by_zero is
 True.

 normalize_norm

normalize_norm

	
menpo.feature.normalize_norm(pixels, mode='all', error_on_divide_by_zero=True)[source]

	Normalize the pixels to be mean centred and have unit norm. The mode
parameter selects whether the normalisation is computed across all pixels in
the image or per-channel.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	error_on_divide_by_zero (bool, optional) – If True, will raise a ValueError on dividing by zero.
If False, will merely raise a warning and only those values
with non-zero denominators will be normalized.

	Returns

	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – A normalized copy of the image that was passed in.

	Raises

	ValueError – If any of the denominators are 0 and error_on_divide_by_zero is
 True.

 normalize_std

normalize_std

	
menpo.feature.normalize_std(pixels, mode='all', error_on_divide_by_zero=True)[source]

	Normalize the pixels to be mean centred and have unit standard deviation.
The mode parameter selects whether the normalisation is computed across
all pixels in the image or per-channel.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	error_on_divide_by_zero (bool, optional) – If True, will raise a ValueError on dividing by zero.
If False, will merely raise a warning and only those values
with non-zero denominators will be normalized.

	Returns

	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – A normalized copy of the image that was passed in.

	Raises

	ValueError – If any of the denominators are 0 and error_on_divide_by_zero is
 True.

 normalize_var

normalize_var

	
menpo.feature.normalize_var(pixels, mode='all', error_on_divide_by_zero=True)[source]

	Normalize the pixels to be mean centred and normalize according
to the variance.
The mode parameter selects whether the normalisation is computed across
all pixels in the image or per-channel.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels. This means an N-dimensional image
is represented by an N+1 dimensional array.

	mode ({all, per_channel}, optional) – If all, the normalization is over all channels. If
per_channel, each channel individually is mean centred and
normalized in variance.

	error_on_divide_by_zero (bool, optional) – If True, will raise a ValueError on dividing by zero.
If False, will merely raise a warning and only those values
with non-zero denominators will be normalized.

	Returns

	pixels (Image or subclass or (X, Y, ..., Z, C) ndarray) – A normalized copy of the image that was passed in.

	Raises

	ValueError – If any of the denominators are 0 and error_on_divide_by_zero is
 True.

 sum_channels

sum_channels

	
menpo.feature.sum_channels(pixels, channels=None)[source]

	Create the sum of the channels of an image that can be used for
visualization.

	Parameters

	
	pixels (Image or subclass or (C, X, Y, ..., Z) ndarray) – Either the image object itself or an array with the pixels. The first
dimension is interpreted as channels.

	channels (list of int or None) – The list of channels to be used. If None, then all the channels are
employed.

 menpo.landmark

menpo.landmark

Abstract Classes

	Landmarkable

Exceptions

	LabellingError

Landmarks & Labeller

	LandmarkManager

	labeller

Bounding Box Labels

	bounding_box_mirrored_to_bounding_box

	bounding_box_to_bounding_box

Labels

Pre-defined landmark labels that normally correspond to standard database
mark-ups.

Human Face

	face_ibug_68_to_face_ibug_49

	face_ibug_68_to_face_ibug_49_trimesh

	face_ibug_68_to_face_ibug_51

	face_ibug_68_to_face_ibug_51_trimesh

	face_ibug_68_to_face_ibug_65

	face_ibug_68_to_face_ibug_66

	face_ibug_68_to_face_ibug_66_trimesh

	face_ibug_68_to_face_ibug_68

	face_ibug_68_to_face_ibug_68_trimesh

	face_ibug_68_mirrored_to_face_ibug_68

	face_ibug_49_to_face_ibug_49

	face_imm_58_to_face_imm_58

	face_lfpw_29_to_face_lfpw_29

	face_bu3dfe_83_to_face_bu3dfe_83

Human Eyes

	eye_ibug_close_17_to_eye_ibug_close_17

	eye_ibug_close_17_to_eye_ibug_close_17_trimesh

	eye_ibug_open_38_to_eye_ibug_open_38

	eye_ibug_open_38_to_eye_ibug_open_38_trimesh

Human Hand

	hand_ibug_39_to_hand_ibug_39

Human Body Pose

	pose_flic_11_to_pose_flic_11

	pose_human36M_32_to_pose_human36M_17

	pose_human36M_32_to_pose_human36M_32

	pose_lsp_14_to_pose_lsp_14

	pose_stickmen_12_to_pose_stickmen_12

Car

	car_streetscene_20_to_car_streetscene_view_0_8

	car_streetscene_20_to_car_streetscene_view_1_14

	car_streetscene_20_to_car_streetscene_view_2_10

	car_streetscene_20_to_car_streetscene_view_3_14

	car_streetscene_20_to_car_streetscene_view_4_14

	car_streetscene_20_to_car_streetscene_view_5_10

	car_streetscene_20_to_car_streetscene_view_6_14

	car_streetscene_20_to_car_streetscene_view_7_8

Human Tongue

	tongue_ibug_19_to_tongue_ibug_19

 Landmarkable

Landmarkable

	
class menpo.landmark.Landmarkable[source]

	Bases: Copyable

Abstract interface for object that can have landmarks attached to them.
Landmarkable objects have a public dictionary of landmarks which are
managed by a LandmarkManager. This means that
different sets of landmarks can be attached to the same object.
Landmarks can be N-dimensional and are expected to be some
subclass of PointCloud or LabelledPointUndirectedGraph.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
n_dims()[source]

	The total number of dimensions.

	Type

	int

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

 LabellingError

LabellingError

	
class menpo.landmark.LabellingError[source]

	Bases: Exception

Raised when labelling a landmark manager and the set of landmarks does not
match the expected semantic layout.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 LandmarkManager

LandmarkManager

	
class menpo.landmark.LandmarkManager[source]

	Bases: MutableMapping, Transformable

Store for PointCloud or :LabelledPointUndirectedGraph
instances associated with an object.

Every Landmarkable instance has an instance of this class available
at the .landmarks property. It is through this class that all access
to landmarks attached to instances is handled. In general the
LandmarkManager provides a dictionary-like interface for storing
landmarks. The LandmarkManager will contain instances of PointCloud
or LabelledPointUndirectedGraph or subclasses thereof.
LabelledPointUndirectedGraph is unique in it’s ability to
include labels that refer to subsets of the underlying points that represent
interesting semantic labels. These PointCloud or
LabelledPointUndirectedGraph (or subclasses) are stored under
string keys - these keys are refereed to as the group name. A special
case is where there is a single unambiguous group attached to a
LandmarkManager - in this case None can be used as a key to
access this sole group.

Note that all groups stored on a Landmarkable in it’s attached
LandmarkManager are automatically transformed and copied with their
parent object.

	
clear() → None. Remove all items from D.

	

	
copy()[source]

	Generate an efficient copy of this LandmarkManager.

	Returns

	type(self) – A copy of this object

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → a set-like object providing a view on D’s items

	

	
items_matching(glob_pattern)[source]

	Yield only items (group, PointCloud) where the key matches a
given glob.

	Parameters

	glob_pattern (str) – A glob pattern e.g. ‘frontal_face_*’

	Yields

	item ((group, PointCloud)) – Tuple of (str, PointCloud) where the group matches the glob.

	
keys() → a set-like object providing a view on D’s keys

	

	
keys_matching(glob_pattern)[source]

	Yield only landmark group names (keys) matching a given glob.

	Parameters

	glob_pattern (str) – A glob pattern e.g. ‘frontal_face_*’

	Yields

	keys (group labels that match the glob pattern)

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → an object providing a view on D’s values

	

	
property group_labels

	All the labels for the landmark set sorted by insertion order.

	Type

	list of str

	
property has_landmarks

	Whether the object has landmarks or not

	Type

	int

	
property n_dims

	The total number of dimensions.

	Type

	int

	
property n_groups

	Total number of labels.

	Type

	int

 labeller

labeller

	
menpo.landmark.labeller(landmarkable, group, label_func)[source]

	Re-label an existing landmark group on a Landmarkable object with a
new label set.

	Parameters

	
	landmarkable (Landmarkable) – Landmarkable that will have it’s LandmarkManager
augmented with a new LabelledPointUndirectedGraph or
PointCloud

	group (str) – The group label of the existing pointcloud that should be re-labelled.
A copy of this group will be attached to it’s landmark manager with
new labels. The group label of this new group and the labels it will
have is determined by label_func

	label_func (func -> (str, LabelledPointUndirectedGraph)) – A labelling function taken from this module. Takes as input a
PointCloud or LabelledPointUndirectedGraph or subclass
and returns a tuple of (new group label, new
LabelledPointUndirectedGraph with semantic labels applied).

	Returns

	landmarkable (Landmarkable) – Augmented landmarkable (this is just for convenience,
the object will actually be modified in place)

 bounding_box_mirrored_to_bounding_box

bounding_box_mirrored_to_bounding_box

	
menpo.landmark.bounding_box_mirrored_to_bounding_box(bbox)[source]

	Apply a single ‘all’ label to a given bounding box that has been
mirrored around the vertical axis (flipped around the Y-axis). This bounding
box must be as specified by the bounding_box method (but mirrored).

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 bounding_box_to_bounding_box

bounding_box_to_bounding_box

	
menpo.landmark.bounding_box_to_bounding_box(bbox)[source]

	Apply a single ‘all’ label to a given bounding box. This bounding
box must be as specified by the bounding_box method.

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_49

face_ibug_68_to_face_ibug_49

	
menpo.landmark.face_ibug_68_to_face_ibug_49(pcloud)[source]

	Apply the IBUG 49-point semantic labels, but removing the annotations
corresponding to the jaw region and the 2 describing the inner mouth
corners.

The semantic labels applied are as follows:

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_49_trimesh

face_ibug_68_to_face_ibug_49_trimesh

	
menpo.landmark.face_ibug_68_to_face_ibug_49_trimesh(pcloud)[source]

	Apply the IBUG 49-point semantic labels, with trimesh connectivity.

The semantic labels applied are as follows:

	tri

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_51

face_ibug_68_to_face_ibug_51

	
menpo.landmark.face_ibug_68_to_face_ibug_51(pcloud)[source]

	Apply the IBUG 51-point semantic labels, but removing the annotations
corresponding to the jaw region.

The semantic labels applied are as follows:

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_51_trimesh

face_ibug_68_to_face_ibug_51_trimesh

	
menpo.landmark.face_ibug_68_to_face_ibug_51_trimesh(pcloud)[source]

	Apply the IBUG 51-point semantic labels, with trimesh connectivity..

The semantic labels applied are as follows:

	tri

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_65

face_ibug_68_to_face_ibug_65

	
menpo.landmark.face_ibug_68_to_face_ibug_65(pcloud)[source]

	Apply the IBUG 68 point semantic labels, but ignore the 3 points that are
coincident for a closed mouth (bottom of the inner mouth).

The semantic labels applied are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_66

face_ibug_68_to_face_ibug_66

	
menpo.landmark.face_ibug_68_to_face_ibug_66(pcloud)[source]

	Apply the IBUG 66-point semantic labels, but ignoring the 2 points
describing the inner mouth corners).

The semantic labels applied are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_66_trimesh

face_ibug_68_to_face_ibug_66_trimesh

	
menpo.landmark.face_ibug_68_to_face_ibug_66_trimesh(pcloud)[source]

	Apply the IBUG 66-point semantic labels, with trimesh connectivity.

The semantic labels applied are as follows:

	tri

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_68

face_ibug_68_to_face_ibug_68

	
menpo.landmark.face_ibug_68_to_face_ibug_68(pcloud)[source]

	Apply the IBUG 68-point semantic labels.

The semantic labels are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_to_face_ibug_68_trimesh

face_ibug_68_to_face_ibug_68_trimesh

	
menpo.landmark.face_ibug_68_to_face_ibug_68_trimesh(pcloud)[source]

	Apply the IBUG 68-point semantic labels, with trimesh connectivity.

The semantic labels applied are as follows:

	tri

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_68_mirrored_to_face_ibug_68

face_ibug_68_mirrored_to_face_ibug_68

	
menpo.landmark.face_ibug_68_mirrored_to_face_ibug_68(pcloud)[source]

	Apply the IBUG 68-point semantic labels, on a pointcloud that has been
mirrored around the vertical axis (flipped around the Y-axis). Thus, on
the flipped image the jaw etc would be the wrong way around. This
rectifies that and returns a new PointCloud whereby all the points
are oriented correctly.

The semantic labels applied are as follows:

	jaw

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_ibug_49_to_face_ibug_49

face_ibug_49_to_face_ibug_49

	
menpo.landmark.face_ibug_49_to_face_ibug_49(pcloud)[source]

	Apply the IBUG 49-point semantic labels.

The semantic labels applied are as follows:

	left_eyebrow

	right_eyebrow

	nose

	left_eye

	right_eye

	mouth

References

	1

	http://www.multipie.org/

	2

	http://ibug.doc.ic.ac.uk/resources/300-W/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_imm_58_to_face_imm_58

face_imm_58_to_face_imm_58

	
menpo.landmark.face_imm_58_to_face_imm_58(pcloud)[source]

	Apply the 58-point semantic labels from the IMM dataset.

The semantic labels applied are as follows:

	jaw

	left_eye

	right_eye

	left_eyebrow

	right_eyebrow

	mouth

	nose

References

	1

	http://www2.imm.dtu.dk/~aam/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_lfpw_29_to_face_lfpw_29

face_lfpw_29_to_face_lfpw_29

	
menpo.landmark.face_lfpw_29_to_face_lfpw_29(pcloud)[source]

	Apply the 29-point semantic labels from the original LFPW dataset.

The semantic labels applied are as follows:

	chin

	left_eye

	right_eye

	left_eyebrow

	right_eyebrow

	mouth

	nose

References

	1

	http://homes.cs.washington.edu/~neeraj/databases/lfpw/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 face_bu3dfe_83_to_face_bu3dfe_83

face_bu3dfe_83_to_face_bu3dfe_83

	
menpo.landmark.face_bu3dfe_83_to_face_bu3dfe_83(pcloud)[source]

	Apply the BU-3DFE (Binghamton University 3D Facial Expression)
Database 83-point facial semantic labels.

The semantic labels applied are as follows:

	right_eye

	left_eye

	right_eyebrow

	left_eyebrow

	right_nose

	left_nose

	nostrils

	outer_mouth

	inner_mouth

	jaw

References

	1

	http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 eye_ibug_close_17_to_eye_ibug_close_17

eye_ibug_close_17_to_eye_ibug_close_17

	
menpo.landmark.eye_ibug_close_17_to_eye_ibug_close_17(pcloud)[source]

	Apply the IBUG 17-point close eye semantic labels.

The semantic labels applied are as follows:

	upper_eyelid

	lower_eyelid

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 eye_ibug_close_17_to_eye_ibug_close_17_trimesh

eye_ibug_close_17_to_eye_ibug_close_17_trimesh

	
menpo.landmark.eye_ibug_close_17_to_eye_ibug_close_17_trimesh(pcloud)[source]

	Apply the IBUG 17-point close eye semantic labels, with trimesh
connectivity.

The semantic labels applied are as follows:

	tri

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 eye_ibug_open_38_to_eye_ibug_open_38

eye_ibug_open_38_to_eye_ibug_open_38

	
menpo.landmark.eye_ibug_open_38_to_eye_ibug_open_38(pcloud)[source]

	Apply the IBUG 38-point open eye semantic labels.

The semantic labels applied are as follows:

	upper_eyelid

	lower_eyelid

	iris

	pupil

	sclera

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 eye_ibug_open_38_to_eye_ibug_open_38_trimesh

eye_ibug_open_38_to_eye_ibug_open_38_trimesh

	
menpo.landmark.eye_ibug_open_38_to_eye_ibug_open_38_trimesh(pcloud)[source]

	Apply the IBUG 38-point open eye semantic labels, with trimesh connectivity.

The semantic labels applied are as follows:

	tri

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 hand_ibug_39_to_hand_ibug_39

hand_ibug_39_to_hand_ibug_39

	
menpo.landmark.hand_ibug_39_to_hand_ibug_39(pcloud)[source]

	Apply the IBUG 39-point semantic labels.

The semantic labels applied are as follows:

	thumb

	index

	middle

	ring

	pinky

	palm

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 pose_flic_11_to_pose_flic_11

pose_flic_11_to_pose_flic_11

	
menpo.landmark.pose_flic_11_to_pose_flic_11(pcloud)[source]

	Apply the flic 11-point semantic labels.

The semantic labels applied are as follows:

	left_arm

	right_arm

	hips

	face

References

	1

	http://vision.grasp.upenn.edu/cgi-bin/index.php?n=VideoLearning.FLIC

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 pose_human36M_32_to_pose_human36M_17

pose_human36M_32_to_pose_human36M_17

	
menpo.landmark.pose_human36M_32_to_pose_human36M_17(pcloud)[source]

	Apply the human3.6M 17-point semantic labels (based on the
original semantic labels of Human3.6 but removing the annotations
corresponding to duplicate points, soles and palms), originally 32-points.

The semantic labels applied are as follows:

	pelvis

	right_leg

	left_leg

	spine

	head

	left_arm

	right_arm

	torso

References

	1

	http://vision.imar.ro/human3.6m/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 pose_human36M_32_to_pose_human36M_32

pose_human36M_32_to_pose_human36M_32

	
menpo.landmark.pose_human36M_32_to_pose_human36M_32(pcloud)[source]

	Apply the human3.6M 32-point semantic labels.

The semantic labels applied are as follows:

	pelvis

	right_leg

	left_leg

	spine

	head

	left_arm

	left_hand

	right_arm

	right_hand

	torso

References

	1

	http://vision.imar.ro/human3.6m/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 pose_lsp_14_to_pose_lsp_14

pose_lsp_14_to_pose_lsp_14

	
menpo.landmark.pose_lsp_14_to_pose_lsp_14(pcloud)[source]

	Apply the lsp 14-point semantic labels.

The semantic labels applied are as follows:

	left_leg

	right_leg

	left_arm

	right_arm

	head

References

	1

	http://www.comp.leeds.ac.uk/mat4saj/lsp.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 pose_stickmen_12_to_pose_stickmen_12

pose_stickmen_12_to_pose_stickmen_12

	
menpo.landmark.pose_stickmen_12_to_pose_stickmen_12(pcloud)[source]

	Apply the ‘stickmen’ 12-point semantic labels.

The semantic labels applied are as follows:

	torso

	right_upper_arm

	left_upper_arm

	right_lower_arm

	left_lower_arm

	head

References

	1

	http://www.robots.ox.ac.uk/~vgg/data/stickmen/

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_0_8

car_streetscene_20_to_car_streetscene_view_0_8

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_0_8(pcloud)[source]

	Apply the 8-point semantic labels of “view 0” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	front

	bonnet

	windshield

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_1_14

car_streetscene_20_to_car_streetscene_view_1_14

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_1_14(pcloud)[source]

	Apply the 14-point semantic labels of “view 1” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	front

	bonnet

	windshield

	left_side

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_2_10

car_streetscene_20_to_car_streetscene_view_2_10

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_2_10(pcloud)[source]

	Apply the 10-point semantic labels of “view 2” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	left_side

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_3_14

car_streetscene_20_to_car_streetscene_view_3_14

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_3_14(pcloud)[source]

	Apply the 14-point semantic labels of “view 3” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	left_side

	rear windshield

	trunk

	rear

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_4_14

car_streetscene_20_to_car_streetscene_view_4_14

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_4_14(pcloud)[source]

	Apply the 14-point semantic labels of “view 4” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	front

	bonnet

	windshield

	right_side

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_5_10

car_streetscene_20_to_car_streetscene_view_5_10

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_5_10(pcloud)[source]

	Apply the 10-point semantic labels of “view 5” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	right_side

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_6_14

car_streetscene_20_to_car_streetscene_view_6_14

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_6_14(pcloud)[source]

	Apply the 14-point semantic labels of “view 6” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	right_side

	rear_windshield

	trunk

	rear

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 car_streetscene_20_to_car_streetscene_view_7_8

car_streetscene_20_to_car_streetscene_view_7_8

	
menpo.landmark.car_streetscene_20_to_car_streetscene_view_7_8(pcloud)[source]

	Apply the 8-point semantic labels of “view 7” from the MIT Street Scene
Car dataset (originally a 20-point markup).

The semantic labels applied are as follows:

	rear_windshield

	trunk

	rear

References

	1

	http://www.cs.cmu.edu/~vboddeti/alignment.html

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 tongue_ibug_19_to_tongue_ibug_19

tongue_ibug_19_to_tongue_ibug_19

	
menpo.landmark.tongue_ibug_19_to_tongue_ibug_19(pcloud)[source]

	Apply the IBUG 19-point tongue semantic labels.

The semantic labels applied are as follows:

	outline

	bisector

	Parameters

	
	x (LabelledPointUndirectedGraph or PointCloud or ndarray) – The input labelled point graph, pointcloud, subclass of those or
array to label. If a pointcloud is passed, then only the connectivity
information is propagated to the pointcloud (a subclass of
PointCloud may be returned).

	return_mapping (bool, optional) – Only applicable if a PointCloud or ndarray is passed. Returns
the mapping dictionary which maps labels to indices into the resulting
PointCloud (which is then used to for building a
LabelledPointUndirectedGraph. This parameter is only provided
for internal use so that other labellers can piggyback off one another.

	Returns

	
	x_labelled (LabelledPointUndirectedGraph or PointCloud) – If a LabelledPointUndirectedGraph was passed, a
LabelledPointUndirectedGraph is returned. This labelled
pointgraph will contain specific labels and these labels may refer to
sub-pointclouds with specific connectivity information.

If a PointCloud was passed, a PointCloud is returned. Only
the connectivity information is propagated to the pointcloud
(a subclass of PointCloud may be returned).

	mapping_dict (ordereddict {str -> int ndarray}, optional) – Only returned if return_mapping==True. Used for building
LabelledPointUndirectedGraph.

:raises : LabellingError: If the given labelled point graph/pointcloud contains less than the
 expected number of points.

 menpo.math

menpo.math

Decomposition

	eigenvalue_decomposition

	pca

	pcacov

	ipca

Linear Algebra

	dot_inplace_right

	dot_inplace_left

	as_matrix

	from_matrix

Convolution

	log_gabor

 eigenvalue_decomposition

eigenvalue_decomposition

	
menpo.math.eigenvalue_decomposition(C, is_inverse=False, eps=1e-10)[source]

	Eigenvalue decomposition of a given covariance (or scatter) matrix.

	Parameters

	
	C ((N, N) ndarray or scipy.sparse) – The Covariance/Scatter matrix. If it is a numpy.array, then
numpy.linalg.eigh is used. If it is an instance of scipy.sparse,
then scipy.sparse.linalg.eigsh is used. If it is a precision matrix
(inverse covariance), then set is_inverse=True.

	is_inverse (bool, optional) – It True, then it is assumed that C is a precision matrix (
inverse covariance). Thus, the eigenvalues will be inverted. If
False, then it is assumed that C is a covariance matrix.

	eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues smaller
than the specified eps value, together with their corresponding
eigenvectors, will be automatically discarded. The final
limit is computed as

limit = np.max(np.abs(eigenvalues)) * eps

	Returns

	
	pos_eigenvectors ((N, p) ndarray) – The matrix with the eigenvectors corresponding to positive eigenvalues.

	pos_eigenvalues ((p,) ndarray) – The array of positive eigenvalues.

 pca

pca

	
menpo.math.pca(X, centre=True, inplace=False, eps=1e-10)[source]

	Apply Principal Component Analysis (PCA) on the data matrix X. In the case
where the data matrix is very large, it is advisable to set
inplace = True. However, note this destructively edits the data matrix
by subtracting the mean inplace.

	Parameters

	
	X ((n_samples, n_dims) ndarray) – Data matrix.

	centre (bool, optional) – Whether to centre the data matrix. If False, zero will be subtracted.

	inplace (bool, optional) – Whether to do the mean subtracting inplace or not. This is crucial if
the data matrix is greater than half the available memory size.

	eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues smaller
than the specified eps value, together with their corresponding
eigenvectors, will be automatically discarded.

	Returns

	
	U (eigenvectors) ((``(n_components, n_dims))`` ndarray) – Eigenvectors of the data matrix.

	l (eigenvalues) ((n_components,) ndarray) – Positive eigenvalues of the data matrix.

	m (mean vector) ((n_dimensions,) ndarray) – Mean that was subtracted from the data matrix.

 pcacov

pcacov

	
menpo.math.pcacov(C, is_inverse=False, eps=1e-05)[source]

	Apply Principal Component Analysis (PCA) given a covariance/scatter matrix
C. In the case where the data matrix is very large, it is advisable to set
inplace = True. However, note this destructively edits the data matrix
by subtracting the mean inplace.

	Parameters

	
	C ((N, N) ndarray or scipy.sparse) – The Covariance/Scatter matrix. If it is a precision matrix (inverse
covariance), then set is_inverse=True.

	is_inverse (bool, optional) – It True, then it is assumed that C is a precision matrix (
inverse covariance). Thus, the eigenvalues will be inverted. If
False, then it is assumed that C is a covariance matrix.

	eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues smaller
than the specified eps value, together with their corresponding
eigenvectors, will be automatically discarded.

	Returns

	
	U (eigenvectors) ((n_components, n_dims) ndarray) – Eigenvectors of the data matrix.

	l (eigenvalues) ((n_components,) ndarray) – Positive eigenvalues of the data matrix.

 ipca

ipca

	
menpo.math.ipca(B, U_a, l_a, n_a, m_a=None, f=1.0, eps=1e-10)[source]

	Perform Incremental PCA on the eigenvectors U_a, eigenvalues l_a and
mean vector m_a (if present) given a new data matrix B.

	Parameters

	
	B ((n_samples, n_dims) ndarray) – New data matrix.

	U_a ((n_components, n_dims) ndarray) – Eigenvectors to be updated.

	l_a ((n_components) ndarray) – Eigenvalues to be updated.

	n_a (int) – Total number of samples used to produce U_a, s_a and m_a.

	m_a ((n_dims,) ndarray, optional) – Mean to be updated. If None or (n_dims,) ndarray filled
with 0s the data matrix will not be centred.

	f ([0, 1] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

	eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues smaller
than the specified eps value, together with their corresponding
eigenvectors, will be automatically discarded.

	Returns

	
	U (eigenvectors) ((n_components, n_dims) ndarray) – Updated eigenvectors.

	s (eigenvalues) ((n_components,) ndarray) – Updated positive eigenvalues.

	m (mean vector) ((n_dims,) ndarray) – Updated mean.

References

	1

	David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang.
“Incremental Learning for Robust Visual Tracking”. IJCV, 2007.

 dot_inplace_right

dot_inplace_right

	
menpo.math.dot_inplace_right(a, b, block_size=1000)[source]

	Inplace dot product for memory efficiency. It computes a * b = c where
b will be replaced inplace with c.

	Parameters

	
	a ((n_small, k) ndarray, n_small <= k) – The first array to dot - assumed to be small. n_small must be
smaller than k so the result can be stored within the memory space
of b.

	b ((k, n_big) ndarray) – Second array to dot - assumed to be large. Will be damaged by this
function call as it is used to store the output inplace.

	block_size (int, optional) – The size of the block of b that a will be dotted against
in each iteration. larger block sizes increase the time performance of
the dot product at the cost of a higher memory overhead for the
operation.

	Returns

	c ((n_small, n_big) ndarray) – The output of the operation. Exactly the same as a memory view onto
b (b[:n_small]) as b is modified inplace to store the
result.

 dot_inplace_left

dot_inplace_left

	
menpo.math.dot_inplace_left(a, b, block_size=1000)[source]

	Inplace dot product for memory efficiency. It computes a * b = c, where
a will be replaced inplace with c.

	Parameters

	
	a ((n_big, k) ndarray) – First array to dot - assumed to be large. Will be damaged by this
function call as it is used to store the output inplace.

	b ((k, n_small) ndarray, n_small <= k) – The second array to dot - assumed to be small. n_small must be
smaller than k so the result can be stored within the memory space
of a.

	block_size (int, optional) – The size of the block of a that will be dotted against b in
each iteration. larger block sizes increase the time performance of the
dot product at the cost of a higher memory overhead for the operation.

	Returns

	c ((n_big, n_small) ndarray) – The output of the operation. Exactly the same as a memory view onto
a (a[:, :n_small]) as a is modified inplace to store the
result.

 as_matrix

as_matrix

	
menpo.math.as_matrix(vectorizables, length=None, return_template=False, verbose=False)[source]

	Create a matrix from a list/generator of Vectorizable objects.
All the objects in the list must be the same size when vectorized.

Consider using a generator if the matrix you are creating is large and
passing the length of the generator explicitly.

	Parameters

	
	vectorizables (list or generator if Vectorizable objects) – A list or generator of objects that supports the vectorizable interface

	length (int, optional) – Length of the vectorizable list. Useful if you are passing a generator
with a known length.

	verbose (bool, optional) – If True, will print the progress of building the matrix.

	return_template (bool, optional) – If True, will return the first element of the list/generator, which
was used as the template. Useful if you need to map back from the
matrix to a list of vectorizable objects.

	Returns

	
	M ((length, n_features) ndarray) – Every row is an element of the list.

	template (Vectorizable, optional) – If return_template == True, will return the template used to
build the matrix M.

	Raises

	ValueError – vectorizables terminates in fewer than length iterations

 from_matrix

from_matrix

	
menpo.math.from_matrix(matrix, template)[source]

	Create a generator from a matrix given a template Vectorizable
objects as a template. The from_vector method will be used to
reconstruct each object.

If you want a list, warp the returned value in list().

	Parameters

	
	matrix ((n_items, n_features) ndarray) – A matrix whereby every row represents the data of a vectorizable
object.

	template (Vectorizable) – The template object to use to reconstruct each row of the matrix with.

	Returns

	vectorizables (generator of Vectorizable) – Every row of the matrix becomes an element of the list.

 log_gabor

log_gabor

	
menpo.math.log_gabor(image, **kwargs)[source]

	Creates a log-gabor filter bank, including smoothing the images via a
low-pass filter at the edges.

To create a 2D filter bank, simply specify the number of phi
orientations (orientations in the xy-plane).

To create a 3D filter bank, you must specify both the number of
phi (azimuth) and theta (elevation) orientations.

This algorithm is directly derived from work by Peter Kovesi.

	Parameters

	
	image ((M, N, ...) ndarray) – Image to be convolved

	num_scales (int, optional) – Number of wavelet scales.

	Default 2D

	4

	Default 3D

	4

	num_phi_orientations (int, optional) – Number of filter orientations in the xy-plane

	Default 2D

	6

	Default 3D

	6

	num_theta_orientations (int, optional) – Only required for 3D. Number of filter orientations in the z-plane

	Default 2D

	N/A

	Default 3D

	4

	min_wavelength (int, optional) – Wavelength of smallest scale filter.

	Default 2D

	3

	Default 3D

	3

	scaling_constant (int, optional) – Scaling factor between successive filters.

	Default 2D

	2

	Default 3D

	2

	center_sigma (float, optional) – Ratio of the standard deviation of the Gaussian describing the Log
Gabor filter’s transfer function in the frequency domain to the filter
centre frequency.

	Default 2D

	0.65

	Default 3D

	0.65

	d_phi_sigma (float, optional) – Angular bandwidth in xy-plane

	Default 2D

	1.3

	Default 3D

	1.5

	d_theta_sigma (float, optional) – Only required for 3D. Angular bandwidth in z-plane

	Default 2D

	N/A

	Default 3D

	1.5

	Returns

	
	complex_conv ((num_scales, num_orientations, image.shape) ndarray) – Complex valued convolution results. The real part is the
result of convolving with the even symmetric filter, the
imaginary part is the result from convolution with the
odd symmetric filter.

	bandpass ((num_scales, image.shape) ndarray) – Bandpass images corresponding to each scale s

	S ((image.shape,) ndarray) – Convolved image

Examples

Return the magnitude of the convolution over the image at
scale s and orientation o

np.abs(complex_conv[s, o, :, :])

Return the phase angles

np.angle(complex_conv[s, o, :, :])

References

	1

	D. J. Field, “Relations Between the Statistics of Natural Images
and the Response Properties of Cortical Cells”,
Journal of The Optical Society of America A, Vol 4, No. 12,
December 1987. pp 2379-2394

 menpo.model

menpo.model

Abstract Classes

	LinearModel

	LinearVectorModel

	MeanLinearModel

	MeanLinearVectorModel

Principal Component Analysis

	PCAModel

	PCAVectorModel

Gaussian Markov Random Field

	GMRFModel

	GMRFVectorModel

 LinearModel

LinearModel

	
menpo.model.LinearModel

	alias of LinearVectorModel

 LinearVectorModel

LinearVectorModel

	
class menpo.model.LinearVectorModel(components)[source]

	Bases: Copyable

A Linear Model contains a matrix of vector components, each component
vector being made up of features.

	Parameters

	components ((n_components, n_features) ndarray) – The components array.

	
component(index)[source]

	A particular component of the model.

	Parameters

	index (int) – The component that is to be returned.

	Returns

	component_vector ((n_features,) ndarray) – The component vector.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
instance(weights)[source]

	Creates a new vector instance of the model by weighting together the
components.

	Parameters

	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns

	vector ((n_features,) ndarray) – The instance vector for the weighting provided.

	
instance_vectors(weights)[source]

	Creates new vectorized instances of the model using all the components
of the linear model.

	Parameters

	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for all components of the linear model. All
components will be used to produce the instance.

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced.

	Raises

	ValueError – If n_weights > n_available_components

	Returns

	vectors ((n_vectors, n_features) ndarray) – The instance vectors for the weighting provided.

	
orthonormalize_against_inplace(linear_model)[source]

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Both models keep its number of components unchanged or else a value
error is raised.

	Parameters

	linear_model (LinearVectorModel) – A second linear model to orthonormalize this against.

	Raises

	ValueError – The number of features must be greater or equal than the sum of the
 number of components in both linear models ({} < {})

	
orthonormalize_inplace()[source]

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
project(vector)[source]

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters

	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns

	weights ((n_components,) ndarray) – A vector of optimal linear weights.

	
project_out(vector)[source]

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters

	vector ((n_features,) ndarray) – A novel vector.

	Returns

	projected_out ((n_features,) ndarray) – A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)[source]

	Returns a version of vectors where all the basis of the model have
been projected out.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns

	projected_out ((n_vectors, n_features) ndarray) – A copy of vectors with all basis of the model projected out.

	
project_vectors(vectors)[source]

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters

	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns

	weights ((n_samples, n_components) ndarray) – The matrix of optimal linear weights.

	
reconstruct(vector)[source]

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters

	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns

	reconstructed ((n_features,) ndarray) – The reconstructed vector.

	
reconstruct_vectors(vectors)[source]

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns

	reconstructed ((n_vectors, n_features) ndarray) – The reconstructed vectors.

	
property components

	The components matrix of the linear model.

	Type

	(n_available_components, n_features) ndarray

	
property n_components

	The number of bases of the model.

	Type

	int

	
property n_features

	The number of elements in each linear component.

	Type

	int

 MeanLinearModel

MeanLinearModel

	
menpo.model.MeanLinearModel

	alias of MeanLinearVectorModel

 MeanLinearVectorModel

MeanLinearVectorModel

	
class menpo.model.MeanLinearVectorModel(components, mean)[source]

	Bases: LinearVectorModel

A Linear Model containing a matrix of vector components, each component
vector being made up of features. The model additionally has a mean
component which is handled accordingly when either:

	A component of the model is selected

	A projection operation is performed

	Parameters

	
	components ((n_components, n_features) ndarray) – The components array.

	mean ((n_features,) ndarray) – The mean vector.

	
component(index, with_mean=True, scale=1.0)[source]

	A particular component of the model, in vectorized form.

	Parameters

	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be directly applied to the component.
Only valid in the case where with_mean == True.

	Returns

	component_vector ((n_features,) ndarray) – The component vector.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
instance(weights)

	Creates a new vector instance of the model by weighting together the
components.

	Parameters

	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	Returns

	vector ((n_features,) ndarray) – The instance vector for the weighting provided.

	
instance_vectors(weights)

	Creates new vectorized instances of the model using all the components
of the linear model.

	Parameters

	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for all components of the linear model. All
components will be used to produce the instance.

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced.

	Raises

	ValueError – If n_weights > n_available_components

	Returns

	vectors ((n_vectors, n_features) ndarray) – The instance vectors for the weighting provided.

	
mean()[source]

	Return the mean of the model.

	Type

	ndarray

	
orthonormalize_against_inplace(linear_model)

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Both models keep its number of components unchanged or else a value
error is raised.

	Parameters

	linear_model (LinearVectorModel) – A second linear model to orthonormalize this against.

	Raises

	ValueError – The number of features must be greater or equal than the sum of the
 number of components in both linear models ({} < {})

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
project(vector)

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters

	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns

	weights ((n_components,) ndarray) – A vector of optimal linear weights.

	
project_out(vector)

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters

	vector ((n_features,) ndarray) – A novel vector.

	Returns

	projected_out ((n_features,) ndarray) – A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)[source]

	Returns a version of vectors where all the bases of the model have
been projected out.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns

	projected_out ((n_vectors, n_features) ndarray) – A copy of vectors with all bases of the model projected out.

	
project_vectors(vectors)[source]

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters

	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns

	projected ((n_samples, n_components) ndarray) – The matrix of optimal linear weights.

	
reconstruct(vector)

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters

	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns

	reconstructed ((n_features,) ndarray) – The reconstructed vector.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns

	reconstructed ((n_vectors, n_features) ndarray) – The reconstructed vectors.

	
property components

	The components matrix of the linear model.

	Type

	(n_available_components, n_features) ndarray

	
property n_components

	The number of bases of the model.

	Type

	int

	
property n_features

	The number of elements in each linear component.

	Type

	int

 PCAModel

PCAModel

	
class menpo.model.PCAModel(samples, centre=True, n_samples=None, max_n_components=None, inplace=True, verbose=False)[source]

	Bases: VectorizableBackedModel, PCAVectorModel

A MeanLinearModel where components are Principal Components
and the components are vectorized instances.

Principal Component Analysis (PCA) by eigenvalue decomposition of the
data’s scatter matrix. For details of the implementation of PCA, see
pca.

	Parameters

	
	samples (list or iterable of Vectorizable) – List or iterable of samples to build the model from.

	centre (bool, optional) – When True (default) PCA is performed after mean centering the data.
If False the data is assumed to be centred, and the mean will be
0.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a list (so we
know how large the data matrix needs to be).

	max_n_components (int, optional) – The maximum number of components to keep in the model. Any components
above and beyond this one are discarded.

	inplace (bool, optional) – If True the data matrix is modified in place. Otherwise, the data
matrix is copied.

	verbose (bool, optional) – Whether to print building information or not.

	
component(index, with_mean=True, scale=1.0)[source]

	Return a particular component of the linear model.

	Parameters

	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be applied to the component. Only
valid in the case where with_mean == True. See
component_vector() for how this scale factor is interpreted.

	Returns

	component (type(self.template_instance)) – The requested component instance.

	
component_vector(index, with_mean=True, scale=1.0)[source]

	A particular component of the model.

	Parameters

	index (int) – The component that is to be returned.

	Returns

	component (type(self.template_instance)) – The component instance.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
eigenvalues_cumulative_ratio()

	Returns the cumulative ratio between the variance captured by the
active components and the total amount of variance present on the
original samples.

	Returns

	eigenvalues_cumulative_ratio ((n_active_components,) ndarray) – Array of cumulative eigenvalues.

	
eigenvalues_ratio()

	Returns the ratio between the variance captured by each active
component and the total amount of variance present on the original
samples.

	Returns

	eigenvalues_ratio ((n_active_components,) ndarray) – The active eigenvalues array scaled by the original variance.

	
increment(samples, n_samples=None, forgetting_factor=1.0, verbose=False)[source]

	Update the eigenvectors, eigenvalues and mean vector of this model
by performing incremental PCA on the given samples.

	Parameters

	
	samples (list of Vectorizable) – List of new samples to update the model from.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a
list (so we know how large the data matrix needs to be).

	forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

References

	1

	David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang.
“Incremental Learning for Robust Visual Tracking”. IJCV, 2007.

	
classmethod init_from_components(components, eigenvalues, mean, n_samples, centred, max_n_components=None)[source]

	Build the Principal Component Analysis (PCA) using the provided
components (eigenvectors) and eigenvalues.

	Parameters

	
	components ((n_components, n_features) ndarray) – The eigenvectors to be used.

	eigenvalues ((n_components,) ndarray) – The corresponding eigenvalues.

	mean (Vectorizable) – The mean instance. It must be a Vectorizable and not an
ndarray.

	n_samples (int) – The number of samples used to generate the eigenvectors.

	centred (bool, optional) – When True we assume that the data were centered before
computing the eigenvectors.

	max_n_components (int, optional) – The maximum number of components to keep in the model. Any
components above and beyond this one are discarded.

	
classmethod init_from_covariance_matrix(C, mean, n_samples, centred=True, is_inverse=False, max_n_components=None)[source]

	Build the Principal Component Analysis (PCA) by eigenvalue
decomposition of the provided covariance/scatter matrix. For details
of the implementation of PCA, see pcacov.

	Parameters

	
	C ((n_features, n_features) ndarray or scipy.sparse) – The Covariance/Scatter matrix. If it is a precision matrix (inverse
covariance), then set is_inverse=True.

	mean (Vectorizable) – The mean instance. It must be a Vectorizable and not an
ndarray.

	n_samples (int) – The number of samples used to generate the covariance matrix.

	centred (bool, optional) – When True we assume that the data were centered before
computing the covariance matrix.

	is_inverse (bool, optional) – It True, then it is assumed that C is a precision matrix (
inverse covariance). Thus, the eigenvalues will be inverted. If
False, then it is assumed that C is a covariance matrix.

	max_n_components (int, optional) – The maximum number of components to keep in the model. Any
components above and beyond this one are discarded.

	
instance(weights, normalized_weights=False)[source]

	Creates a new instance of the model using the first len(weights)
components.

	Parameters

	
	weights ((n_weights,) ndarray or list) – weights[i] is the linear contribution of the i’th component
to the instance vector.

	normalized_weights (bool, optional) – If True, the weights are assumed to be normalized w.r.t the
eigenvalues. This can be easier to create unique instances by
making the weights more interpretable.

	Raises

	ValueError – If n_weights > n_components

	Returns

	instance (type(self.template_instance)) – An instance of the model.

	
instance_vector(weights, normalized_weights=False)[source]

	Creates a new instance of the model using the first len(weights)
components.

	Parameters

	weights ((n_weights,) ndarray or list) – weights[i] is the linear contribution of the i’th component
to the instance vector.

	Raises

	ValueError – If n_weights > n_components

	Returns

	instance (type(self.template_instance)) – An instance of the model.

	
instance_vectors(weights, normalized_weights=False)

	Creates new vectorized instances of the model using the first
components in a particular weighting.

	Parameters

	
	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for the first n_weights components that
should be used per instance that is to be produced

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced. Note
that if n_weights < n_components, only the first n_weight
components are used in the reconstruction (i.e. unspecified
weights are implicitly 0).

	normalized_weights (bool, optional) – If True, the weights are assumed to be normalized w.r.t the
eigenvalues. This can be easier to create unique instances by
making the weights more interpretable.

	Returns

	vectors ((n_vectors, n_features) ndarray) – The instance vectors for the weighting provided.

	Raises

	ValueError – If n_weights > n_components

	
inverse_noise_variance()

	Returns the inverse of the noise variance.

	Returns

	inverse_noise_variance (float) – Inverse of the noise variance.

	Raises

	ValueError – If noise_variance() == 0

	
mean()[source]

	Return the mean of the model.

	Type

	Vectorizable

	
noise_variance()

	Returns the average variance captured by the inactive components,
i.e. the sample noise assumed in a Probabilistic PCA formulation.

If all components are active, then noise_variance == 0.0.

	Returns

	noise_variance (float) – The mean variance of the inactive components.

	
noise_variance_ratio()

	Returns the ratio between the noise variance and the total amount of
variance present on the original samples.

	Returns

	noise_variance_ratio (float) – The ratio between the noise variance and the variance present
in the original samples.

	
original_variance()

	Returns the total amount of variance captured by the original model,
i.e. the amount of variance present on the original samples.

	Returns

	optional_variance (float) – The variance captured by the model.

	
orthonormalize_against_inplace(linear_model)

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Note that the model passed in is guaranteed to not have it’s number
of available components changed. This model, however, may loose some
dimensionality due to reaching a degenerate state.

The removed components will always be trimmed from the end of
components (i.e. the components which capture the least variance).
If trimming is performed, n_components and n_available_components
would be altered - see trim_components() for details.

	Parameters

	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
plot_eigenvalues(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the eigenvalues.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	viewer (MatplotlibRenderer) – The viewer object.

	
plot_eigenvalues_cumulative_ratio(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cumulative variance ratio captured by the eigenvalues.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	viewer (MatplotlibRenderer) – The viewer object.

	
plot_eigenvalues_ratio(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the variance ratio captured by the eigenvalues.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	viewer (MatplotlibRenderer) – The viewer object.

	
project(instance)

	Projects the instance onto the model, retrieving the optimal
linear weightings.

	Parameters

	instance (Vectorizable) – A novel instance.

	Returns

	projected ((n_components,) ndarray) – A vector of optimal linear weightings.

	
project_out(instance)

	Returns a version of instance where all the basis of the model
have been projected out.

	Parameters

	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns

	projected_out (self.instance_class) – A copy of instance, with all basis of the model projected out.

	
project_out_vector(instance_vector)[source]

	Returns a version of instance where all the basis of the model
have been projected out.

	Parameters

	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns

	projected_out (self.instance_class) – A copy of instance, with all basis of the model projected out.

	
project_out_vectors(vectors)

	Returns a version of vectors where all the bases of the model have
been projected out.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns

	projected_out ((n_vectors, n_features) ndarray) – A copy of vectors with all bases of the model projected out.

	
project_vector(instance_vector)[source]

	Projects the instance onto the model, retrieving the optimal
linear weightings.

	Parameters

	instance (Vectorizable) – A novel instance.

	Returns

	projected ((n_components,) ndarray) – A vector of optimal linear weightings.

	
project_vectors(vectors)

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters

	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns

	projected ((n_samples, n_components) ndarray) – The matrix of optimal linear weights.

	
project_whitened(instance)[source]

	Projects the instance onto the whitened components, retrieving the
whitened linear weightings.

	Parameters

	instance (Vectorizable) – A novel instance.

	Returns

	projected ((n_components,)) – A vector of whitened linear weightings

	
project_whitened_vector(vector_instance)[source]

	Projects the vector_instance onto the whitened components,
retrieving the whitened linear weightings.

	Parameters

	vector_instance ((n_features,) ndarray) – A novel vector.

	Returns

	projected ((n_features,) ndarray) – A vector of whitened linear weightings

	
reconstruct(instance)

	Projects a instance onto the linear space and rebuilds from the
weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.

	Parameters

	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns

	reconstructed (self.instance_class) – The reconstructed object.

	
reconstruct_vector(instance_vector)[source]

	Projects a instance onto the linear space and rebuilds from the
weights found.

Syntactic sugar for:

instance(project(instance))

but faster, as it avoids the conversion that takes place each time.

	Parameters

	instance (Vectorizable) – A novel instance of Vectorizable.

	Returns

	reconstructed (self.instance_class) – The reconstructed object.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns

	reconstructed ((n_vectors, n_features) ndarray) – The reconstructed vectors.

	
trim_components(n_components=None)

	Permanently trims the components down to a certain amount. The number of
active components will be automatically reset to this particular value.

This will reduce self.n_components down to n_components
(if None, self.n_active_components will be used), freeing up
memory in the process.

Once the model is trimmed, the trimmed components cannot be recovered.

	Parameters

	n_components (int >= 1 or float > 0.0 or None, optional) – The number of components that are kept or else the amount (ratio)
of variance that is kept. If None, self.n_active_components is
used.

Notes

In case n_components is greater than the total number of components or
greater than the amount of variance currently kept, this method does
not perform any action.

	
variance()

	Returns the total amount of variance retained by the active
components.

	Returns

	variance (float) – Total variance captured by the active components.

	
variance_ratio()

	Returns the ratio between the amount of variance retained by the
active components and the total amount of variance present on the
original samples.

	Returns

	variance_ratio (float) – Ratio of active components variance and total variance present
in original samples.

	
whitened_components()

	Returns the active components of the model, whitened.

	Returns

	whitened_components ((n_active_components, n_features) ndarray) – The whitened components.

	
property components

	Returns the active components of the model.

	Type

	(n_active_components, n_features) ndarray

	
property eigenvalues

	Returns the eigenvalues associated with the active components of the
model, i.e. the amount of variance captured by each active component,
sorted form largest to smallest.

	Type

	(n_active_components,) ndarray

	
property mean_vector

	Return the mean of the model as a 1D vector.

	Type

	ndarray

	
property n_active_components

	The number of components currently in use on this model.

	Type

	int

	
property n_components

	The number of bases of the model.

	Type

	int

	
property n_features

	The number of elements in each linear component.

	Type

	int

 PCAVectorModel

PCAVectorModel

	
class menpo.model.PCAVectorModel(samples, centre=True, n_samples=None, max_n_components=None, inplace=True)[source]

	Bases: MeanLinearVectorModel

A MeanLinearModel where components are Principal Components.

Principal Component Analysis (PCA) by eigenvalue decomposition of the
data’s scatter matrix. For details of the implementation of PCA, see
pca.

	Parameters

	
	samples (ndarray or list or iterable of ndarray) – List or iterable of numpy arrays to build the model from, or an
existing data matrix.

	centre (bool, optional) – When True (default) PCA is performed after mean centering the data.
If False the data is assumed to be centred, and the mean will be
0.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a list (so we
know how large the data matrix needs to be).

	max_n_components (int, optional) – The maximum number of components to keep in the model. Any components
above and beyond this one are discarded.

	inplace (bool, optional) – If True the data matrix is modified in place. Otherwise, the data
matrix is copied.

	
component(index, with_mean=True, scale=1.0)[source]

	A particular component of the model, in vectorized form.

	Parameters

	
	index (int) – The component that is to be returned

	with_mean (bool, optional) – If True, the component will be blended with the mean vector
before being returned. If not, the component is returned on it’s
own.

	scale (float, optional) – A scale factor that should be applied to the component. Only
valid in the case where with_mean is True. The scale is applied
in units of standard deviations (so a scale of 1.0
with_mean visualizes the mean plus 1 std. dev of the component
in question).

	Returns

	component_vector ((n_features,) ndarray) – The component vector of the given index.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
eigenvalues_cumulative_ratio()[source]

	Returns the cumulative ratio between the variance captured by the
active components and the total amount of variance present on the
original samples.

	Returns

	eigenvalues_cumulative_ratio ((n_active_components,) ndarray) – Array of cumulative eigenvalues.

	
eigenvalues_ratio()[source]

	Returns the ratio between the variance captured by each active
component and the total amount of variance present on the original
samples.

	Returns

	eigenvalues_ratio ((n_active_components,) ndarray) – The active eigenvalues array scaled by the original variance.

	
increment(data, n_samples=None, forgetting_factor=1.0, verbose=False)[source]

	Update the eigenvectors, eigenvalues and mean vector of this model
by performing incremental PCA on the given samples.

	Parameters

	
	samples (list of Vectorizable) – List of new samples to update the model from.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a
list (so we know how large the data matrix needs to be).

	forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

References

	1

	David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang.
“Incremental Learning for Robust Visual Tracking”. IJCV, 2007.

	
classmethod init_from_components(components, eigenvalues, mean, n_samples, centred, max_n_components=None)[source]

	Build the Principal Component Analysis (PCA) using the provided
components (eigenvectors) and eigenvalues.

	Parameters

	
	components ((n_components, n_features) ndarray) – The eigenvectors to be used.

	eigenvalues ((n_components,) ndarray) – The corresponding eigenvalues.

	mean ((n_features,) ndarray) – The mean vector.

	n_samples (int) – The number of samples used to generate the eigenvectors.

	centred (bool) – When True we assume that the data were centered before
computing the eigenvectors.

	max_n_components (int, optional) – The maximum number of components to keep in the model. Any
components above and beyond this one are discarded.

	
classmethod init_from_covariance_matrix(C, mean, n_samples, centred=True, is_inverse=False, max_n_components=None)[source]

	Build the Principal Component Analysis (PCA) by eigenvalue
decomposition of the provided covariance/scatter matrix. For details
of the implementation of PCA, see pcacov.

	Parameters

	
	C ((n_features, n_features) ndarray or scipy.sparse) – The Covariance/Scatter matrix. If it is a precision matrix (inverse
covariance), then set is_inverse=True.

	mean ((n_features,) ndarray) – The mean vector.

	n_samples (int) – The number of samples used to generate the covariance matrix.

	centred (bool, optional) – When True we assume that the data were centered before
computing the covariance matrix.

	is_inverse (bool, optional) – It True, then it is assumed that C is a precision matrix (
inverse covariance). Thus, the eigenvalues will be inverted. If
False, then it is assumed that C is a covariance matrix.

	max_n_components (int, optional) – The maximum number of components to keep in the model. Any
components above and beyond this one are discarded.

	
instance(weights, normalized_weights=False)[source]

	Creates a new vector instance of the model by weighting together the
components.

	Parameters

	
	weights ((n_weights,) ndarray or list) – The weightings for the first n_weights components that should be
used.

weights[j] is the linear contribution of the j’th principal
component to the instance vector.

	normalized_weights (bool, optional) – If True, the weights are assumed to be normalized w.r.t the
eigenvalues. This can be easier to create unique instances by
making the weights more interpretable.

	Returns

	vector ((n_features,) ndarray) – The instance vector for the weighting provided.

	
instance_vectors(weights, normalized_weights=False)[source]

	Creates new vectorized instances of the model using the first
components in a particular weighting.

	Parameters

	
	weights ((n_vectors, n_weights) ndarray or list of lists) – The weightings for the first n_weights components that
should be used per instance that is to be produced

weights[i, j] is the linear contribution of the j’th
principal component to the i’th instance vector produced. Note
that if n_weights < n_components, only the first n_weight
components are used in the reconstruction (i.e. unspecified
weights are implicitly 0).

	normalized_weights (bool, optional) – If True, the weights are assumed to be normalized w.r.t the
eigenvalues. This can be easier to create unique instances by
making the weights more interpretable.

	Returns

	vectors ((n_vectors, n_features) ndarray) – The instance vectors for the weighting provided.

	Raises

	ValueError – If n_weights > n_components

	
inverse_noise_variance()[source]

	Returns the inverse of the noise variance.

	Returns

	inverse_noise_variance (float) – Inverse of the noise variance.

	Raises

	ValueError – If noise_variance() == 0

	
mean()

	Return the mean of the model.

	Type

	ndarray

	
noise_variance()[source]

	Returns the average variance captured by the inactive components,
i.e. the sample noise assumed in a Probabilistic PCA formulation.

If all components are active, then noise_variance == 0.0.

	Returns

	noise_variance (float) – The mean variance of the inactive components.

	
noise_variance_ratio()[source]

	Returns the ratio between the noise variance and the total amount of
variance present on the original samples.

	Returns

	noise_variance_ratio (float) – The ratio between the noise variance and the variance present
in the original samples.

	
original_variance()[source]

	Returns the total amount of variance captured by the original model,
i.e. the amount of variance present on the original samples.

	Returns

	optional_variance (float) – The variance captured by the model.

	
orthonormalize_against_inplace(linear_model)[source]

	Enforces that the union of this model’s components and another are
both mutually orthonormal.

Note that the model passed in is guaranteed to not have it’s number
of available components changed. This model, however, may loose some
dimensionality due to reaching a degenerate state.

The removed components will always be trimmed from the end of
components (i.e. the components which capture the least variance).
If trimming is performed, n_components and n_available_components
would be altered - see trim_components() for details.

	Parameters

	linear_model (LinearModel) – A second linear model to orthonormalize this against.

	
orthonormalize_inplace()

	Enforces that this model’s components are orthonormalized,
s.t. component_vector(i).dot(component_vector(j) = dirac_delta.

	
plot_eigenvalues(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)[source]

	Plot of the eigenvalues.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	viewer (MatplotlibRenderer) – The viewer object.

	
plot_eigenvalues_cumulative_ratio(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)[source]

	Plot of the cumulative variance ratio captured by the eigenvalues.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	viewer (MatplotlibRenderer) – The viewer object.

	
plot_eigenvalues_ratio(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)[source]

	Plot of the variance ratio captured by the eigenvalues.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers.
Example options

{``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of length ``3``

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({-, --, -., :}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	viewer (MatplotlibRenderer) – The viewer object.

	
project(vector)

	Projects the vector onto the model, retrieving the optimal
linear reconstruction weights.

	Parameters

	vector ((n_features,) ndarray) – A vectorized novel instance.

	Returns

	weights ((n_components,) ndarray) – A vector of optimal linear weights.

	
project_out(vector)

	Returns a version of vector where all the basis of the model have
been projected out.

	Parameters

	vector ((n_features,) ndarray) – A novel vector.

	Returns

	projected_out ((n_features,) ndarray) – A copy of vector with all basis of the model projected out.

	
project_out_vectors(vectors)

	Returns a version of vectors where all the bases of the model have
been projected out.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A matrix of novel vectors.

	Returns

	projected_out ((n_vectors, n_features) ndarray) – A copy of vectors with all bases of the model projected out.

	
project_vectors(vectors)

	Projects each of the vectors onto the model, retrieving
the optimal linear reconstruction weights for each instance.

	Parameters

	vectors ((n_samples, n_features) ndarray) – Array of vectorized novel instances.

	Returns

	projected ((n_samples, n_components) ndarray) – The matrix of optimal linear weights.

	
project_whitened(vector_instance)[source]

	Projects the vector_instance onto the whitened components,
retrieving the whitened linear weightings.

	Parameters

	vector_instance ((n_features,) ndarray) – A novel vector.

	Returns

	projected ((n_features,) ndarray) – A vector of whitened linear weightings

	
reconstruct(vector)

	Project a vector onto the linear space and rebuild from the weights
found.

	Parameters

	vector ((n_features,) ndarray) – A vectorized novel instance to project.

	Returns

	reconstructed ((n_features,) ndarray) – The reconstructed vector.

	
reconstruct_vectors(vectors)

	Projects the vectors onto the linear space and rebuilds vectors from
the weights found.

	Parameters

	vectors ((n_vectors, n_features) ndarray) – A set of vectors to project.

	Returns

	reconstructed ((n_vectors, n_features) ndarray) – The reconstructed vectors.

	
trim_components(n_components=None)[source]

	Permanently trims the components down to a certain amount. The number of
active components will be automatically reset to this particular value.

This will reduce self.n_components down to n_components
(if None, self.n_active_components will be used), freeing up
memory in the process.

Once the model is trimmed, the trimmed components cannot be recovered.

	Parameters

	n_components (int >= 1 or float > 0.0 or None, optional) – The number of components that are kept or else the amount (ratio)
of variance that is kept. If None, self.n_active_components is
used.

Notes

In case n_components is greater than the total number of components or
greater than the amount of variance currently kept, this method does
not perform any action.

	
variance()[source]

	Returns the total amount of variance retained by the active
components.

	Returns

	variance (float) – Total variance captured by the active components.

	
variance_ratio()[source]

	Returns the ratio between the amount of variance retained by the
active components and the total amount of variance present on the
original samples.

	Returns

	variance_ratio (float) – Ratio of active components variance and total variance present
in original samples.

	
whitened_components()[source]

	Returns the active components of the model, whitened.

	Returns

	whitened_components ((n_active_components, n_features) ndarray) – The whitened components.

	
property components

	Returns the active components of the model.

	Type

	(n_active_components, n_features) ndarray

	
property eigenvalues

	Returns the eigenvalues associated with the active components of the
model, i.e. the amount of variance captured by each active component,
sorted form largest to smallest.

	Type

	(n_active_components,) ndarray

	
property n_active_components

	The number of components currently in use on this model.

	Type

	int

	
property n_components

	The number of bases of the model.

	Type

	int

	
property n_features

	The number of elements in each linear component.

	Type

	int

 GMRFModel

GMRFModel

	
class menpo.model.GMRFModel(samples, graph, mode='concatenation', n_components=None, dtype=<class 'numpy.float64'>, sparse=True, n_samples=None, bias=0, incremental=False, verbose=False)[source]

	Bases: GMRFVectorModel

Trains a Gaussian Markov Random Field (GMRF).

	Parameters

	
	samples (list or iterable of Vectorizable) – List or iterable of samples to build the model from.

	graph (UndirectedGraph or DirectedGraph or Tree) – The graph that defines the relations between the features.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a list (so we
know how large the data matrix needs to be).

	mode ({'concatenation', 'subtraction'}, optional) – Defines the feature vector of each edge. Assuming that
\(\mathbf{x}_i\) and \(\mathbf{x}_j\) are the feature vectors
of two adjacent vertices (\(i,j:(v_i,v_j)\in E\)), then the edge’s
feature vector in the case of 'concatenation' is

\[\left[{\mathbf{x}_i}^T, {\mathbf{x}_j}^T\right]^T\]

and in the case of 'subtraction'

\[\mathbf{x}_i - \mathbf{x}_j\]

	n_components (int or None, optional) – When None (default), the covariance matrix of each edge is inverted
using np.linalg.inv. If int, it is inverted using truncated SVD
using the specified number of compnents.

	dtype (numpy.dtype, optional) – The data type of the GMRF’s precision matrix. For example, it can be set
to numpy.float32 for single precision or to numpy.float64 for double
precision. Depending on the size of the precision matrix, this option can
you a lot of memory.

	sparse (bool, optional) – When True, the GMRF’s precision matrix has type
scipy.sparse.bsr_matrix, otherwise it is a numpy.array.

	bias (int, optional) – Default normalization is by (N - 1), where N is the number of
observations given (unbiased estimate). If bias is 1, then
normalization is by N. These values can be overridden by using
the keyword ddof in numpy versions >= 1.5.

	incremental (bool, optional) – This argument must be set to True in case the user wants to
incrementally update the GMRF. Note that if True, the model
occupies 2x memory.

	verbose (bool, optional) – If True, the progress of the model’s training is printed.

Notes

Let us denote a graph as \(G=(V,E)\), where
\(V=\{v_i,v_2,\ldots, v_{|V|}\}\) is the set of \(|V|\) vertices and
there is an edge \((v_i,v_j)\in E\) for each pair of connected vertices.
Let us also assume that we have a set of random variables
\(X=\{X_i\}, \forall i:v_i\in V\), which represent an abstract feature
vector of length \(k\) extracted from each vertex \(v_i\), i.e.
\(\mathbf{x}_i,i:v_i\in V\).

A GMRF is described by an undirected graph, where the vertexes stand for
random variables and the edges impose statistical constraints on these
random variables. Thus, the GMRF models the set of random variables with
a multivariate normal distribution

\[p(X=\mathbf{x}|G)\sim\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})\]

We denote by \(\mathbf{Q}\) the block-sparse precision matrix that is
the inverse of the covariance matrix \(\boldsymbol{\Sigma}\), i.e.
\(\mathbf{Q}=\boldsymbol{\Sigma}^{-1}\). By applying the GMRF we make
the assumption that the random variables satisfy the three Markov
properties (pairwise, local and global) and that the blocks of the
precision matrix that correspond to disjoint vertexes are zero, i.e.

\[\mathbf{Q}_{ij}=\mathbf{0}_{k\times k},\forall i,j:(v_i,v_j)\notin E\]

References

	1

	H. Rue, and L. Held. “Gaussian Markov random fields: theory and
applications,” CRC Press, 2005.

	2

	E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. “Active
Pictorial Structures”, IEEE International Conference on Computer Vision
& Pattern Recognition (CVPR), Boston, MA, USA, pp. 5435-5444, June 2015.

	
increment(samples, n_samples=None, verbose=False)[source]

	Update the mean and precision matrix of the GMRF by updating the
distributions of all the edges.

	Parameters

	
	samples (list or iterable of Vectorizable) – List or iterable of samples to build the model from.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a
list (so we know how large the data matrix needs to be).

	verbose (bool, optional) – If True, the progress of the model’s incremental update is
printed.

	
mahalanobis_distance(samples, subtract_mean=True, square_root=False)[source]

	Compute the mahalanobis distance given a sample \(\mathbf{x}\) or an
array of samples \(\mathbf{X}\), i.e.

\[\sqrt{(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{x}-\boldsymbol{\mu})}
\text{ or }
\sqrt{(\mathbf{X}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{X}-\boldsymbol{\mu})}\]

	Parameters

	
	samples (Vectorizable or list of Vectorizable) – The new data sample or a list of samples.

	subtract_mean (bool, optional) – When True, the mean vector is subtracted from the data vector.

	square_root (bool, optional) – If False, the mahalanobis distance gets squared.

	
mean()[source]

	Return the mean of the model.

	Type

	Vectorizable

	
principal_components_analysis(max_n_components=None)[source]

	Returns a PCAModel with the Principal Components.

Note that the eigenvalue decomposition is applied directly on the
precision matrix and then the eigenvalues are inverted.

	Parameters

	max_n_components (int or None, optional) – The maximum number of principal components. If None, all the
components are returned.

	Returns

	pca (PCAModel) – The PCA model.

 GMRFVectorModel

GMRFVectorModel

	
class menpo.model.GMRFVectorModel(samples, graph, n_samples=None, mode='concatenation', n_components=None, dtype=<class 'numpy.float64'>, sparse=True, bias=0, incremental=False, verbose=False)[source]

	Bases: object

Trains a Gaussian Markov Random Field (GMRF).

	Parameters

	
	samples (ndarray or list or iterable of ndarray) – List or iterable of numpy arrays to build the model from, or an
existing data matrix.

	graph (UndirectedGraph or DirectedGraph or Tree) – The graph that defines the relations between the features.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a list (so we
know how large the data matrix needs to be).

	mode ({'concatenation', 'subtraction'}, optional) – Defines the feature vector of each edge. Assuming that
\(\mathbf{x}_i\) and \(\mathbf{x}_j\) are the feature vectors
of two adjacent vertices (\(i,j:(v_i,v_j)\in E\)), then the edge’s
feature vector in the case of 'concatenation' is

\[\left[{\mathbf{x}_i}^T, {\mathbf{x}_j}^T\right]^T\]

and in the case of 'subtraction'

\[\mathbf{x}_i - \mathbf{x}_j\]

	n_components (int or None, optional) – When None (default), the covariance matrix of each edge is inverted
using np.linalg.inv. If int, it is inverted using truncated SVD
using the specified number of compnents.

	dtype (numpy.dtype, optional) – The data type of the GMRF’s precision matrix. For example, it can be set
to numpy.float32 for single precision or to numpy.float64 for double
precision. Depending on the size of the precision matrix, this option can
you a lot of memory.

	sparse (bool, optional) – When True, the GMRF’s precision matrix has type
scipy.sparse.bsr_matrix, otherwise it is a numpy.array.

	bias (int, optional) – Default normalization is by (N - 1), where N is the number of
observations given (unbiased estimate). If bias is 1, then
normalization is by N. These values can be overridden by using
the keyword ddof in numpy versions >= 1.5.

	incremental (bool, optional) – This argument must be set to True in case the user wants to
incrementally update the GMRF. Note that if True, the model
occupies 2x memory.

	verbose (bool, optional) – If True, the progress of the model’s training is printed.

Notes

Let us denote a graph as \(G=(V,E)\), where
\(V=\{v_i,v_2,\ldots, v_{|V|}\}\) is the set of \(|V|\) vertices and
there is an edge \((v_i,v_j)\in E\) for each pair of connected vertices.
Let us also assume that we have a set of random variables
\(X=\{X_i\}, \forall i:v_i\in V\), which represent an abstract feature
vector of length \(k\) extracted from each vertex \(v_i\), i.e.
\(\mathbf{x}_i,i:v_i\in V\).

A GMRF is described by an undirected graph, where the vertexes stand for
random variables and the edges impose statistical constraints on these
random variables. Thus, the GMRF models the set of random variables with
a multivariate normal distribution

\[p(X=\mathbf{x}|G)\sim\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})\]

We denote by \(\mathbf{Q}\) the block-sparse precision matrix that is
the inverse of the covariance matrix \(\boldsymbol{\Sigma}\), i.e.
\(\mathbf{Q}=\boldsymbol{\Sigma}^{-1}\). By applying the GMRF we make
the assumption that the random variables satisfy the three Markov
properties (pairwise, local and global) and that the blocks of the
precision matrix that correspond to disjoint vertexes are zero, i.e.

\[\mathbf{Q}_{ij}=\mathbf{0}_{k\times k},\forall i,j:(v_i,v_j)\notin E\]

References

	1

	H. Rue, and L. Held. “Gaussian Markov random fields: theory and
applications,” CRC Press, 2005.

	2

	E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. “Active
Pictorial Structures”, IEEE International Conference on Computer Vision
& Pattern Recognition (CVPR), Boston, MA, USA, pp. 5435-5444, June 2015.

	
increment(samples, n_samples=None, verbose=False)[source]

	Update the mean and precision matrix of the GMRF by updating the
distributions of all the edges.

	Parameters

	
	samples (ndarray or list or iterable of ndarray) – List or iterable of numpy arrays to build the model from, or an
existing data matrix.

	n_samples (int, optional) – If provided then samples must be an iterator that yields
n_samples. If not provided then samples has to be a
list (so we know how large the data matrix needs to be).

	verbose (bool, optional) – If True, the progress of the model’s incremental update is
printed.

	
mahalanobis_distance(samples, subtract_mean=True, square_root=False)[source]

	Compute the mahalanobis distance given a sample \(\mathbf{x}\) or an
array of samples \(\mathbf{X}\), i.e.

\[\sqrt{(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{x}-\boldsymbol{\mu})}
\text{ or }
\sqrt{(\mathbf{X}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{X}-\boldsymbol{\mu})}\]

	Parameters

	
	samples (ndarray) – A single data vector or an array of multiple data vectors.

	subtract_mean (bool, optional) – When True, the mean vector is subtracted from the data vector.

	square_root (bool, optional) – If False, the mahalanobis distance gets squared.

	
mean()[source]

	Return the mean of the model. For this model, returns the same result
as mean_vector.

	Type

	ndarray

	
principal_components_analysis(max_n_components=None)[source]

	Returns a PCAVectorModel with the Principal Components.

Note that the eigenvalue decomposition is applied directly on the
precision matrix and then the eigenvalues are inverted.

	Parameters

	max_n_components (int or None, optional) – The maximum number of principal components. If None, all the
components are returned.

	Returns

	pca (PCAVectorModel) – The PCA model.

 menpo.shape

menpo.shape

Base Class

	Shape

PointCloud

	PointCloud

Graphs

	UndirectedGraph

	DirectedGraph

	Tree

PointGraphs

Mix-ins of Graphs and PointCloud for graphs with geometry.

	PointUndirectedGraph

	PointDirectedGraph

	PointTree

LabelledPointGraph

A subclass of PointUndirectedGraph that allows the attaching of
labels associated with semantic parts of the object.

	LabelledPointUndirectedGraph

Predefined Graphs

	empty_graph

	star_graph

	complete_graph

	chain_graph

	delaunay_graph

	stencil_grid

Triangular Meshes

	TriMesh

	ColouredTriMesh

	TexturedTriMesh

Group Operations

	mean_pointcloud

Shape Building

	bounding_box

	bounding_cuboid

 Shape

Shape

	
class menpo.shape.base.Shape[source]

	Bases: Vectorizable, Transformable, Landmarkable, LandmarkableViewable, Viewable

Abstract representation of shape. Shapes are Transformable,
Vectorizable, Landmarkable, LandmarkableViewable and
Viewable. This base class handles transforming landmarks when the
shape is transformed. Therefore, implementations of Shape have to
implement the abstract _transform_self_inplace() method that handles
transforming the Shape itself.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
n_dims()

	The total number of dimensions.

	Type

	int

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

 PointCloud

PointCloud

	
class menpo.shape.PointCloud(points, copy=True)[source]

	Bases: Shape

An N-dimensional point cloud. This is internally represented as an ndarray
of shape (n_points, n_dims). This class is important for dealing
with complex functionality such as viewing and representing metadata such
as landmarks.

Currently only 2D and 3D pointclouds are viewable.

	Parameters

	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	copy (bool, optional) – If False, the points will not be copied on assignment. Note that
this will miss out on additional checks. Further note that we still
demand that the array is C-contiguous - if it isn’t, a copy will be
generated anyway.
In general this should only be used if you know what you are doing.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='r', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)[source]

	Visualization of the PointCloud in 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	Visualize the landmarks. This method will appear on the PointCloud as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()[source]

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)[source]

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()[source]

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()[source]

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
constrain_to_bounds(bounds)[source]

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)[source]

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointCloud. This is then broadcast across the dimensions
of the PointCloud and returns a new PointCloud containing only those
points that were True in the mask.

	Parameters

	mask ((n_points,) ndarray) – 1D array of booleans

	Returns

	pointcloud (PointCloud) – A new pointcloud that has been masked.

	Raises

	ValueError – Mask must have same number of points as pointcloud.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
h_points()[source]

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None)[source]

	Create a pointcloud that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	Returns

	shape_cls (type(cls)) – A PointCloud or subclass arranged in a grid.

	
classmethod init_from_depth_image(depth_image)[source]

	Return a 3D point cloud from the given depth image. The depth image
is assumed to represent height/depth values and the XY coordinates
are assumed to unit spaced and represent image coordinates. This is
particularly useful for visualising depth values that have been
recovered from images.

	Parameters

	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	Returns

	depth_cloud (type(cls)) – A new 3D PointCloud with unit XY coordinates and the given depth
values as Z coordinates.

	
norm(**kwargs)[source]

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
range(boundary=0)[source]

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
tojson()[source]

	Convert this PointCloud to a dictionary representation suitable
for inclusion in the LJSON landmark format.

	Returns

	json (dict) – Dictionary with points keys.

	
with_dims(dims)[source]

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

 UndirectedGraph

UndirectedGraph

	
class menpo.shape.UndirectedGraph(adjacency_matrix, copy=True, skip_checks=False)[source]

	Bases: Graph

Class for Undirected Graph definition and manipulation.

	Parameters

	
	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the graph. The non-edges must be represented
with zeros and the edges can have a weight value.

	Note

	adjacency_matrix must be symmetric.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Raises

	
	ValueError – adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.

	ValueError – Graph must have at least two vertices.

	ValueError – adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

	ValueError – The adjacency matrix of an undirected graph must be symmetric.

Examples

The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 1, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0]])
graph = UndirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(
 ([1] * 14,
 ([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
 [1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),
 shape=(6, 6))
graph = UndirectedGraph(adjacency_matrix)

The adjacency matrix of the following graph with isolated vertices

 0---|
 |
 |
 1 2
 |
 |
 3-------4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])
graph = UndirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],
 [2, 0, 4, 2, 4, 3])),
 shape=(6, 6))
graph = UndirectedGraph(adjacency_matrix)

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
classmethod init_from_edges(edges, n_vertices, skip_checks=False)[source]

	Initialize graph from edges array.

	Parameters

	
	edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	n_vertices (int) – The total number of vertices, assuming that the numbering of
vertices starts from 0. edges and n_vertices can be
defined in a way to set isolated vertices.

	skip_checks (bool, optional) – If True, no checks will be performed.

Examples

The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

Finally, the following graph with isolated vertices

 0---|
 |
 |
 1 2
 |
 |
 3-------4

5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
minimum_spanning_tree(root_vertex)[source]

	Returns the minimum spanning tree of the graph using Kruskal’s
algorithm.

	Parameters

	root_vertex (int) – The vertex that will be set as root in the output MST.

	Returns

	mst (Tree) – The computed minimum spanning tree.

	Raises

	ValueError – Cannot compute minimum spanning tree of a graph with isolated
 vertices

	
n_neighbours(vertex, skip_checks=False)[source]

	Returns the number of neighbours of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_neighbours (int) – The number of neighbours.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
neighbours(vertex, skip_checks=False)[source]

	Returns the neighbours of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	neighbours (list) – The list of neighbours.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 DirectedGraph

DirectedGraph

	
class menpo.shape.DirectedGraph(adjacency_matrix, copy=True, skip_checks=False)[source]

	Bases: Graph

Class for Directed Graph definition and manipulation.

	Parameters

	
	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Raises

	
	ValueError – adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.

	ValueError – Graph must have at least two vertices.

	ValueError – adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

Examples

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
graph = DirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],
 [0, 0, 2, 1, 3, 4, 4, 5])),
 shape=(6, 6))
graph = DirectedGraph(adjacency_matrix)

The following graph with isolated vertices

 0<--|
 |
 |
 1 2
 |
 v
 3------>4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
graph = DirectedGraph(adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 3, ([2, 2, 3], [0, 4, 4])),
 shape=(6, 6))
graph = DirectedGraph(adjacency_matrix)

	
children(vertex, skip_checks=False)[source]

	Returns the children of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	children (list) – The list of children.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
classmethod init_from_edges(edges, n_vertices, skip_checks=False)

	Initialize graph from edges array.

	Parameters

	
	edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	n_vertices (int) – The total number of vertices, assuming that the numbering of
vertices starts from 0. edges and n_vertices can be
defined in a way to set isolated vertices.

	skip_checks (bool, optional) – If True, no checks will be performed.

Examples

The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be represented as

from menpo.shape import DirectedGraph
import numpy as np
edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
 [3, 4], [3, 5]])
graph = DirectedGraph.init_from_edges(edges, n_vertices=6)

Finally, the following graph with isolated vertices

 0---|
 |
 |
1 2
 |
 |
3-------4

5

can be defined as

from menpo.shape import UndirectedGraph
import numpy as np
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
n_children(vertex, skip_checks=False)[source]

	Returns the number of children of the selected vertex.

	Parameters

	vertex (int) – The selected vertex.

	Returns

	
	n_children (int) – The number of children.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_parents(vertex, skip_checks=False)[source]

	Returns the number of parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_parents (int) – The number of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
parents(vertex, skip_checks=False)[source]

	Returns the parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	parents (list) – The list of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 Tree

Tree

	
class menpo.shape.Tree(adjacency_matrix, root_vertex, copy=True, skip_checks=False)[source]

	Bases: DirectedGraph

Class for Tree definitions and manipulation.

	Parameters

	
	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the tree in which the rows represent parents
and columns represent children. The non-edges must be represented with
zeros and the edges can have a weight value.

	Note

	A tree must not have isolated vertices.

	root_vertex (int) – The vertex to be set as root.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Raises

	
	ValueError – adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.

	ValueError – Graph must have at least two vertices.

	ValueError – adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

	ValueError – The provided edges do not represent a tree.

	ValueError – The root_vertex must be in the range [0, n_vertices - 1].

	ValueError – The combination of adjacency matrix and root vertex is not valid. BFS
 returns a different tree.

Examples

The following tree

 0
 |
 ___|___
 1 2
 | |
 | |
3 4 5
| | |
| | |
6 7 8

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0]])
tree = Tree(adjacency_matrix, root_vertex=0)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([0, 0, 1, 1, 2, 3, 4, 5],
 [1, 2, 3, 4, 5, 6, 7, 8])),
 shape=(9, 9))
tree = Tree(adjacency_matrix, root_vertex=0)

	
children(vertex, skip_checks=False)

	Returns the children of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	children (list) – The list of children.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
depth_of_vertex(vertex, skip_checks=False)[source]

	Returns the depth of the specified vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	depth (int) – The depth of the selected vertex.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
classmethod init_from_edges(edges, n_vertices, root_vertex, copy=True, skip_checks=False)[source]

	Construct a Tree from edges array.

	Parameters

	
	edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	n_vertices (int) – The total number of vertices, assuming that the numbering of
vertices starts from 0. edges and n_vertices can be
defined in a way to set isolated vertices.

	root_vertex (int) – That vertex that will be set as root.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

Examples

The following tree

 0
 |
 ___|___
 1 2
 | |
 | |
3 4 5
| | |
| | |
6 7 8

can be defined as

from menpo.shape import PointTree
import numpy as np
points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
edges = np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
 [4, 7], [5, 8]])
tree = PointTree.init_from_edges(points, edges, root_vertex=0)

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_leaf(vertex, skip_checks=False)[source]

	Whether the vertex is a leaf.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	is_leaf (bool) – If True, then selected vertex is a leaf.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
n_children(vertex, skip_checks=False)

	Returns the number of children of the selected vertex.

	Parameters

	vertex (int) – The selected vertex.

	Returns

	
	n_children (int) – The number of children.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_parents(vertex, skip_checks=False)

	Returns the number of parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_parents (int) – The number of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
n_vertices_at_depth(depth)[source]

	Returns the number of vertices at the specified depth.

	Parameters

	depth (int) – The selected depth.

	Returns

	n_vertices (int) – The number of vertices that lie in the specified depth.

	
parent(vertex, skip_checks=False)[source]

	Returns the parent of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	parent (int) – The parent vertex.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
parents(vertex, skip_checks=False)

	Returns the parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	parents (list) – The list of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
vertices_at_depth(depth)[source]

	Returns a list of vertices at the specified depth.

	Parameters

	depth (int) – The selected depth.

	Returns

	vertices (list) – The vertices that lie in the specified depth.

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property leaves

	Returns a list with the all leaves of the tree.

	Type

	list

	
property maximum_depth

	Returns the maximum depth of the tree.

	Type

	int

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_leaves

	Returns the number of leaves of the tree.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 PointUndirectedGraph

PointUndirectedGraph

	
class menpo.shape.PointUndirectedGraph(points, adjacency_matrix, copy=True, skip_checks=False)[source]

	Bases: PointGraph, UndirectedGraph

Class for defining an Undirected Graph with geometry.

	Parameters

	
	points ((n_vertices, n_dims,) ndarray) – The array of point locations.

	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the graph. The non-edges must be represented
with zeros and the edges can have a weight value.

	Note

	adjacency_matrix must be symmetric.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Raises

	
	ValueError – A point for each graph vertex needs to be passed. Got n_points
 points instead of n_vertices.

	ValueError – adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.

	ValueError – Graph must have at least two vertices.

	ValueError – adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

	ValueError – The adjacency matrix of an undirected graph must be symmetric.

Examples

The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 1, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0]])
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointUndirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(
 ([1] * 14,
 ([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
 [1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),
 shape=(6, 6))
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointUndirectedGraph(points, adjacency_matrix)

The adjacency matrix of the following graph with isolated vertices

 0---|
 |
 |
 1 2
 |
 |
 3-------4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointUndirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],
 [2, 0, 4, 2, 4, 3])),
 shape=(6, 6))
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointUndirectedGraph(points, adjacency_matrix)

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)

	Visualization of the PointGraph in 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointGraph will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointGraph as a percentage of the PointGraph’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointGraph as a percentage of the PointGraph’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the landmarks. This method will appear on the PointGraph as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointUndirectedGraph. This is then broadcast across
the dimensions of the PointUndirectedGraph and returns a new
PointUndirectedGraph containing only those points that were True
in the mask.

	Parameters

	mask ((n_vertices,) ndarray) – 1D array of booleans

	Returns

	pointgraph (PointUndirectedGraph) – A new pointgraph that has been masked.

	Raises

	ValueError – Mask must be a 1D boolean array of the same number of entries as
 points in this PointUndirectedGraph.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None, adjacency_matrix=None, skip_checks=False)

	Create a PointGraph that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

If no adjacency matrix is provided, the default connectivity will
be a 4-connected lattice.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

The adjacency matrix of an undirected graph must be symmetric.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if no
adjacency matrix is provided.

	Returns

	pgraph (PointGraph) – A pointgraph arranged in a grid.

	
classmethod init_from_depth_image(depth_image, spacing=None, adjacency_matrix=None, skip_checks=False)

	Return a 3D point graph from the given depth image. The depth image
is assumed to represent height/depth values and the XY coordinates
are assumed to unit spaced and represent image coordinates. This is
particularly useful for visualising depth values that have been
recovered from images.

If no adjacency matrix is provided, the default connectivity will
be a 4-connected lattice.

	Parameters

	
	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

The adjacency matrix of an undirected graph must be symmetric.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if no
adjacency matrix is provided.

	Returns

	depth_cloud (type(cls)) – A new 3D PointGraph with unit XY coordinates and the given depth
values as Z coordinates.

	
classmethod init_from_edges(points, edges, copy=True, skip_checks=False)[source]

	Construct a PointUndirectedGraph from edges array.

	Parameters

	
	points ((n_vertices, n_dims,) ndarray) – The array of point locations.

	edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

Examples

The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
graph = PointUndirectedGraph.init_from_edges(points, edges)

Finally, the following graph with isolated vertices

 0---|
 |
 |
1 2
 |
 |
3-------4

5

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = PointUndirectedGraph.init_from_edges(points, edges)

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
minimum_spanning_tree(root_vertex)[source]

	Returns the minimum spanning tree of the graph using Kruskal’s
algorithm.

	Parameters

	root_vertex (int) – The vertex that will be set as root in the output MST.

	Returns

	mst (PointTree) – The computed minimum spanning tree with the points of self.

	Raises

	ValueError – Cannot compute minimum spanning tree of a graph with isolated
 vertices

	
n_neighbours(vertex, skip_checks=False)

	Returns the number of neighbours of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_neighbours (int) – The number of neighbours.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
neighbours(vertex, skip_checks=False)

	Returns the neighbours of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	neighbours (list) – The list of neighbours.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
tojson()

	Convert this PointGraph to a dictionary representation suitable for
inclusion in the LJSON landmark format.

	Returns

	json (dict) – Dictionary with points and connectivity keys.

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 PointDirectedGraph

PointDirectedGraph

	
class menpo.shape.PointDirectedGraph(points, adjacency_matrix, copy=True, skip_checks=False)[source]

	Bases: PointGraph, DirectedGraph

Class for defining a directed graph with geometry.

	Parameters

	
	points ((n_vertices, n_dims) ndarray) – The array representing the points.

	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Raises

	
	ValueError – A point for each graph vertex needs to be passed. Got {n_points} points
 instead of {n_vertices}.

	ValueError – adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.

	ValueError – Graph must have at least two vertices.

	ValueError – adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

Examples

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointDirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],
 [0, 0, 2, 1, 3, 4, 4, 5])),
 shape=(6, 6))
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointDirectedGraph(points, adjacency_matrix)

The following graph with isolated vertices

 0<--|
 |
 |
 1 2
 |
 v
 3------>4

5

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointDirectedGraph(points, adjacency_matrix)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 3, ([2, 2, 3], [0, 4, 4])),
 shape=(6, 6))
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
graph = PointDirectedGraph(points, adjacency_matrix)

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)

	Visualization of the PointGraph in 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointGraph will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointGraph as a percentage of the PointGraph’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointGraph as a percentage of the PointGraph’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the landmarks. This method will appear on the PointGraph as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
children(vertex, skip_checks=False)

	Returns the children of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	children (list) – The list of children.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointDirectedGraph. This is then broadcast across the
dimensions of the PointDirectedGraph and returns a new
PointDirectedGraph containing only those points that were True in
the mask.

	Parameters

	mask ((n_points,) ndarray) – 1D array of booleans

	Returns

	pointgraph (PointDirectedGraph) – A new pointgraph that has been masked.

	Raises

	ValueError – Mask must be a 1D boolean array of the same number of entries as
 points in this PointDirectedGraph.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None, adjacency_matrix=None, skip_checks=False)

	Create a PointGraph that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

If no adjacency matrix is provided, the default connectivity will
be a 4-connected lattice.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

The adjacency matrix of an undirected graph must be symmetric.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if no
adjacency matrix is provided.

	Returns

	pgraph (PointGraph) – A pointgraph arranged in a grid.

	
classmethod init_from_depth_image(depth_image, spacing=None, adjacency_matrix=None, skip_checks=False)

	Return a 3D point graph from the given depth image. The depth image
is assumed to represent height/depth values and the XY coordinates
are assumed to unit spaced and represent image coordinates. This is
particularly useful for visualising depth values that have been
recovered from images.

If no adjacency matrix is provided, the default connectivity will
be a 4-connected lattice.

	Parameters

	
	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

The adjacency matrix of an undirected graph must be symmetric.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if no
adjacency matrix is provided.

	Returns

	depth_cloud (type(cls)) – A new 3D PointGraph with unit XY coordinates and the given depth
values as Z coordinates.

	
classmethod init_from_edges(points, edges, copy=True, skip_checks=False)

	Construct a PointGraph from edges array.

	Parameters

	
	points ((n_vertices, n_dims,) ndarray) – The array of point locations.

	edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

Examples

The following undirected graph

|---0---|
| |
| |
1-------2
| |
| |
3-------4
|
|
5

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
graph = PointUndirectedGraph.init_from_edges(points, edges)

The following directed graph

|-->0<--|
| |
| |
1<----->2
| |
v v
3------>4
|
v
5

can be represented as

from menpo.shape import PointDirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
 [3, 4], [3, 5]])
graph = PointDirectedGraph.init_from_edges(points, edges)

Finally, the following graph with isolated vertices

 0---|
 |
 |
1 2
 |
 |
3-------4

5

can be defined as

from menpo.shape import PointUndirectedGraph
import numpy as np
points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
graph = PointUndirectedGraph.init_from_edges(points, edges)

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
n_children(vertex, skip_checks=False)

	Returns the number of children of the selected vertex.

	Parameters

	vertex (int) – The selected vertex.

	Returns

	
	n_children (int) – The number of children.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_parents(vertex, skip_checks=False)

	Returns the number of parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_parents (int) – The number of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
parents(vertex, skip_checks=False)

	Returns the parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	parents (list) – The list of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
relative_location_edge(parent, child)[source]

	Returns the relative location between the provided vertices. That is
if vertex j is the parent and vertex i is its child and vector l
denotes the coordinates of a vertex, then

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Parameters

	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns

	relative_location ((2,) ndarray) – The relative location vector.

	Raises

	ValueError – Vertices parent and child are not connected with an edge.

	
relative_locations()[source]

	Returns the relative location between the vertices of each edge. If
vertex j is the parent and vertex i is its child and vector l denotes
the coordinates of a vertex, then:

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Returns

	relative_locations ((n_vertexes, 2) ndarray) – The relative locations vector.

	
tojson()

	Convert this PointGraph to a dictionary representation suitable for
inclusion in the LJSON landmark format.

	Returns

	json (dict) – Dictionary with points and connectivity keys.

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 PointTree

PointTree

	
class menpo.shape.PointTree(points, adjacency_matrix, root_vertex, copy=True, skip_checks=False)[source]

	Bases: PointDirectedGraph, Tree

Class for defining a Tree with geometry.

	Parameters

	
	points ((n_vertices, n_dims) ndarray) – The array representing the points.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix) – The adjacency matrix of the tree in which the rows represent parents
and columns represent children. The non-edges must be represented with
zeros and the edges can have a weight value.

	Note

	A tree must not have isolated vertices.

	root_vertex (int) – The vertex to be set as root.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Raises

	
	ValueError – A point for each graph vertex needs to be passed. Got {n_points} points
 instead of {n_vertices}.

	ValueError – adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.

	ValueError – Graph must have at least two vertices.

	ValueError – adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

	ValueError – The provided edges do not represent a tree.

	ValueError – The root_vertex must be in the range [0, n_vertices - 1].

	ValueError – The combination of adjacency matrix and root vertex is not valid. BFS
 returns a different tree.

Examples

The following tree

 0
 |
 ___|___
 1 2
 | |
 | |
3 4 5
| | |
| | |
6 7 8

can be defined as

import numpy as np
adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0]])
points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
tree = PointTree(points, adjacency_matrix, root_vertex=0)

or

from scipy.sparse import csr_matrix
adjacency_matrix = csr_matrix(([1] * 8, ([0, 0, 1, 1, 2, 3, 4, 5],
 [1, 2, 3, 4, 5, 6, 7, 8])),
 shape=(9, 9))
points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
tree = PointTree(points, adjacency_matrix, root_vertex=0)

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)

	Visualization of the PointGraph in 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointGraph will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointGraph as a percentage of the PointGraph’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointGraph as a percentage of the PointGraph’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the landmarks. This method will appear on the PointGraph as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
children(vertex, skip_checks=False)

	Returns the children of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	children (list) – The list of children.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
depth_of_vertex(vertex, skip_checks=False)

	Returns the depth of the specified vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	depth (int) – The depth of the selected vertex.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the PointTree. This is then broadcast across the dimensions
of the PointTree and returns a new PointTree containing only those
points that were True in the mask.

	Parameters

	mask ((n_points,) ndarray) – 1D array of booleans

	Returns

	pointtree (PointTree) – A new pointtree that has been masked.

	Raises

	
	ValueError – Mask must be a 1D boolean array of the same number of entries as
 points in this PointTree.

	ValueError – Cannot remove root vertex.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None, adjacency_matrix=None, root_vertex=None, skip_checks=False)[source]

	Create a pointtree that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

The default connectivity is the minimum spanning tree formed from
a triangulation of the grid. The default root will be the centre
of the grid.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the tree in which the rows represent parents
and columns represent children. The non-edges must be represented with
zeros and the edges can have a weight value.

	Note

	A tree must not have isolated vertices.

	root_vertex (int) – The vertex to be set as root.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if an
adjacency matrix is provided.

	Returns

	shape_cls (type(cls)) – A PointCloud or subclass arranged in a grid.

	
classmethod init_from_depth_image(depth_image, spacing=None, adjacency_matrix=None, root_vertex=None, skip_checks=False)[source]

	Return a 3D point cloud from the given depth image. The depth image
is assumed to represent height/depth values and the XY coordinates
are assumed to unit spaced and represent image coordinates. This is
particularly useful for visualising depth values that have been
recovered from images.

The default connectivity is the minimum spanning tree formed from
a triangulation of the grid. The default root will be the centre
of the grid (for an unmasked image), otherwise it will be the
first pixel in the masked are of the image.

	Parameters

	
	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the tree in which the rows represent parents
and columns represent children. The non-edges must be represented with
zeros and the edges can have a weight value.

	Note

	A tree must not have isolated vertices.

	root_vertex (int) – The vertex to be set as root.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if an
adjacency matrix is provided.

	Returns

	depth_cloud (type(cls)) – A new 3D PointCloud with unit XY coordinates and the given depth
values as Z coordinates.

	
classmethod init_from_edges(points, edges, root_vertex, copy=True, skip_checks=False)[source]

	Construct a PointTree from edges array.

	Parameters

	
	points ((n_vertices, n_dims,) ndarray) – The array of point locations.

	edges ((n_edges, 2,) ndarray) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	root_vertex (int) – That vertex that will be set as root.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

Examples

The following tree

 0
 |
 ___|___
 1 2
 | |
 | |
3 4 5
| | |
| | |
6 7 8

can be defined as

from menpo.shape import PointTree
import numpy as np
points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
edges = np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
 [4, 7], [5, 8]])
tree = PointTree.init_from_edges(points, edges, root_vertex=0)

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_leaf(vertex, skip_checks=False)

	Whether the vertex is a leaf.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	is_leaf (bool) – If True, then selected vertex is a leaf.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
n_children(vertex, skip_checks=False)

	Returns the number of children of the selected vertex.

	Parameters

	vertex (int) – The selected vertex.

	Returns

	
	n_children (int) – The number of children.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_parents(vertex, skip_checks=False)

	Returns the number of parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_parents (int) – The number of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
n_vertices_at_depth(depth)

	Returns the number of vertices at the specified depth.

	Parameters

	depth (int) – The selected depth.

	Returns

	n_vertices (int) – The number of vertices that lie in the specified depth.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
parent(vertex, skip_checks=False)

	Returns the parent of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	parent (int) – The parent vertex.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
parents(vertex, skip_checks=False)

	Returns the parents of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	parents (list) – The list of parents.

	Raises

	ValueError – The vertex must be in the range [0, n_vertices - 1].

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
relative_location_edge(parent, child)

	Returns the relative location between the provided vertices. That is
if vertex j is the parent and vertex i is its child and vector l
denotes the coordinates of a vertex, then

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Parameters

	
	parent (int) – The first selected vertex which is considered as the parent.

	child (int) – The second selected vertex which is considered as the child.

	Returns

	relative_location ((2,) ndarray) – The relative location vector.

	Raises

	ValueError – Vertices parent and child are not connected with an edge.

	
relative_locations()

	Returns the relative location between the vertices of each edge. If
vertex j is the parent and vertex i is its child and vector l denotes
the coordinates of a vertex, then:

l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

	Returns

	relative_locations ((n_vertexes, 2) ndarray) – The relative locations vector.

	
tojson()

	Convert this PointGraph to a dictionary representation suitable for
inclusion in the LJSON landmark format.

	Returns

	json (dict) – Dictionary with points and connectivity keys.

	
vertices_at_depth(depth)

	Returns a list of vertices at the specified depth.

	Parameters

	depth (int) – The selected depth.

	Returns

	vertices (list) – The vertices that lie in the specified depth.

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property leaves

	Returns a list with the all leaves of the tree.

	Type

	list

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property maximum_depth

	Returns the maximum depth of the tree.

	Type

	int

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_leaves

	Returns the number of leaves of the tree.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 LabelledPointUndirectedGraph

LabelledPointUndirectedGraph

	
class menpo.shape.LabelledPointUndirectedGraph(points, adjacency_matrix, labels_to_masks, copy=True, skip_checks=False)[source]

	Bases: PointUndirectedGraph

A subclass of PointUndirectedGraph that allows the attaching
of ‘labels’ associated with semantic parts of an object. For example,
for a face the semantic parts might be the eyes, nose and mouth. These
‘labels’ are defined as a dictionary of string keys that map to
boolean mask arrays that define which of the underlying points belong
to a given label.

The labels to masks must be within an OrderedDict so that semantic
ordering can be maintained.

	Parameters

	
	points (ndarray) – The points representing the landmarks.

	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the graph. The non-edges must be represented
with zeros and the edges can have a weight value.

	Note

	adjacency_matrix must be symmetric.

	labels_to_masks (ordereddict {str -> bool ndarray}) – For each label, the mask that specifies the indices in to the
points that belong to the label.

	copy (bool, optional) – If True, a copy of the data is stored.

	Raises

	
	ValueError – If dict passed instead of OrderedDict

	ValueError – If no set of label masks is passed.

	ValueError – If any of the label masks differs in size to the points.

	ValueError – If there exists any point in the points that is not covered
 by a label.

	
_view_2d(with_labels=None, without_labels=None, group='group', figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 8))[source]

	Visualize the labelled point undirected graph.

	Parameters

	
	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	group (str or None, optional) – The name of the labelled point undirected graph. It is used in
the legend.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True, the x and y axes are flipped.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

It can either be one of the above or a list of those defining a
value per label.

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

It can either be one of the above or a list of those defining a
value per label.

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

It can either be one of the above or a list of those defining a
value per label.

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See Below, optional) – The font of the legend.
Possible options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Possible options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float), optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the LabelledPointUndirectedGraph as a percentage
of the LabelledPointUndirectedGraph’s width. If tuple or list,
then it defines the axis limits. If None, then the limits are
set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the LabelledPointUndirectedGraph as a percentage
of the LabelledPointUndirectedGraph’s height. If tuple or list,
then it defines the axis limits. If None, then the limits are
set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	Raises

	ValueError – If both with_labels and without_labels are passed.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the landmarks. This method will appear on the PointGraph as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
add_label(label, indices)[source]

	Add a new label by creating a new mask over the points. A new
LabelledPointUndirectedGraph is returned.

	Parameters

	
	label (string) – Label of landmark.

	indices ((K,) ndarray) – Array of indices in to the points. Each index implies
membership to the label.

	Returns

	labelled_pointgraph (LabelledPointUndirectedGraph) – A new labelled pointgraph with the new label specified by indices.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()[source]

	Generate an efficient copy of this LabelledPointUndirectedGraph.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
find_all_paths(start, end, path=[])

	Returns a list of lists with all the paths (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	path (list, optional) – An existing path to append to.

	Returns

	paths (list of list) – The list containing all the paths from start to end.

	
find_all_shortest_paths(algorithm='auto', unweighted=False)

	Returns the distances and predecessors arrays of the graph’s shortest
paths.

	Parameters

	
	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path between each vertex such that the sum of weights is
minimized, find the path such that the number of edges is minimized.

	Returns

	
	distances ((n_vertices, n_vertices,) ndarray) – The matrix of distances between all graph vertices.
distances[i,j] gives the shortest distance from vertex i to
vertex j along the graph.

	predecessors ((n_vertices, n_vertices,) ndarray) – The matrix of predecessors, which can be used to reconstruct the
shortest paths. Each entry predecessors[i, j] gives the index of
the previous vertex in the path from vertex i to vertex j.
If no path exists between vertices i and j, then
predecessors[i, j] = -9999.

	
find_path(start, end, method='bfs', skip_checks=False)

	Returns a list with the first path (without cycles) found from the
start vertex to the end vertex. It can employ either depth-first
search or breadth-first search.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	method ({bfs, dfs}, optional) – The method to be used.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	path (list) – The path’s vertices.

	Raises

	ValueError – Method must be either bfs or dfs.

	
find_shortest_path(start, end, algorithm='auto', unweighted=False, skip_checks=False)

	Returns a list with the shortest path (without cycles) found from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the path starts.

	end (int) – The vertex to which the path ends.

	algorithm ('str', see below, optional) – The algorithm to be used. Possible options are:

	’dijkstra’

	Dijkstra’s algorithm with Fibonacci heaps

	’bellman-ford’

	Bellman-Ford algorithm

	’johnson’

	Johnson’s algorithm

	’floyd-warshall’

	Floyd-Warshall algorithm

	’auto’

	Select the best among the above

	unweighted (bool, optional) – If True, then find unweighted distances. That is, rather than
finding the path such that the sum of weights is minimized, find
the path such that the number of edges is minimized.

	skip_checks (bool, optional) – If True, then input arguments won’t pass through checks. Useful
for efficiency.

	Returns

	
	path (list) – The shortest path’s vertices, including start and end. If
there was not path connecting the vertices, then an empty list is
returned.

	distance (int or float) – The distance (cost) of the path from start to end.

	
from_mask(mask)

	A 1D boolean array with the same number of elements as the number of
points in the PointUndirectedGraph. This is then broadcast across
the dimensions of the PointUndirectedGraph and returns a new
PointUndirectedGraph containing only those points that were True
in the mask.

	Parameters

	mask ((n_vertices,) ndarray) – 1D array of booleans

	Returns

	pointgraph (PointUndirectedGraph) – A new pointgraph that has been masked.

	Raises

	ValueError – Mask must be a 1D boolean array of the same number of entries as
 points in this PointUndirectedGraph.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
get_adjacency_list()

	Returns the adjacency list of the graph, i.e. a list of length
n_vertices that for each vertex has a list of the vertex
neighbours. If the graph is directed, the neighbours are children.

	Returns

	adjacency_list (list of list of length n_vertices) – The adjacency list of the graph.

	
get_label(label)[source]

	Returns a new PointUndirectedGraph that contains the subset of
points that this label represents.

	Parameters

	label (string) – Label to filter on.

	Returns

	graph (PointUndirectedGraph) – The PointUndirectedGraph containing the subset of points that this
label masks. Will be a subset of the entire group’s points.

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_cycles()

	Checks if the graph has at least one cycle.

	Returns

	has_cycles (bool) – True if the graph has cycles.

	
has_isolated_vertices()

	Whether the graph has any isolated vertices, i.e. vertices with no edge
connections.

	Returns

	has_isolated_vertices (bool) – True if the graph has at least one isolated vertex.

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None, adjacency_matrix=None, skip_checks=False)

	Create a PointGraph that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

If no adjacency matrix is provided, the default connectivity will
be a 4-connected lattice.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

The adjacency matrix of an undirected graph must be symmetric.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if no
adjacency matrix is provided.

	Returns

	pgraph (PointGraph) – A pointgraph arranged in a grid.

	
classmethod init_from_depth_image(depth_image, spacing=None, adjacency_matrix=None, skip_checks=False)

	Return a 3D point graph from the given depth image. The depth image
is assumed to represent height/depth values and the XY coordinates
are assumed to unit spaced and represent image coordinates. This is
particularly useful for visualising depth values that have been
recovered from images.

If no adjacency matrix is provided, the default connectivity will
be a 4-connected lattice.

	Parameters

	
	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	adjacency_matrix ((n_vertices, n_vertices) ndarray or csr_matrix, optional) – The adjacency matrix of the graph in which the rows represent source
vertices and columns represent destination vertices. The non-edges must
be represented with zeros and the edges can have a weight value.

The adjacency matrix of an undirected graph must be symmetric.

	skip_checks (bool, optional) – If True, no checks will be performed. Only considered if no
adjacency matrix is provided.

	Returns

	depth_cloud (type(cls)) – A new 3D PointGraph with unit XY coordinates and the given depth
values as Z coordinates.

	
classmethod init_from_edges(points, edges, labels_to_masks, copy=True, skip_checks=False)[source]

	Construct a LabelledPointUndirectedGraph from an edges array.

See PointUndirectedGraph for more information.

	Parameters

	
	points ((n_vertices, n_dims,) ndarray) – The array of point locations.

	edges ((n_edges, 2,) ndarray or None) – The ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge. If None, then an empty adjacency
matrix is created.

	labels_to_masks (ordereddict {str -> bool ndarray}) – For each label, the mask that specifies the indices in to the
points that belong to the label.

	copy (bool, optional) – If False, the adjacency_matrix will not be copied on
assignment.

	skip_checks (bool, optional) – If True, no checks will be performed.

	
classmethod init_from_indices_mapping(points, adjacency, labels_to_indices, copy=True)[source]

	Static constructor to create a LabelledPointUndirectedGraph from
an ordered dictionary that maps a set of indices .

	Parameters

	
	points (PointCloud) – The points representing the landmarks.

	adjacency ((n_vertices, n_vertices,) ndarray, csr_matrix or list of edges) – The adjacency matrix of the graph, or a list of edges representing
adjacency.

	labels_to_indices (ordereddict {str -> int ndarray}) – For each label, the indices in to the points that belong to the
label.

	copy (boolean, optional) – If True, a copy of the data is stored on the group.

	Returns

	labelled_pointgraph (LabelledPointUndirectedGraph) – Labelled point undirected graph wrapping the given points with the
given semantic labels applied.

	Raises

	
	ValueError – If dict passed instead of OrderedDict

	ValueError – If any of the label masks differs in size to the points.

	ValueError – If there exists any point in the points that is not covered
 by a label.

	
classmethod init_with_all_label(points, adjacency_matrix, copy=True)[source]

	Static constructor to create a LabelledPointUndirectedGraph with
a single default ‘all’ label that covers all points.

	Parameters

	
	points (ndarray) – The points representing the landmarks.

	adjacency_matrix ((n_vertices, n_vertices,) ndarray or csr_matrix) – The adjacency matrix of the graph. The non-edges must be represented
with zeros and the edges can have a weight value.

	Note

	adjacency_matrix must be symmetric.

	copy (bool, optional) – If True, a copy of data is stored on the group.

	Returns

	labelled_pointgraph (LabelledPointUndirectedGraph) – Labelled pointgraph wrapping the given points with a single label
called ‘all’ that is True for all points.

	
is_edge(vertex_1, vertex_2, skip_checks=False)

	Whether there is an edge between the provided vertices.

	Parameters

	
	vertex_1 (int) – The first selected vertex. Parent if the graph is directed.

	vertex_2 (int) – The second selected vertex. Child if the graph is directed.

	skip_checks (bool, optional) – If False, the given vertices will be checked.

	Returns

	is_edge (bool) – True if there is an edge connecting vertex_1 and
vertex_2.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
is_tree()

	Checks if the graph is tree.

	Returns

	is_true (bool) – If the graph is a tree.

	
isolated_vertices()

	Returns the isolated vertices of the graph (if any), i.e. the vertices
that have no edge connections.

	Returns

	isolated_vertices (list) – A list of the isolated vertices. If there aren’t any, it returns
an empty list.

	
minimum_spanning_tree(root_vertex)

	Returns the minimum spanning tree of the graph using Kruskal’s
algorithm.

	Parameters

	root_vertex (int) – The vertex that will be set as root in the output MST.

	Returns

	mst (PointTree) – The computed minimum spanning tree with the points of self.

	Raises

	ValueError – Cannot compute minimum spanning tree of a graph with isolated
 vertices

	
n_neighbours(vertex, skip_checks=False)

	Returns the number of neighbours of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	n_neighbours (int) – The number of neighbours.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
n_paths(start, end)

	Returns the number of all the paths (without cycles) existing from
start vertex to end vertex.

	Parameters

	
	start (int) – The vertex from which the paths start.

	end (int) – The vertex from which the paths end.

	Returns

	paths (int) – The paths’ numbers.

	
neighbours(vertex, skip_checks=False)

	Returns the neighbours of the selected vertex.

	Parameters

	
	vertex (int) – The selected vertex.

	skip_checks (bool, optional) – If False, the given vertex will be checked.

	Returns

	neighbours (list) – The list of neighbours.

	Raises

	ValueError – The vertex must be between 0 and {n_vertices-1}.

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
remove_label(label)[source]

	Returns a new LabelledPointUndirectedGraph that does not contain
the given label.

Note

You cannot delete a semantic label and leave the labelled point
graph partially unlabelled. Labelled point graphs must contain
labels for every point.

	Parameters

	label (string) – The label to remove.

	Raises

	ValueError – If deleting the label would leave some points unlabelled.

	
tojson()[source]

	Convert this LabelledPointUndirectedGraph to a dictionary JSON
representation.

	Returns

	json (dict) – Dictionary conforming to the LJSON v2 specification.

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
with_labels(labels)[source]

	A new labelled point undirected graph that contains only the given
labels.

	Parameters

	labels (str or list of str) – Label(s) that should be kept in the returned labelled point graph.

	Returns

	labelled_pointgraph (LabelledPointUndirectedGraph) – A new labelled point undirected graph with the same group label but
containing only the given label(s).

	
without_labels(labels)[source]

	A new labelled point undirected graph that excludes certain labels.

	Parameters

	labels (str or list of str) – Label(s) that should be excluded in the returned labelled point
graph.

	Returns

	labelled_pointgraph (LabelledPointUndirectedGraph) – A new labelled point undirected graph with the same group label but
containing all labels except the given label.

	
property edges

	Returns the ndarray of edges, i.e. all the pairs of vertices that are
connected with an edge.

	Type

	(n_edges, 2,) ndarray

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property labels

	The list of labels that belong to this group.

	Type

	list of str

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_edges

	Returns the number of edges.

	Type

	int

	
property n_labels

	Number of labels in the group.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_landmarks

	The total number of points in the group.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_vertices

	Returns the number of vertices.

	Type

	int

	
property vertices

	Returns the list of vertices.

	Type

	list

 empty_graph

empty_graph

	
menpo.shape.empty_graph(shape, return_pointgraph=True)[source]

	Returns an empty graph given the landmarks configuration of a shape
instance.

	Parameters

	
	shape (PointCloud or subclass) – The shape instance that defines the landmarks configuration based on
which the graph will be created.

	return_pointgraph (bool, optional) – If True, then a PointUndirectedGraph instance will be
returned. If False, then an UndirectedGraph instance will be
returned.

	Returns

	graph (UndirectedGraph or PointUndirectedGraph) – The generated graph.

 star_graph

star_graph

	
menpo.shape.star_graph(shape, root_vertex, graph_cls=<class 'menpo.shape.graph.PointTree'>)[source]

	Returns a star graph given the landmarks configuration of a shape instance.

	Parameters

	
	shape (PointCloud or subclass) – The shape instance that defines the landmarks configuration based on
which the graph will be created.

	root_vertex (int) – The root of the star tree.

	graph_cls (Graph or PointGraph subclass) – The output graph type.
Possible options are

{:map:`UndirectedGraph`, :map:`DirectedGraph`, :map:`Tree`,
 :map:`PointUndirectedGraph`, :map:`PointDirectedGraph`,
 :map:`PointTree`}

	Returns

	graph (Graph or PointGraph subclass) – The generated graph.

	Raises

	ValueError – graph_cls must be UndirectedGraph, DirectedGraph, Tree,
 PointUndirectedGraph, PointDirectedGraph or PointTree.

 complete_graph

complete_graph

	
menpo.shape.complete_graph(shape, graph_cls=<class 'menpo.shape.graph.PointUndirectedGraph'>)[source]

	Returns a complete graph given the landmarks configuration of a shape
instance.

	Parameters

	
	shape (PointCloud or subclass) – The shape instance that defines the landmarks configuration based on
which the graph will be created.

	graph_cls (Graph or PointGraph subclass) – The output graph type.
Possible options are

{:map:`UndirectedGraph`, :map:`DirectedGraph`,
 :map:`PointUndirectedGraph`, :map:`PointDirectedGraph`}

	Returns

	graph (Graph or PointGraph subclass) – The generated graph.

	Raises

	ValueError – graph_cls must be UndirectedGraph, DirectedGraph, PointUndirectedGraph
 or PointDirectedGraph.

 chain_graph

chain_graph

	
menpo.shape.chain_graph(shape, graph_cls=<class 'menpo.shape.graph.PointDirectedGraph'>, closed=False)[source]

	Returns a chain graph given the landmarks configuration of a shape instance.

	Parameters

	
	shape (PointCloud or subclass) – The shape instance that defines the landmarks configuration based on
which the graph will be created.

	graph_cls (Graph or PointGraph subclass) – The output graph type.
Possible options are

{:map:`UndirectedGraph`, :map:`DirectedGraph`, :map:`Tree`,
 :map:`PointUndirectedGraph`, :map:`PointDirectedGraph`,
 :map:`PointTree`}

	closed (bool, optional) – If True, then the chain will be closed (i.e. edge between the
first and last vertices).

	Returns

	graph (Graph or PointGraph subclass) – The generated graph.

	Raises

	
	ValueError – A closed chain graph cannot be a Tree or PointTree instance.

	ValueError – graph_cls must be UndirectedGraph, DirectedGraph, Tree,
 PointUndirectedGraph, PointDirectedGraph or PointTree.

 delaunay_graph

delaunay_graph

	
menpo.shape.delaunay_graph(shape, return_pointgraph=True)[source]

	Returns a graph with the edges being generated by Delaunay triangulation.

	Parameters

	
	shape (PointCloud or subclass) – The shape instance that defines the landmarks configuration based on
which the graph will be created.

	return_pointgraph (bool, optional) – If True, then a PointUndirectedGraph instance will be
returned. If False, then an UndirectedGraph instance will be
returned.

	Returns

	graph (UndirectedGraph or PointUndirectedGraph) – The generated graph.

 stencil_grid

stencil_grid

	
menpo.shape.stencil_grid(stencil, shape, dtype=None, format=None)[source]

	Construct a sparse matrix form a local matrix stencil

This function is useful for building sparse adjacency matrices according
to a specific connectivity pattern.

This function is borrowed from the PyAMG project, under the permission of
the MIT license:

The MIT License (MIT)

Copyright (c) 2008-2015 PyAMG Developers

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

The original version of this file can be found here:

https://github.com/pyamg/pyamg/blob/621d63411895898660e5ea078840118905bec061/pyamg/gallery/stencil.py

This file has been modified to fit the style standards of the Menpo
project.

	Parameters

	
	S (ndarray) – Matrix stencil stored in N-d array

	grid (tuple) – Tuple containing the N shape dimensions (shape)

	dtype (np.dtype, optional) – Numpy data type of the result

	format (str, optional) – Sparse matrix format to return, e.g. “csr”, “coo”, etc.

	Returns

	A (sparse matrix) – Sparse matrix which represents the operator given by applying
stencil stencil at each vertex of a regular shape with given dimensions.

Notes

The shape vertices are enumerated as arange(prod(shape)).reshape(shape).
This implies that the last shape dimension cycles fastest, while the
first dimension cycles slowest. For example, if shape=(2,3) then the
shape vertices are ordered as (0,0), (0,1), (0,2), (1,0), (1,1), (1,2).

This coincides with the ordering used by the NumPy functions
ndenumerate() and mgrid().

	Raises

	
	ValueError – If the stencil shape is not odd.

	ValueError – If the stencil dimension does not equal the number of shape dimensions

	ValueError – If the shape dimensions are not all positive

Examples

>>> import numpy as np
>>> from menpo.shape import stencil_grid
>>> stencil = [[0,-1,0],[-1,4,-1],[0,-1,0]] # 2D Poisson stencil
>>> shape = (3, 3) # 2D shape with shape 3x3
>>> A = stencil_grid(stencil, shape, dtype=np.float, format='csr')
>>> A.todense()
matrix([[4., -1., 0., -1., 0., 0., 0., 0., 0.],
 [-1., 4., -1., 0., -1., 0., 0., 0., 0.],
 [0., -1., 4., 0., 0., -1., 0., 0., 0.],
 [-1., 0., 0., 4., -1., 0., -1., 0., 0.],
 [0., -1., 0., -1., 4., -1., 0., -1., 0.],
 [0., 0., -1., 0., -1., 4., 0., 0., -1.],
 [0., 0., 0., -1., 0., 0., 4., -1., 0.],
 [0., 0., 0., 0., -1., 0., -1., 4., -1.],
 [0., 0., 0., 0., 0., -1., 0., -1., 4.]])

>>> stencil = [[0,1,0],[1,0,1],[0,1,0]] # 2D Lattice Connectivity
>>> shape = (3, 3) # 2D shape with shape 3x3
>>> A = stencil_grid(stencil, shape, dtype=np.float, format='csr')
>>> A.todense()
matrix([[0., 1., 0., 1., 0., 0., 0., 0., 0.],
 [1., 0., 1., 0., 1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0., 1., 0., 0., 0.],
 [1., 0., 0., 0., 1., 0., 1., 0., 0.],
 [0., 1., 0., 1., 0., 1., 0., 1., 0.],
 [0., 0., 1., 0., 1., 0., 0., 0., 1.],
 [0., 0., 0., 1., 0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1., 0., 1., 0., 1.],
 [0., 0., 0., 0., 0., 1., 0., 1., 0.]])

 TriMesh

TriMesh

	
class menpo.shape.TriMesh(points, trilist=None, copy=True)[source]

	Bases: PointCloud

A PointCloud with a connectivity defined by a triangle list. These
are designed to be explicitly 2D or 3D.

	Parameters

	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delaunay triangulation of
the points will be used instead.

	copy (bool, optional) – If False, the points will not be copied on assignment.
Any trilist will also not be copied.
In general this should only be used if you know what you are doing.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)[source]

	Visualization of the TriMesh in 2D.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the TriMesh will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the TriMesh as a percentage of the TriMesh’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the TriMesh as a percentage of the TriMesh’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	Visualize the landmarks. This method will appear on the TriMesh as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_pointgraph(copy=True, skip_checks=False)[source]

	Converts the TriMesh to a PointUndirectedGraph.

	Parameters

	
	copy (bool, optional) – If True, the graph will be a copy.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Returns

	pointgraph (PointUndirectedGraph) – The point graph.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
boundary_tri_index()[source]

	Boolean index into triangles that are at the edge of the TriMesh.
The boundary vertices can be visualized as follows

tri_mask = mesh.boundary_tri_index()
boundary_points = mesh.points[mesh.trilist[tri_mask].ravel()]
pc = menpo.shape.PointCloud(boundary_points)
pc.view()

	Returns

	boundary_tri_index ((n_tris,) ndarray) – For each triangle (ABC), returns whether any of it’s edges is not
also an edge of another triangle (and so this triangle exists on
the boundary of the TriMesh)

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
edge_indices()[source]

	An unordered index into points that rebuilds the edges of this
TriMesh.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_indices() for a single index
for each physical edge on the TriMesh.

	Returns

	edge_indices ((n_tris * 3, 2) ndarray) – For each triangle (ABC), returns the pair of point indices that
rebuild AB, BC, CA. All edge indices are concatenated for a total
of n_tris * 3 edge_indices. The ordering is done so that each
triangle is returned in order
e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, …]

	
edge_lengths()[source]

	The length of each edge in this TriMesh.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_indices() for a single
index for each physical edge on the TriMesh. The ordering
matches the case for edges and edge_indices.

	Returns

	edge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each edge in this TriMesh.

	
edge_vectors()[source]

	A vector of edges of each triangle face.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_vectors() for a
single vector for each physical edge on the TriMesh.

	Returns

	edges ((n_tris * 3, n_dims) ndarray) – For each triangle (ABC), returns the edge vectors AB, BC, CA. All
edges are concatenated for a total of n_tris * 3 edges.
The ordering is done so that each triangle is returned in order
e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, …]

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the TriMesh. This is then broadcast across the dimensions
of the mesh and returns a new mesh containing only those
points that were True in the mask.

	Parameters

	mask ((n_points,) ndarray) – 1D array of booleans

	Returns

	mesh (TriMesh) – A new mesh that has been masked.

	
from_tri_mask(tri_mask)[source]

	A 1D boolean array with the same number of elements as the number of
triangles in the TriMesh. This is then broadcast across the dimensions
of the mesh and returns a new mesh containing only those
triangles that were True in the mask.

	Parameters

	mask ((n_tris,) ndarray) – 1D array of booleans

	Returns

	mesh (TriMesh) – A new mesh that has been masked by triangles.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None)[source]

	Create a TriMesh that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

The triangulation will be right-handed and the diagonal will go from
the top left to the bottom right of a square on the grid.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	Returns

	trimesh (TriMesh) – A TriMesh arranged in a grid.

	
classmethod init_from_depth_image(depth_image)[source]

	Return a 3D triangular mesh from the given depth image. The depth image
is assumed to represent height/depth values and the XY coordinates
are assumed to unit spaced and represent image coordinates. This is
particularly useful for visualising depth values that have been
recovered from images.

	Parameters

	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	Returns

	depth_cloud (type(cls)) – A new 3D TriMesh with unit XY coordinates and the given depth
values as Z coordinates. The trilist is constructed as in
init_2d_grid().

	
mean_edge_length(unique=True)[source]

	The mean length of each edge in this TriMesh.

	Parameters

	unique (bool, optional) – If True, each shared edge will only be counted once towards
the average. If false, shared edges will be counted twice.

	Returns

	mean_edge_length (float) – The mean length of each edge in this TriMesh

	
mean_tri_area()[source]

	The mean area of each triangle face in this TriMesh.

	Returns

	mean_tri_area (float) – The mean area of each triangle face in this TriMesh

	Raises

	ValueError – If mesh is not 3D

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
tojson()[source]

	Convert this TriMesh to a dictionary representation suitable
for inclusion in the LJSON landmark format. Note that this enforces a
simpler representation, and as such is not suitable for
a permanent serialization of a TriMesh (to be clear,
TriMesh’s serialized as part of a landmark set will be rebuilt
as a PointUndirectedGraph).

	Returns

	json (dict) – Dictionary with points and connectivity keys.

	
tri_areas()[source]

	The area of each triangle face.

	Returns

	areas ((n_tris,) ndarray) – Area of each triangle, ordered as the trilist is

	Raises

	ValueError – If mesh is not 2D or 3D

	
tri_normals()[source]

	Compute the triangle face normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns

	normals ((n_tris, 3) ndarray) – Normal at each triangle face.

	Raises

	ValueError – If mesh is not 3D

	
unique_edge_indices()[source]

	An unordered index into points that rebuilds the unique edges of
this TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	unique_edge_indices ((n_unique_edges, 2) ndarray) – Return a point index that rebuilds all edges present in this
TriMesh only once.

	
unique_edge_lengths()[source]

	The length of each edge in this TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	edge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each edge in this TriMesh.

	
unique_edge_vectors()[source]

	An unordered vector of unique edges for the whole TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	unique_edge_vectors ((n_unique_edges, n_dims) ndarray) – Vectors for each unique edge in this TriMesh.

	
vertex_normals()[source]

	Compute the per-vertex normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns

	normals ((n_points, 3) ndarray) – Normal at each point.

	Raises

	ValueError – If mesh is not 3D

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_tris

	The number of triangles in the triangle list.

	Type

	int

 ColouredTriMesh

ColouredTriMesh

	
class menpo.shape.ColouredTriMesh(points, trilist=None, colours=None, copy=True)[source]

	Bases: TriMesh

Combines a TriMesh with a colour per vertex.

	Parameters

	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delaunay triangulation of
the points will be used instead.

	colours ((N, 3) ndarray, optional) – The floating point RGB colour per vertex. If not given, grey will be
assigned to each vertex.

	copy (bool, optional) – If False, the points, trilist and colours will not be copied on
assignment.
In general this should only be used if you know what you are doing.

	Raises

	ValueError – If the number of colour values does not match the number of vertices.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)[source]

	Visualization of the TriMesh in 2D. Currently, explicit coloured TriMesh
viewing is not supported, and therefore viewing falls back to uncoloured
2D TriMesh viewing.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the ColouredTriMesh will be viewed as if it is in the
image coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the TriMesh as a percentage of the TriMesh’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the TriMesh as a percentage of the TriMesh’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	Raises

	warning – 2D Viewing of Coloured TriMeshes is not supported, automatically
 falls back to 2D TriMesh viewing.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the landmarks. This method will appear on the TriMesh as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_pointgraph(copy=True, skip_checks=False)

	Converts the TriMesh to a PointUndirectedGraph.

	Parameters

	
	copy (bool, optional) – If True, the graph will be a copy.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Returns

	pointgraph (PointUndirectedGraph) – The point graph.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
boundary_tri_index()

	Boolean index into triangles that are at the edge of the TriMesh.
The boundary vertices can be visualized as follows

tri_mask = mesh.boundary_tri_index()
boundary_points = mesh.points[mesh.trilist[tri_mask].ravel()]
pc = menpo.shape.PointCloud(boundary_points)
pc.view()

	Returns

	boundary_tri_index ((n_tris,) ndarray) – For each triangle (ABC), returns whether any of it’s edges is not
also an edge of another triangle (and so this triangle exists on
the boundary of the TriMesh)

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
clip_texture(range=(0.0, 1.0))[source]

	Method that returns a copy of the object with the coloured values
clipped in range (0, 1).

	Parameters

	range ((float, float), optional) – The clipping range.

	Returns

	self (ColouredTriMesh) – A copy of self with its texture clipped.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
edge_indices()

	An unordered index into points that rebuilds the edges of this
TriMesh.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_indices() for a single index
for each physical edge on the TriMesh.

	Returns

	edge_indices ((n_tris * 3, 2) ndarray) – For each triangle (ABC), returns the pair of point indices that
rebuild AB, BC, CA. All edge indices are concatenated for a total
of n_tris * 3 edge_indices. The ordering is done so that each
triangle is returned in order
e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, …]

	
edge_lengths()

	The length of each edge in this TriMesh.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_indices() for a single
index for each physical edge on the TriMesh. The ordering
matches the case for edges and edge_indices.

	Returns

	edge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each edge in this TriMesh.

	
edge_vectors()

	A vector of edges of each triangle face.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_vectors() for a
single vector for each physical edge on the TriMesh.

	Returns

	edges ((n_tris * 3, n_dims) ndarray) – For each triangle (ABC), returns the edge vectors AB, BC, CA. All
edges are concatenated for a total of n_tris * 3 edges.
The ordering is done so that each triangle is returned in order
e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, …]

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the ColouredTriMesh. This is then broadcast across the
dimensions of the mesh and returns a new mesh containing only those
points that were True in the mask.

	Parameters

	mask ((n_points,) ndarray) – 1D array of booleans

	Returns

	mesh (ColouredTriMesh) – A new mesh that has been masked.

	
from_tri_mask(tri_mask)

	A 1D boolean array with the same number of elements as the number of
triangles in the TriMesh. This is then broadcast across the dimensions
of the mesh and returns a new mesh containing only those
triangles that were True in the mask.

	Parameters

	mask ((n_tris,) ndarray) – 1D array of booleans

	Returns

	mesh (TriMesh) – A new mesh that has been masked by triangles.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None, colours=None)[source]

	Create a ColouredTriMesh that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

The triangulation will be right-handed and the diagonal will go from
the top left to the bottom right of a square on the grid.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	colours ((N, 3) ndarray, optional) – The floating point RGB colour per vertex. If not given, grey will be
assigned to each vertex.

	Returns

	trimesh (TriMesh) – A TriMesh arranged in a grid.

	
classmethod init_from_depth_image(depth_image, colours=None)[source]

	Return a 3D textured triangular mesh from the given depth image. The
depth image is assumed to represent height/depth values and the XY
coordinates are assumed to unit spaced and represent image coordinates.
This is particularly useful for visualising depth values that have been
recovered from images.

The optionally passed texture will be textured mapped onto the planar
surface using the correct texture coordinates for an image of the
same shape as depth_image.

	Parameters

	
	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	colours ((N, 3) ndarray, optional) – The floating point RGB colour per vertex. If not given, grey will be
assigned to each vertex.

	Returns

	depth_cloud (type(cls)) – A new 3D TriMesh with unit XY coordinates and the given depth
values as Z coordinates. The trilist is constructed as in
init_2d_grid().

	
mean_edge_length(unique=True)

	The mean length of each edge in this TriMesh.

	Parameters

	unique (bool, optional) – If True, each shared edge will only be counted once towards
the average. If false, shared edges will be counted twice.

	Returns

	mean_edge_length (float) – The mean length of each edge in this TriMesh

	
mean_tri_area()

	The mean area of each triangle face in this TriMesh.

	Returns

	mean_tri_area (float) – The mean area of each triangle face in this TriMesh

	Raises

	ValueError – If mesh is not 3D

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
rescale_texture(minimum, maximum, per_channel=True)[source]

	A copy of this mesh with colours linearly rescaled to fit a range.

	Parameters

	
	minimum (float) – The minimal value of the rescaled colours

	maximum (float) – The maximal value of the rescaled colours

	per_channel (boolean, optional) – If True, each channel will be rescaled independently. If
False, the scaling will be over all channels.

	Returns

	coloured_mesh (type(self)) – A copy of this mesh with colours linearly rescaled to fit in the
range provided.

	
tojson()

	Convert this TriMesh to a dictionary representation suitable
for inclusion in the LJSON landmark format. Note that this enforces a
simpler representation, and as such is not suitable for
a permanent serialization of a TriMesh (to be clear,
TriMesh’s serialized as part of a landmark set will be rebuilt
as a PointUndirectedGraph).

	Returns

	json (dict) – Dictionary with points and connectivity keys.

	
tri_areas()

	The area of each triangle face.

	Returns

	areas ((n_tris,) ndarray) – Area of each triangle, ordered as the trilist is

	Raises

	ValueError – If mesh is not 2D or 3D

	
tri_normals()

	Compute the triangle face normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns

	normals ((n_tris, 3) ndarray) – Normal at each triangle face.

	Raises

	ValueError – If mesh is not 3D

	
unique_edge_indices()

	An unordered index into points that rebuilds the unique edges of
this TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	unique_edge_indices ((n_unique_edges, 2) ndarray) – Return a point index that rebuilds all edges present in this
TriMesh only once.

	
unique_edge_lengths()

	The length of each edge in this TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	edge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each edge in this TriMesh.

	
unique_edge_vectors()

	An unordered vector of unique edges for the whole TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	unique_edge_vectors ((n_unique_edges, n_dims) ndarray) – Vectors for each unique edge in this TriMesh.

	
vertex_normals()

	Compute the per-vertex normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns

	normals ((n_points, 3) ndarray) – Normal at each point.

	Raises

	ValueError – If mesh is not 3D

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_channels

	The number of channels of colour used (e.g. 3 for RGB).

	Type

	int

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_tris

	The number of triangles in the triangle list.

	Type

	int

 TexturedTriMesh

TexturedTriMesh

	
class menpo.shape.TexturedTriMesh(points, tcoords, texture, trilist=None, copy=True)[source]

	Bases: TriMesh

Combines a TriMesh with a texture. Also encapsulates the texture
coordinates required to render the texture on the mesh.

	Parameters

	
	points ((n_points, n_dims) ndarray) – The array representing the points.

	tcoords ((N, 2) ndarray) – The texture coordinates for the mesh.

	texture (Image) – The texture for the mesh.

	trilist ((M, 3) ndarray or None, optional) – The triangle list. If None, a Delaunay triangulation of
the points will be used instead.

	copy (bool, optional) – If False, the points, trilist and texture will not be copied on
assignment.
In general this should only be used if you know what you are doing.

	
_view_2d(figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), label=None, **kwargs)[source]

	Visualization of the TriMesh in 2D. Currently, explicit textured TriMesh
viewing is not supported, and therefore viewing falls back to untextured
2D TriMesh viewing.

	Returns

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the TexturedTriMesh will be viewed as if it is in the
image coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) –

The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) –

The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the TriMesh as a percentage of the TriMesh’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the TriMesh as a percentage of the TriMesh’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None, optional) – The size of the figure in inches.

	label (str, optional) – The name entry in case of a legend.

	Returns

	viewer (PointGraphViewer2d) – The viewer object.

	Raises

	warning – 2D Viewing of Coloured TriMeshes is not supported, automatically
 falls back to 2D TriMesh viewing.

	
_view_landmarks_2d(group=None, with_labels=None, without_labels=None, figure_id=None, new_figure=False, image_view=True, render_lines=True, line_colour='k', line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_lines_lms=True, line_colour_lms=None, line_style_lms='-', line_width_lms=1, render_markers_lms=True, marker_style_lms='o', marker_size_lms=5, marker_face_colour_lms=None, marker_edge_colour_lms=None, marker_edge_width_lms=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=False, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the landmarks. This method will appear on the TriMesh as
view_landmarks.

	Parameters

	
	group (str or``None`` optional) – The landmark group to be visualized. If None and there are more
than one landmark groups, an error is raised.

	with_labels (None or str or list of str, optional) – If not None, only show the given label(s). Should not be
used with the without_labels kwarg.

	without_labels (None or str or list of str, optional) – If not None, show all except the given label(s). Should not
be used with the with_labels kwarg.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the PointCloud will be viewed as if it is in the image
coordinate system.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_lines_lms (bool, optional) – If True, the edges of the landmarks will be rendered.

	line_colour_lms (See Below, optional) – The colour of the lines of the landmarks.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style_lms ({-, --, -., :}, optional) – The style of the lines of the landmarks.

	line_width_lms (float, optional) – The width of the lines of the landmarks.

	render_markers – If True, the markers of the landmarks will be rendered.

	marker_style – The style of the markers of the landmarks. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size – The size of the markers of the landmarks in points.

	marker_face_colour – The face (filling) colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour – The edge colour of the markers of the landmarks.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width – The width of the markers’ edge of the landmarks.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the PointCloud as a percentage of the PointCloud’s
width. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the PointCloud as a percentage of the PointCloud’s
height. If tuple or list, then it defines the axis limits. If
None, then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Raises

	
	ValueError – If both with_labels and without_labels are passed.

	ValueError – If the landmark manager doesn’t contain the provided group label.

	
as_pointgraph(copy=True, skip_checks=False)

	Converts the TriMesh to a PointUndirectedGraph.

	Parameters

	
	copy (bool, optional) – If True, the graph will be a copy.

	skip_checks (bool, optional) – If True, no checks will be performed.

	Returns

	pointgraph (PointUndirectedGraph) – The point graph.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
boundary_tri_index()

	Boolean index into triangles that are at the edge of the TriMesh.
The boundary vertices can be visualized as follows

tri_mask = mesh.boundary_tri_index()
boundary_points = mesh.points[mesh.trilist[tri_mask].ravel()]
pc = menpo.shape.PointCloud(boundary_points)
pc.view()

	Returns

	boundary_tri_index ((n_tris,) ndarray) – For each triangle (ABC), returns whether any of it’s edges is not
also an edge of another triangle (and so this triangle exists on
the boundary of the TriMesh)

	
bounding_box()

	Return a bounding box from two corner points as a directed graph.
In the case of a 2D pointcloud, first point (0) should be nearest the
origin. In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

In the case of a 3D pointcloud, the first point (0) should be the
near closest to the origin and the second point is the far opposite
corner.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box of the PointCloud.

	
bounds(boundary=0)

	The minimum to maximum extent of the PointCloud. An optional boundary
argument can be provided to expand the bounds by a constant margin.

	Parameters

	boundary (float) – A optional padding distance that is added to the bounds. Default
is 0, meaning the max/min of tightest possible containing
square/cube/hypercube is returned.

	Returns

	
	min_b ((n_dims,) ndarray) – The minimum extent of the PointCloud and boundary along
each dimension

	max_b ((n_dims,) ndarray) – The maximum extent of the PointCloud and boundary along
each dimension

	
centre()

	The mean of all the points in this PointCloud (centre of mass).

	Returns

	centre ((n_dims) ndarray) – The mean of this PointCloud’s points.

	
centre_of_bounds()

	The centre of the absolute bounds of this PointCloud. Contrast with
centre(), which is the mean point position.

	Returns

	centre (n_dims ndarray) – The centre of the bounds of this PointCloud.

	
clip_texture(range=(0.0, 1.0))[source]

	Method that returns a copy of the object with the texture values
clipped in range (0, 1).

	Parameters

	range ((float, float), optional) – The clipping range.

	Returns

	self (ColouredTriMesh) – A copy of self with its texture clipped.

	
constrain_to_bounds(bounds)

	Returns a copy of this PointCloud, constrained to lie exactly within
the given bounds. Any points outside the bounds will be ‘snapped’
to lie exactly on the boundary.

	Parameters

	bounds ((n_dims, n_dims) tuple of scalars) – The bounds to constrain this pointcloud within.

	Returns

	constrained (PointCloud) – The constrained pointcloud.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
distance_to(pointcloud, **kwargs)

	Returns a distance matrix between this PointCloud and another.
By default the Euclidean distance is calculated - see
scipy.spatial.distance.cdist for valid kwargs to change the metric
and other properties.

	Parameters

	pointcloud (PointCloud) – The second pointcloud to compute distances between. This must be
of the same dimension as this PointCloud.

	Returns

	distance_matrix ((n_points, n_points) ndarray) – The symmetric pairwise distance matrix between the two PointClouds
s.t. distance_matrix[i, j] is the distance between the i’th
point of this PointCloud and the j’th point of the input
PointCloud.

	
edge_indices()

	An unordered index into points that rebuilds the edges of this
TriMesh.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_indices() for a single index
for each physical edge on the TriMesh.

	Returns

	edge_indices ((n_tris * 3, 2) ndarray) – For each triangle (ABC), returns the pair of point indices that
rebuild AB, BC, CA. All edge indices are concatenated for a total
of n_tris * 3 edge_indices. The ordering is done so that each
triangle is returned in order
e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, …]

	
edge_lengths()

	The length of each edge in this TriMesh.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_indices() for a single
index for each physical edge on the TriMesh. The ordering
matches the case for edges and edge_indices.

	Returns

	edge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each edge in this TriMesh.

	
edge_vectors()

	A vector of edges of each triangle face.

Note that there will be two edges present in cases where two triangles
‘share’ an edge. Consider unique_edge_vectors() for a
single vector for each physical edge on the TriMesh.

	Returns

	edges ((n_tris * 3, n_dims) ndarray) – For each triangle (ABC), returns the edge vectors AB, BC, CA. All
edges are concatenated for a total of n_tris * 3 edges.
The ordering is done so that each triangle is returned in order
e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, …]

	
from_mask(mask)[source]

	A 1D boolean array with the same number of elements as the number of
points in the TexturedTriMesh. This is then broadcast across the
dimensions of the mesh and returns a new mesh containing only those
points that were True in the mask.

	Parameters

	mask ((n_points,) ndarray) – 1D array of booleans

	Returns

	mesh (TexturedTriMesh) – A new mesh that has been masked.

	
from_tri_mask(tri_mask)

	A 1D boolean array with the same number of elements as the number of
triangles in the TriMesh. This is then broadcast across the dimensions
of the mesh and returns a new mesh containing only those
triangles that were True in the mask.

	Parameters

	mask ((n_tris,) ndarray) – 1D array of booleans

	Returns

	mesh (TriMesh) – A new mesh that has been masked by triangles.

	
from_vector(flattened)[source]

	Builds a new TexturedTriMesh given the flattened 1D vector.
Note that the trilist, texture, and tcoords will be drawn from self.

	Parameters

	flattened ((N,) ndarray) – Vector representing a set of points.

	Returns

	trimesh (TriMesh) – A new trimesh created from the vector with self trilist.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
h_points()

	Convert poincloud to a homogeneous array: (n_dims + 1, n_points)

	Type

	type(self)

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_2d_grid(shape, spacing=None, tcoords=None, texture=None)[source]

	Create a TexturedTriMesh that exists on a regular 2D grid. The first
dimension is the number of rows in the grid and the second dimension
of the shape is the number of columns. spacing optionally allows
the definition of the distance between points (uniform over points).
The spacing may be different for rows and columns.

The triangulation will be right-handed and the diagonal will go from
the top left to the bottom right of a square on the grid.

If no texture is passed a blank (black) texture is attached with
correct texture coordinates for texture mapping an image of the same
size as shape.

	Parameters

	
	shape (tuple of 2 int) – The size of the grid to create, this defines the number of points
across each dimension in the grid. The first element is the number
of rows and the second is the number of columns.

	spacing (int or tuple of 2 int, optional) – The spacing between points. If a single int is provided, this
is applied uniformly across each dimension. If a tuple is
provided, the spacing is applied non-uniformly as defined e.g.
(2, 3) gives a spacing of 2 for the rows and 3 for the
columns.

	tcoords ((N, 2) ndarray, optional) – The texture coordinates for the mesh.

	texture (Image, optional) – The texture for the mesh.

	Returns

	trimesh (TriMesh) – A TriMesh arranged in a grid.

	
classmethod init_from_depth_image(depth_image, tcoords=None, texture=None)[source]

	Return a 3D textured triangular mesh from the given depth image. The
depth image is assumed to represent height/depth values and the XY
coordinates are assumed to unit spaced and represent image coordinates.
This is particularly useful for visualising depth values that have been
recovered from images.

The optionally passed texture will be textured mapped onto the planar
surface using the correct texture coordinates for an image of the
same shape as depth_image.

	Parameters

	
	depth_image (Image or subclass) – A single channel image that contains depth values - as commonly
returned by RGBD cameras, for example.

	tcoords ((N, 2) ndarray, optional) – The texture coordinates for the mesh.

	texture (Image, optional) – The texture for the mesh.

	Returns

	depth_cloud (type(cls)) – A new 3D TriMesh with unit XY coordinates and the given depth
values as Z coordinates. The trilist is constructed as in
init_2d_grid().

	
mean_edge_length(unique=True)

	The mean length of each edge in this TriMesh.

	Parameters

	unique (bool, optional) – If True, each shared edge will only be counted once towards
the average. If false, shared edges will be counted twice.

	Returns

	mean_edge_length (float) – The mean length of each edge in this TriMesh

	
mean_tri_area()

	The mean area of each triangle face in this TriMesh.

	Returns

	mean_tri_area (float) – The mean area of each triangle face in this TriMesh

	Raises

	ValueError – If mesh is not 3D

	
norm(**kwargs)

	Returns the norm of this PointCloud. This is a translation and
rotation invariant measure of the point cloud’s intrinsic size - in
other words, it is always taken around the point cloud’s centre.

By default, the Frobenius norm is taken, but this can be changed by
setting kwargs - see numpy.linalg.norm for valid options.

	Returns

	norm (float) – The norm of this PointCloud

	
range(boundary=0)

	The range of the extent of the PointCloud.

	Parameters

	boundary (float) – A optional padding distance that is used to extend the bounds
from which the range is computed. Default is 0, no extension
is performed.

	Returns

	range ((n_dims,) ndarray) – The range of the PointCloud extent in each dimension.

	
rescale_texture(minimum, maximum, per_channel=True)[source]

	A copy of this mesh with texture linearly rescaled to fit a range.

	Parameters

	
	minimum (float) – The minimal value of the rescaled colours

	maximum (float) – The maximal value of the rescaled colours

	per_channel (boolean, optional) – If True, each channel will be rescaled independently. If
False, the scaling will be over all channels.

	Returns

	textured_mesh (type(self)) – A copy of this mesh with texture linearly rescaled to fit in the
range provided.

	
tcoords_pixel_scaled()[source]

	Returns a PointCloud that is modified to be suitable for directly
indexing into the pixels of the texture (e.g. for manual mapping
operations). The resulting tcoords behave just like image landmarks
do.

The operations that are performed are:

	Flipping the origin from bottom-left to top-left

	Scaling the tcoords by the image shape (denormalising them)

	Permuting the axis so that

	Returns

	tcoords_scaled (PointCloud) – A copy of the tcoords that behave like Image landmarks

Examples

Recovering pixel values for every texture coordinate:

>>> texture = texturedtrimesh.texture
>>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
>>> pixel_values_at_tcs = texture.sample(tc_ps)

	
tojson()

	Convert this TriMesh to a dictionary representation suitable
for inclusion in the LJSON landmark format. Note that this enforces a
simpler representation, and as such is not suitable for
a permanent serialization of a TriMesh (to be clear,
TriMesh’s serialized as part of a landmark set will be rebuilt
as a PointUndirectedGraph).

	Returns

	json (dict) – Dictionary with points and connectivity keys.

	
tri_areas()

	The area of each triangle face.

	Returns

	areas ((n_tris,) ndarray) – Area of each triangle, ordered as the trilist is

	Raises

	ValueError – If mesh is not 2D or 3D

	
tri_normals()

	Compute the triangle face normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns

	normals ((n_tris, 3) ndarray) – Normal at each triangle face.

	Raises

	ValueError – If mesh is not 3D

	
unique_edge_indices()

	An unordered index into points that rebuilds the unique edges of
this TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	unique_edge_indices ((n_unique_edges, 2) ndarray) – Return a point index that rebuilds all edges present in this
TriMesh only once.

	
unique_edge_lengths()

	The length of each edge in this TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	edge_lengths ((n_tris * 3,) ndarray) – Scalar euclidean lengths for each edge in this TriMesh.

	
unique_edge_vectors()

	An unordered vector of unique edges for the whole TriMesh.

Note that each physical edge will only be counted once in this method
(i.e. edges shared between neighbouring triangles are only counted once
not twice). The ordering should be considered random.

	Returns

	unique_edge_vectors ((n_unique_edges, n_dims) ndarray) – Vectors for each unique edge in this TriMesh.

	
vertex_normals()

	Compute the per-vertex normals from the current set of points and
triangle list. Only valid for 3D dimensional meshes.

	Returns

	normals ((n_points, 3) ndarray) – Normal at each point.

	Raises

	ValueError – If mesh is not 3D

	
with_dims(dims)

	Return a copy of this shape with only particular dimensions retained.

	Parameters

	dims (valid numpy array slice) – The slice that will be used on the dimensionality axis of the shape
under transform. For example, to go from a 3D shape to a 2D one,
[0, 1] could be provided or np.array([True, True, False]).

	Returns

	copy of self, with only the requested dims

	
property has_landmarks

	Whether the object has landmarks.

	Type

	bool

	
property landmarks

	The landmarks object.

	Type

	LandmarkManager

	
property lms

	Deprecated.
Maintained for compatibility, will be removed in a future version.
Returns a copy of this object, which previously would have held
the ‘underlying’ PointCloud subclass.

	Type

	self

	
property n_channels

	The number of channels of colour used (e.g. 3 for RGB).

	Type

	int

	
property n_dims

	The number of dimensions in the pointcloud.

	Type

	int

	
property n_landmark_groups

	The number of landmark groups on this object.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points in the pointcloud.

	Type

	int

	
property n_tris

	The number of triangles in the triangle list.

	Type

	int

 mean_pointcloud

mean_pointcloud

	
menpo.shape.mean_pointcloud(pointclouds)[source]

	Compute the mean of a list of PointCloud or subclass objects.
The list is assumed to be homogeneous i.e all elements of the list are
assumed to belong to the same point cloud subclass just as all elements
are also assumed to have the same number of points and represent
semantically equivalent point clouds.

	Parameters

	pointclouds (list of PointCloud or subclass) – List of point cloud or subclass objects from which we want to compute
the mean.

	Returns

	mean_pointcloud (PointCloud or subclass) – The mean point cloud or subclass.

 bounding_box

bounding_box

	
menpo.shape.bounding_box(closest_to_origin, opposite_corner)[source]

	Return a bounding box from two corner points as a directed graph.
The the first point (0) should be nearest the origin.
In the case of an image, this ordering would appear as:

0<--3
| ^
| |
v |
1-->2

In the case of a pointcloud, the ordering will appear as:

3<--2
| ^
| |
v |
0-->1

	Parameters

	
	closest_to_origin ((float, float)) – Two floats representing the coordinates closest to the origin.
Represented by (0) in the graph above. For an image, this will
be the top left. For a pointcloud, this will be the bottom left.

	opposite_corner ((float, float)) – Two floats representing the coordinates opposite the corner closest
to the origin.
Represented by (2) in the graph above. For an image, this will
be the bottom right. For a pointcloud, this will be the top right.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding box from the two given corners.

 bounding_cuboid

bounding_cuboid

	
menpo.shape.bounding_cuboid(near_closest_to_origin, far_opposite_corner)[source]

	Return a bounding cuboid from the near closest and far opposite
corners as a directed graph.

	Parameters

	
	near_closest_to_origin ((float, float, float)) – Three floats representing the coordinates of the near corner closest to
the origin.

	far_opposite_corner ((float, float, float)) – Three floats representing the coordinates of the far opposite corner
compared to near_closest_to_origin.

	Returns

	bounding_box (PointDirectedGraph) – The axis aligned bounding cuboid from the two given corners.

 menpo.transform

menpo.transform

Composite Transforms

	rotate_ccw_about_centre

	scale_about_centre

	shear_about_centre

	transform_about_centre

Homogeneous Transforms

	Homogeneous

	Affine

	Similarity

	Rotation

	Translation

	Scale

	UniformScale

	NonUniformScale

Alignments

	ThinPlateSplines

	PiecewiseAffine

	AlignmentAffine

	AlignmentSimilarity

	AlignmentRotation

	AlignmentTranslation

	AlignmentUniformScale

Group Alignments

	GeneralizedProcrustesAnalysis

Composite Transforms

	TransformChain

Radial Basis Functions

	R2LogR2RBF

	R2LogRRBF

Abstract Bases

	Transform

	Transformable

	ComposableTransform

	Invertible

	Alignment

	MultipleAlignment

	DiscreteAffine

Performance Specializations

Mix-ins that provide fast vectorized variants of methods.

	VComposable

	VInvertible

 rotate_ccw_about_centre

rotate_ccw_about_centre

	
menpo.transform.rotate_ccw_about_centre(obj, theta, degrees=True)[source]

	Return a Homogeneous Transform that implements rotating an object
counter-clockwise about its centre. The given object must be transformable
and must implement a method to provide the object centre.

	Parameters

	
	obj (Transformable) – A transformable object that has the centre method.

	theta (float) – The angle of rotation clockwise about the origin.

	degrees (bool, optional) – If True theta is interpreted as degrees. If False, theta is
interpreted as radians.

	Returns

	transform (Homogeneous) – A homogeneous transform that implements the rotation.

 scale_about_centre

scale_about_centre

	
menpo.transform.scale_about_centre(obj, scale)[source]

	Return a Homogeneous Transform that implements scaling an object about
its centre. The given object must be transformable and must implement
a method to provide the object centre.

	Parameters

	
	obj (Transformable) – A transformable object that has the centre method.

	scale (float or (n_dims,) ndarray) – The scale factor as defined in the Scale documentation.

	Returns

	transform (Homogeneous) – A homogeneous transform that implements the scaling.

 shear_about_centre

shear_about_centre

	
menpo.transform.shear_about_centre(obj, phi, psi, degrees=True)[source]

	Return an affine transform that implements shearing (distorting) an
object about its centre. The given object must be transformable and must
implement a method to provide the object centre.

	Parameters

	
	obj (Transformable) – A transformable object that has the centre method.

	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True, then phi and psi are interpreted as degrees. If False
they are interpreted as radians.

	Returns

	transform (Affine) – An affine transform that implements the shearing.

	Raises

	ValueError – Shearing can only be applied on 2D objects

 transform_about_centre

transform_about_centre

	
menpo.transform.transform_about_centre(obj, transform)[source]

	Return a Transform that implements transforming an object about
its centre. The given object must be transformable and must implement
a method to provide the object centre. More precisely, the object will be
translated to the origin (according to it’s centre), transformed, and then
translated back to it’s previous position.

	Parameters

	
	obj (Transformable) – A transformable object that has the centre method.

	transform (ComposableTransform) – A composable transform.

	Returns

	transform (Homogeneous) – A homogeneous transform that implements the scaling.

 Homogeneous

Homogeneous

	
class menpo.transform.Homogeneous(h_matrix, copy=True, skip_checks=False)[source]

	Bases: ComposableTransform, Vectorizable, VComposable, VInvertible

A simple n-dimensional homogeneous transformation.

Adds a unit homogeneous coordinate to points, performs the dot
product, re-normalizes by division by the homogeneous coordinate,
and returns the result.

Can be composed with another Homogeneous, so long as the
dimensionality matches.

	Parameters

	
	h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix defining this transform.

	copy (bool, optional) – If False, avoid copying h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, avoid sanity checks on the h_matrix. Useful for
performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)[source]

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
from_vector(vector)[source]

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_identity(n_dims)[source]

	Creates an identity matrix Homogeneous transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Homogeneous) – The identity matrix transform.

	
pseudoinverse()[source]

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	Homogeneous

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)[source]

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	Homogeneous can swallow composition with any other
Homogeneous, subclasses will have to override and be more
specific.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

 Affine

Affine

	
class menpo.transform.Affine(h_matrix, copy=True, skip_checks=False)[source]

	Bases: Homogeneous

Base class for all n-dimensional affine transformations. Provides
methods to break the transform down into its constituent
scale/rotation/translation, to view the homogeneous matrix equivalent,
and to chain this transform with other affine transformations.

	Parameters

	
	h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix of the affine transformation.

	copy (bool, optional) – If False avoid copying h_matrix for performance.

	skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
decompose()[source]

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)[source]

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)[source]

	Creates an identity matrix Affine transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Affine) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	Homogeneous

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims * (n_dims + 1) parameters - every element of the matrix but
the homogeneous part.

	Type

	int

Examples

2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 Similarity

Similarity

	
class menpo.transform.Similarity(h_matrix, copy=True, skip_checks=False)[source]

	Bases: Affine

Specialist version of an Affine that is guaranteed to be a
Similarity transform.

	Parameters

	
	h_matrix ((n_dims + 1, n_dims + 1) ndarray) – The homogeneous matrix of the affine transformation.

	copy (bool, optional) – If False avoid copying h_matrix for performance.

	skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)[source]

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Similarity) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	Homogeneous

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	Number of parameters of Similarity

2D Similarity - 4 parameters

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported

	Returns

	n_parameters (int) – The transform parameters

	Raises

	DimensionalityError, NotImplementedError – Only 2D transforms are supported.

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 Rotation

Rotation

	
class menpo.transform.Rotation(rotation_matrix, skip_checks=False)[source]

	Bases: DiscreteAffine, Similarity

Abstract n_dims rotation transform.

	Parameters

	
	rotation_matrix ((n_dims, n_dims) ndarray) – A valid, square rotation matrix

	skip_checks (bool, optional) – If True avoid sanity checks on rotation_matrix for performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
axis_and_angle_of_rotation()[source]

	Abstract method for computing the axis and angle of rotation.

	Returns

	
	axis ((n_dims,) ndarray) – The unit vector representing the axis of rotation

	angle_of_rotation (float) – The angle in radians of the rotation about the axis. The angle is
signed in a right handed sense.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_3d_from_quaternion(q)[source]

	Convenience constructor for 3D rotations based on quaternion parameters.

	Parameters

	q ((4,) ndarray) – The quaternion parameters.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_from_2d_ccw_angle(theta, degrees=True)[source]

	Convenience constructor for 2D CCW rotations about the origin.

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 2D rotation transform.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_from_3d_ccw_angle_around_x(theta, degrees=True)[source]

	Convenience constructor for 3D CCW rotations around the x axis

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_from_3d_ccw_angle_around_y(theta, degrees=True)[source]

	Convenience constructor for 3D CCW rotations around the y axis

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_from_3d_ccw_angle_around_z(theta, degrees=True)[source]

	Convenience constructor for 3D CCW rotations around the z axis

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_identity(n_dims)[source]

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Rotation) – The identity matrix transform.

	
pseudoinverse()[source]

	The inverse rotation matrix.

	Type

	Rotation

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_rotation_matrix(value, skip_checks=False)[source]

	Sets the rotation matrix.

	Parameters

	
	value ((n_dims, n_dims) ndarray) – The new rotation matrix.

	skip_checks (bool, optional) – If True avoid sanity checks on value for performance.

	
property composes_inplace_with

	Rotation can swallow composition with any other
Rotation.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	Number of parameters of Rotation. Only 3D rotations are currently
supported.

	Returns

	n_parameters (int) – The transform parameters. Only 3D rotations are currently
supported which are parametrized with quaternions.

	Raises

	DimensionalityError, NotImplementedError – Non-3D Rotations are not yet vectorizable

	
property rotation_matrix

	The rotation matrix.

	Type

	(n_dims, n_dims) ndarray

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 Translation

Translation

	
class menpo.transform.Translation(translation, skip_checks=False)[source]

	Bases: DiscreteAffine, Similarity

An n_dims-dimensional translation transform.

	Parameters

	
	translation ((n_dims,) ndarray) – The translation in each axis.

	skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)[source]

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Translation) – The identity matrix transform.

	
pseudoinverse()[source]

	The inverse translation (negated).

	Type

	Translation

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims

	Type

	int

	Type

	The number of parameters

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 Scale

Scale

	
menpo.transform.Scale(scale_factor, n_dims=None)[source]

	Factory function for producing Scale transforms. Zero scale factors are not
permitted.

A UniformScale will be produced if:

	A float scale_factor and a n_dims kwarg are provided

	A ndarray scale_factor with shape (n_dims,) is provided
with all elements being the same

A NonUniformScale will be provided if:

	A ndarray scale_factor with shape (n_dims,) is provided with
at least two differing scale factors.

	Parameters

	
	scale_factor (float or (n_dims,) ndarray) – Scale for each axis.

	n_dims (int, optional) – The dimensionality of the output transform.

	Returns

	scale (UniformScale or NonUniformScale) – The correct type of scale

	Raises

	ValueError – If any of the scale factors is zero

 UniformScale

UniformScale

	
class menpo.transform.UniformScale(scale, n_dims, skip_checks=False)[source]

	Bases: DiscreteAffine, Similarity

An abstract similarity scale transform, with a single scale component
applied to all dimensions. This is abstracted out to remove unnecessary
code duplication.

	Parameters

	
	scale ((n_dims,) ndarray) – A scale for each axis.

	n_dims (int) – The number of dimensions

	skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)[source]

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (UniformScale) – The identity matrix transform.

	
pseudoinverse()[source]

	The inverse scale.

	Type

	UniformScale

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	UniformScale can swallow composition with any other
UniformScale.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	1

	Type

	int

	Type

	The number of parameters

	
property scale

	The single scale value.

	Type

	float

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 NonUniformScale

NonUniformScale

	
class menpo.transform.NonUniformScale(scale, skip_checks=False)[source]

	Bases: DiscreteAffine, Affine

An n_dims scale transform, with a scale component for each dimension.

	Parameters

	
	scale ((n_dims,) ndarray) – A scale for each axis.

	skip_checks (bool, optional) – If True avoid sanity checks on h_matrix for performance.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)[source]

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (NonUniformScale) – The identity matrix transform.

	
pseudoinverse()[source]

	The inverse scale matrix.

	Type

	NonUniformScale

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	NonUniformScale can swallow composition with any other
NonUniformScale and UniformScale.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims. They have the form
[scale_x, scale_y,] representing the scale across each axis.

	Type

	list of int

	Type

	The number of parameters

	
property scale

	The scale vector.

	Type

	(n_dims,) ndarray

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 ThinPlateSplines

ThinPlateSplines

	
class menpo.transform.ThinPlateSplines(source, target, kernel=None, min_singular_val=0.0001)[source]

	Bases: Alignment, Transform, Invertible

The thin plate splines (TPS) alignment between 2D source and target
landmarks.

kernel can be used to specify an alternative kernel function. If
None is supplied, the R2LogR2RBF kernel will be used.

	Parameters

	
	source ((N, 2) ndarray) – The source points to apply the tps from

	target ((N, 2) ndarray) – The target points to apply the tps to

	kernel (RadialBasisFunction, optional) – The kernel to apply.

	min_singular_val (float, optional) – If the target has points that are nearly coincident, the coefficients
matrix is rank deficient, and therefore not invertible. Therefore, we
only take the inverse on the full-rank matrix and drop any singular
values that are less than this value (close to zero).

	Raises

	ValueError – TPS is only with on 2-dimensional data

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
pseudoinverse()[source]

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	type(self)

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property has_true_inverse

	False

	Type

	type

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

 PiecewiseAffine

PiecewiseAffine

	
menpo.transform.PiecewiseAffine

	alias of CachedPWA

 AlignmentAffine

AlignmentAffine

	
class menpo.transform.AlignmentAffine(source, target)[source]

	Bases: HomogFamilyAlignment, Affine

Constructs an Affine by finding the optimal affine transform to
align source to target.

	Parameters

	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

Notes

We want to find the optimal transform M which satisfies \(M a = b\)
where \(a\) and \(b\) are the source and target homogeneous
vectors respectively.

(M a)' = b'
a' M' = b'
a a' M' = a b'

a a’ is of shape (n_dim + 1, n_dim + 1) and so can be inverted
to solve for M.

This approach is the analytical linear least squares solution to the
problem at hand. It will have a solution as long as (a a’) is
non-singular, which generally means at least 2 corresponding points are
required.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()[source]

	Returns a copy of this Affine without its alignment nature.

	Returns

	transform (Affine) – A version of this affine with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity matrix Affine transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Affine) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims * (n_dims + 1) parameters - every element of the matrix but
the homogeneous part.

	Type

	int

Examples

2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 AlignmentSimilarity

AlignmentSimilarity

	
class menpo.transform.AlignmentSimilarity(source, target, rotation=True, allow_mirror=False)[source]

	Bases: HomogFamilyAlignment, Similarity

Infers the similarity transform relating two vectors with the same
dimensionality. This is simply the procrustes alignment of the
source to the target.

	Parameters

	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

	rotation (bool, optional) – If False, the rotation component of the similarity transform is not
inferred.

	allow_mirror (bool, optional) – If True, the Kabsch algorithm check is not performed, and mirroring
of the Rotation matrix is permitted.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()[source]

	Returns a copy of this similarity without it’s alignment nature.

	Returns

	transform (Similarity) – A version of this similarity with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Similarity) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	Number of parameters of Similarity

2D Similarity - 4 parameters

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported

	Returns

	n_parameters (int) – The transform parameters

	Raises

	DimensionalityError, NotImplementedError – Only 2D transforms are supported.

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 AlignmentRotation

AlignmentRotation

	
class menpo.transform.AlignmentRotation(source, target, allow_mirror=False)[source]

	Bases: HomogFamilyAlignment, Rotation

Constructs an Rotation by finding the optimal rotation transform to
align source to target.

	Parameters

	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

	allow_mirror (bool, optional) – If True, the Kabsch algorithm check is not performed, and mirroring
of the Rotation matrix is permitted.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()[source]

	Returns a copy of this rotation without its alignment nature.

	Returns

	transform (Rotation) – A version of this rotation with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
axis_and_angle_of_rotation()

	Abstract method for computing the axis and angle of rotation.

	Returns

	
	axis ((n_dims,) ndarray) – The unit vector representing the axis of rotation

	angle_of_rotation (float) – The angle in radians of the rotation about the axis. The angle is
signed in a right handed sense.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_3d_from_quaternion(q)

	Convenience constructor for 3D rotations based on quaternion parameters.

	Parameters

	q ((4,) ndarray) – The quaternion parameters.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_from_2d_ccw_angle(theta, degrees=True)

	Convenience constructor for 2D CCW rotations about the origin.

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 2D rotation transform.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_from_3d_ccw_angle_around_x(theta, degrees=True)

	Convenience constructor for 3D CCW rotations around the x axis

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_from_3d_ccw_angle_around_y(theta, degrees=True)

	Convenience constructor for 3D CCW rotations around the y axis

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_from_3d_ccw_angle_around_z(theta, degrees=True)

	Convenience constructor for 3D CCW rotations around the z axis

	Parameters

	
	theta (float) – The angle of rotation about the origin

	degrees (bool, optional) – If True theta is interpreted as a degree. If False, theta is
interpreted as radians.

	Returns

	rotation (Rotation) – A 3D rotation transform.

	
classmethod init_identity(n_dims)

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Rotation) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_rotation_matrix(value, skip_checks=False)[source]

	Sets the rotation matrix.

	Parameters

	
	value ((n_dims, n_dims) ndarray) – The new rotation matrix.

	skip_checks (bool, optional) – If True avoid sanity checks on value for performance.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	Rotation can swallow composition with any other
Rotation.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	Number of parameters of Rotation. Only 3D rotations are currently
supported.

	Returns

	n_parameters (int) – The transform parameters. Only 3D rotations are currently
supported which are parametrized with quaternions.

	Raises

	DimensionalityError, NotImplementedError – Non-3D Rotations are not yet vectorizable

	
property n_points

	The number of points on the target.

	Type

	int

	
property rotation_matrix

	The rotation matrix.

	Type

	(n_dims, n_dims) ndarray

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 AlignmentTranslation

AlignmentTranslation

	
class menpo.transform.AlignmentTranslation(source, target)[source]

	Bases: HomogFamilyAlignment, Translation

Constructs a Translation by finding the optimal translation
transform to align source to target.

	Parameters

	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()[source]

	Returns a copy of this translation without its alignment nature.

	Returns

	transform (Translation) – A version of this transform with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Translation) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims

	Type

	int

	Type

	The number of parameters

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 AlignmentUniformScale

AlignmentUniformScale

	
class menpo.transform.AlignmentUniformScale(source, target)[source]

	Bases: HomogFamilyAlignment, UniformScale

Constructs a UniformScale by finding the optimal scale transform to
align source to target.

	Parameters

	
	source (PointCloud) – The source pointcloud instance used in the alignment

	target (PointCloud) – The target pointcloud instance used in the alignment

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()[source]

	Returns a copy of this uniform scale without it’s alignment nature.

	Returns

	transform (UniformScale) – A version of this scale with the same transform behavior but
without the alignment logic.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
decompose()

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (UniformScale) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	UniformScale can swallow composition with any other
UniformScale.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	1

	Type

	int

	Type

	The number of parameters

	
property n_points

	The number of points on the target.

	Type

	int

	
property scale

	The single scale value.

	Type

	float

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

 GeneralizedProcrustesAnalysis

GeneralizedProcrustesAnalysis

	
class menpo.transform.GeneralizedProcrustesAnalysis(sources, target=None, allow_mirror=False)[source]

	Bases: MultipleAlignment

Class for aligning multiple source shapes between them.

After construction, the AlignmentSimilarity transforms used to map
each source optimally to the target can be found at transforms.

	Parameters

	
	sources (list of PointCloud) – List of pointclouds to be aligned.

	target (PointCloud, optional) – The target PointCloud to align each source to.
If None, then the mean of the sources is used.

	allow_mirror (bool, optional) – If True, the Kabsch algorithm check is not performed, and mirroring
of the Rotation matrix is permitted.

	Raises

	ValueError – Need at least two sources to align

	
mean_aligned_shape()[source]

	Returns the mean of the aligned shapes.

	Type

	PointCloud

	
mean_alignment_error()[source]

	Returns the average error of the recursive procrustes alignment.

	Type

	float

 TransformChain

TransformChain

	
class menpo.transform.TransformChain(transforms)[source]

	Bases: ComposableTransform

A chain of transforms that can be efficiently applied one after the other.

This class is the natural product of composition. Note that objects may
know how to compose themselves more efficiently - such objects implement
the ComposableTransform or VComposable interfaces.

	Parameters

	transforms (list of Transform) – The list of transforms to be applied. Note that the first transform
will be applied first - the result of which is fed into the second
transform and so on until the chain is exhausted.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
property composes_inplace_with

	The Transform s that this transform composes inplace with
natively (i.e. no TransformChain will be produced).

An attempt to compose inplace against any type that is not an instance
of this property on this class will result in an Exception.

	Type

	Transform or tuple of Transform s

	
property composes_with

	The Transform s that this transform composes with natively
(i.e. no TransformChain will be produced).

If native composition is not possible, falls back to producing a
TransformChain.

By default, this is the same list as composes_inplace_with.

	Type

	Transform or tuple of Transform s

	
property n_dims

	The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.

	Type

	int or None

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

 R2LogR2RBF

R2LogR2RBF

	
class menpo.transform.R2LogR2RBF(c)[source]

	Bases: RadialBasisFunction

The \(r^2 \log{r^2}\) basis function.

The derivative of this function is \(2 r (\log{r^2} + 1)\).

Note

\(r = \lVert x - c \rVert\)

	Parameters

	c ((n_centres, n_dims) ndarray) – The set of centers that make the basis. Usually represents a set of
source landmarks.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
property n_centres

	The number of centres.

	Type

	int

	
property n_dims

	The RBF can only be applied on points with the same dimensionality as
the centres.

	Type

	int

	
property n_dims_output

	The result of the transform has a dimension (weight) for every centre.

	Type

	int

 R2LogRRBF

R2LogRRBF

	
class menpo.transform.R2LogRRBF(c)[source]

	Bases: RadialBasisFunction

Calculates the \(r^2 \log{r}\) basis function.

The derivative of this function is \(r (1 + 2 \log{r})\).

Note

\(r = \lVert x - c \rVert\)

	Parameters

	c ((n_centres, n_dims) ndarray) – The set of centers that make the basis. Usually represents a set of
source landmarks.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
property n_centres

	The number of centres.

	Type

	int

	
property n_dims

	The RBF can only be applied on points with the same dimensionality as
the centres.

	Type

	int

	
property n_dims_output

	The result of the transform has a dimension (weight) for every centre.

	Type

	int

 Transform

Transform

	
class menpo.transform.Transform[source]

	Bases: Copyable

Abstract representation of any spatial transform.

Provides a unified interface to apply the transform with
apply_inplace() and apply().

All Transforms support basic composition to form a TransformChain.

There are two useful forms of composition. Firstly, the mathematical
composition symbol o has the following definition:

Let a(x) and b(x) be two transforms on x.
(a o b)(x) == a(b(x))

This functionality is provided by the compose_after() family of
methods:

(a.compose_after(b)).apply(x) == a.apply(b.apply(x))

Equally useful is an inversion the order of composition - so that over
time a large chain of transforms can be built to do a useful job, and
composing on this chain adds another transform to the end (after all other
preceding transforms have been performed).

For instance, let’s say we want to rescale a PointCloud p around
its mean, and then translate it some place else. It would be nice to be able
to do something like:

t = Translation(-p.centre) # translate to centre
s = Scale(2.0) # rescale
move = Translate([10, 0 ,0]) # budge along the x axis
t.compose(s).compose(-t).compose(move)

In Menpo, this functionality is provided by the compose_before()
family of methods:

(a.compose_before(b)).apply(x) == b.apply(a.apply(x))

For native composition, see the ComposableTransform subclass and
the VComposable mix-in.

For inversion, see the Invertible and VInvertible mix-ins.

For alignment, see the Alignment mix-in.

	
apply(x, batch_size=None, **kwargs)[source]

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)[source]

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)[source]

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)[source]

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
property n_dims

	The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.

	Type

	int or None

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

 Transformable

Transformable

	
class menpo.transform.base.Transformable[source]

	Bases: Copyable

Interface for objects that know how to be transformed by the
Transform interface.

When Transform.apply_inplace is called on an object, the
_transform_inplace() method is called, passing in the transforms’
_apply() function.

This allows for the object to define how it should transform itself.

	
_transform_inplace(transform)[source]

	Apply the given transform function to self inplace.

	Parameters

	transform (function) – Function that applies a transformation to the transformable object.

	Returns

	transformed (type(self)) – The transformed object, having been transformed in place.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

 ComposableTransform

ComposableTransform

	
class menpo.transform.base.composable.ComposableTransform[source]

	Bases: Transform

Transform subclass that enables native composition, such that the
behavior of multiple Transform s is composed together in a natural
way.

	
_compose_after_inplace(transform)[source]

	Specialised inplace composition. This should be overridden to provide
specific cases of composition as defined in
composes_inplace_with.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	
_compose_before_inplace(transform)[source]

	Specialised inplace composition. This should be overridden to provide
specific cases of composition as defined in
composes_inplace_with.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)[source]

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_inplace(transform)[source]

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)[source]

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)[source]

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
property composes_inplace_with

	The Transform s that this transform composes inplace with
natively (i.e. no TransformChain will be produced).

An attempt to compose inplace against any type that is not an instance
of this property on this class will result in an Exception.

	Type

	Transform or tuple of Transform s

	
property composes_with

	The Transform s that this transform composes with natively
(i.e. no TransformChain will be produced).

If native composition is not possible, falls back to producing a
TransformChain.

By default, this is the same list as composes_inplace_with.

	Type

	Transform or tuple of Transform s

	
property n_dims

	The dimensionality of the data the transform operates on.

None if the transform is not dimension specific.

	Type

	int or None

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

 Invertible

Invertible

	
class menpo.transform.base.invertible.Invertible[source]

	Bases: object

Mix-in for invertible transforms. Provides an interface for taking the
pseudo or true inverse of a transform.

Has to be implemented in conjunction with Transform.

	
pseudoinverse()[source]

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	type(self)

	
property has_true_inverse

	True if the pseudoinverse is an exact inverse.

	Type

	bool

 Alignment

Alignment

	
class menpo.transform.base.alignment.Alignment(source, target)[source]

	Bases: Targetable, Viewable

Mix-in for Transform that have been constructed from an optimisation
aligning a source PointCloud to a target PointCloud.

This is naturally an extension of the Targetable interface - we just
augment Targetable with the concept of a source, and related methods
to construct alignments between a source and a target.

Note that to inherit from Alignment, you have to be a
Transform subclass first.

	Parameters

	
	source (PointCloud) – A PointCloud that the alignment will be based from

	target (PointCloud) – A PointCloud that the alignment is targeted towards

	
aligned_source()[source]

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()[source]

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

 MultipleAlignment

MultipleAlignment

	
class menpo.transform.groupalign.base.MultipleAlignment(sources, target=None)[source]

	Bases: object

Abstract base class for aligning multiple source shapes to a target
shape.

	Parameters

	
	sources (list of PointCloud) – List of pointclouds to be aligned.

	target (PointCloud, optional) – The target PointCloud to align each source to.
If None, then the mean of the sources is used.

	Raises

	ValueError – Need at least two sources to align

 DiscreteAffine

DiscreteAffine

	
class menpo.transform.homogeneous.affine.DiscreteAffine[source]

	Bases: object

A discrete Affine transform operation (such as a Scale(),
Translation or Rotation()). Has to be invertable. Make sure
you inherit from DiscreteAffine first, for optimal
decompose() behavior.

	
decompose()[source]

	A DiscreteAffine is already maximally decomposed -
return a copy of self in a list.

	Returns

	transform (DiscreteAffine) – Deep copy of self.

 VComposable

VComposable

	
class menpo.transform.base.composable.VComposable[source]

	Bases: object

Mix-in for Vectorizable ComposableTransform s.

Use this mix-in with ComposableTransform if the
ComposableTransform in question is Vectorizable as this adds
from_vector() variants to the ComposableTransform interface.

These can be tuned for performance.

	
compose_after_from_vector_inplace(vector)[source]

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

 VInvertible

VInvertible

	
class menpo.transform.base.invertible.VInvertible[source]

	Bases: Invertible

Mix-in for Vectorizable Invertible Transform s.

Prefer this mix-in over Invertible if the Transform in
question is Vectorizable as this adds from_vector() variants
to the Invertible interface. These can be tuned for performance,
and are, for instance, needed by some of the machinery of fit.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	type(self)

	
pseudoinverse_vector(vector)[source]

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
property has_true_inverse

	True if the pseudoinverse is an exact inverse.

	Type

	bool

 menpo.visualize

menpo.visualize

Abstract Classes

	Renderer

	Viewable

	LandmarkableViewable

	MatplotlibRenderer

Patches

	view_patches

Print Utilities

	print_progress

	print_dynamic

	progress_bar_str

	bytes_str

Various

	plot_curve

	plot_gaussian_ellipses

 Renderer

Renderer

	
class menpo.visualize.Renderer(figure_id, new_figure)[source]

	Bases: object

Abstract class for rendering visualizations. Framework specific
implementations of these classes are made in order to separate
implementation cleanly from the rest of the code.

It is assumed that the renderers follow some form of stateful pattern for
rendering to Figures. Therefore, the major interface for rendering involves
providing a figure_id or a bool about whether a new figure should be
used. If neither are provided then the default state of the rendering engine
is assumed to be maintained.

Providing both a figure_id and new_figure == True is not a valid
state.

	Parameters

	
	figure_id (object) – A figure id. Could be any valid object that identifies a figure in a
given framework (str, int, float, etc.).

	new_figure (bool) – Whether the rendering engine should create a new figure.

	Raises

	ValueError – It is not valid to provide a figure id AND request a new figure to
 be rendered on.

	
clear_figure()[source]

	Abstract method for clearing the current figure.

	
force_draw()[source]

	Abstract method for forcing the current figure to render.

	
get_figure()[source]

	Abstract method for getting the correct figure to render on. Should
also set the correct figure_id for the figure.

	Returns

	figure (object) – The figure object that the renderer will render on.

	
render(**kwargs)[source]

	Abstract method to be overridden by the renderer. This will implement
the actual rendering code for a given object class.

	Parameters

	kwargs (dict) – Passed through to specific rendering engine.

	Returns

	viewer (Renderer) – Pointer to self.

	
save_figure(**kwargs)[source]

	Abstract method for saving the figure of the current figure_id to
file. It will implement the actual saving code for a given object class.

	Parameters

	kwargs (dict) – Options to be set when saving the figure to file.

 Viewable

Viewable

	
class menpo.visualize.Viewable[source]

	Bases: object

Abstract interface for objects that can visualize themselves. This assumes
that the class has dimensionality as the view method checks the n_dims
property to wire up the correct view method.

 LandmarkableViewable

LandmarkableViewable

	
class menpo.visualize.LandmarkableViewable[source]

	Bases: object

Mixin for Landmarkable and Viewable objects. Provides a
single helper method for viewing Landmarks and self on the same figure.

 MatplotlibRenderer

MatplotlibRenderer

	
class menpo.visualize.MatplotlibRenderer(figure_id, new_figure)[source]

	Bases: Renderer

Abstract class for rendering visualizations using Matplotlib.

	Parameters

	
	figure_id (int or None) – A figure id or None. None assumes we maintain the Matplotlib
state machine and use plt.gcf().

	new_figure (bool) – If True, it creates a new figure to render on.

	
clear_figure()[source]

	Method for clearing the current figure.

	
force_draw()[source]

	Method for forcing the current figure to render.

	
get_figure()[source]

	Gets the figure specified by the combination of self.figure_id and
self.new_figure. If self.figure_id == None then plt.gcf()
is used. self.figure_id is also set to the correct id of the figure
if a new figure is created.

	Returns

	figure (Matplotlib figure object) – The figure we will be rendering on.

	
render(**kwargs)

	Abstract method to be overridden by the renderer. This will implement
the actual rendering code for a given object class.

	Parameters

	kwargs (dict) – Passed through to specific rendering engine.

	Returns

	viewer (Renderer) – Pointer to self.

	
save_figure(filename, format='png', dpi=None, face_colour='w', edge_colour='w', orientation='portrait', paper_type='letter', transparent=False, pad_inches=0.1, overwrite=False)[source]

	Method for saving the figure of the current figure_id to file.

	Parameters

	
	filename (str or file-like object) – The string path or file-like object to save the figure at/into.

	format (str) – The format to use. This must match the file path if the file path is
a str.

	dpi (int > 0 or None, optional) – The resolution in dots per inch.

	face_colour (See Below, optional) – The face colour of the figure rectangle.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of len 3

	edge_colour (See Below, optional) – The edge colour of the figure rectangle.
Example options

{``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
or
``(3,)`` `ndarray`
or
`list` of len 3

	orientation ({portrait, landscape}, optional) – The page orientation.

	paper_type (See Below, optional) – The type of the paper.
Example options

{``letter``, ``legal``, ``executive``, ``ledger``,
 ``a0`` through ``a10``, ``b0` through ``b10``}

	transparent (bool, optional) – If True, the axes patches will all be transparent; the figure
patch will also be transparent unless face_colour and/or
edge_colour are specified. This is useful, for example, for
displaying a plot on top of a coloured background on a web page.
The transparency of these patches will be restored to their original
values upon exit of this function.

	pad_inches (float, optional) – Amount of padding around the figure.

	overwrite (bool, optional) – If True, the file will be overwritten if it already exists.

 view_patches

view_patches

	
menpo.visualize.view_patches(patches, patch_centers, patches_indices=None, offset_index=None, figure_id=None, new_figure=False, background='white', render_patches=True, channels=None, interpolation='none', cmap_name=None, alpha=1.0, render_patches_bboxes=True, bboxes_line_colour='r', bboxes_line_style='-', bboxes_line_width=1, render_centers=True, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))[source]

	Method that renders the provided patches on a canvas. The user can
choose whether to render the patch centers (render_centers) as well as
rectangle boundaries around the patches (render_patches_bboxes).

The patches argument can have any of the two formats that are returned
from the extract_patches() and extract_patches_around_landmarks()
methods of the Image class. Specifically it can be:

	(n_center, n_offset, self.n_channels, patch_shape) ndarray

	list of n_center * n_offset Image objects

	Parameters

	
	patches (ndarray or list) – The values of the patches. It can have any of the two formats that are
returned from the extract_patches() and
extract_patches_around_landmarks() methods. Specifically, it can
either be an (n_center, n_offset, self.n_channels, patch_shape)
ndarray or a list of n_center * n_offset Image objects.

	patch_centers (PointCloud) – The centers around which to visualize the patches.

	patches_indices (int or list of int or None, optional) – Defines the patches that will be visualized. If None, then all the
patches are selected.

	offset_index (int or None, optional) – The offset index within the provided patches argument, thus the index
of the second dimension from which to sample. If None, then 0 is
used.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	background ({'black', 'white'}, optional) – If 'black', then the background is set equal to the minimum value
of patches. If 'white', then the background is set equal to the
maximum value of patches.

	render_patches (bool, optional) – Flag that determines whether to render the patch values.

	channels (int or list of int or all or None, optional) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	render_patches_bboxes (bool, optional) – Flag that determines whether to render the bounding box lines around the
patches.

	bboxes_line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	bboxes_line_style ({-, --, -., :}, optional) – The style of the lines.

	bboxes_line_width (float, optional) – The width of the lines.

	render_centers (bool, optional) – Flag that determines whether to render the patch centers.

	render_lines (bool, optional) – If True, the edges will be rendered.

	line_colour (See Below, optional) – The colour of the lines.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (See Below, optional) – The style of the markers. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the markers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the shape as a percentage of the shape’s width. If
tuple or list, then it defines the axis limits. If None, then the
limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the shape as a percentage of the shape’s height. If
tuple or list, then it defines the axis limits. If None, then the
limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	viewer (ImageViewer) – The image viewing object.

 print_progress

print_progress

	
menpo.visualize.print_progress(iterable, prefix='', n_items=None, offset=0, show_bar=True, show_count=True, show_eta=True, end_with_newline=True, min_seconds_between_updates=0.1)[source]

	Print the remaining time needed to compute over an iterable.

To use, wrap an existing iterable with this function before processing in
a for loop (see example).

The estimate of the remaining time is based on a moving average of the last
100 items completed in the loop.

	Parameters

	
	iterable (iterable) – An iterable that will be processed. The iterable is passed through by
this function, with the time taken for each complete iteration logged.

	prefix (str, optional) – If provided a string that will be prepended to the progress report at
each level.

	n_items (int, optional) – Allows for iterator to be a generator whose length will be assumed
to be n_items. If not provided, then iterator needs to be
Sizable.

	offset (int, optional) – Useful in combination with n_items - report back the progress as
if offset items have already been handled. n_items will be left
unchanged.

	show_bar (bool, optional) – If False, The progress bar (e.g. [=========]) will be hidden.

	show_count (bool, optional) – If False, The item count (e.g. (4/25)) will be hidden.

	show_eta (bool, optional) – If False, The estimated time to finish (e.g. - 00:00:03 remaining)
will be hidden.

	end_with_newline (bool, optional) – If False, there will be no new line added at the end of the dynamic
printing. This means the next print statement will overwrite the
dynamic report presented here. Useful if you want to follow up a
print_progress with a second print_progress, where the second
overwrites the first on the same line.

	min_seconds_between_updates (float, optional) – The number of seconds that have to pass between two print updates.
This allows print_progress to be used on fast iterations without
incurring a significant overhead. Set to 0 to disable this
throttling.

	Raises

	ValueError – offset provided without n_items

Examples

This for loop:

from time import sleep
for i in print_progress(range(100)):
 sleep(1)

prints a progress report of the form:

[=============] 70% (7/10) - 00:00:03 remaining

 print_dynamic

print_dynamic

	
menpo.visualize.print_dynamic(str_to_print)[source]

	Prints dynamically the provided str, i.e. the str is printed and then
the buffer gets flushed.

	Parameters

	str_to_print (str) – The string to print.

 progress_bar_str

progress_bar_str

	
menpo.visualize.progress_bar_str(percentage, bar_length=20, bar_marker='=', show_bar=True)[source]

	Returns an str of the specified progress percentage. The percentage is
represented either in the form of a progress bar or in the form of a
percentage number. It can be combined with the print_dynamic()
function.

	Parameters

	
	percentage (float) – The progress percentage to be printed. It must be in the range
[0, 1].

	bar_length (int, optional) – Defines the length of the bar in characters.

	bar_marker (str, optional) – Defines the marker character that will be used to fill the bar.

	show_bar (bool, optional) – If True, the str includes the bar followed by the percentage,
e.g. '[=====] 50%'

If False, the str includes only the percentage,
e.g. '50%'

	Returns

	progress_str (str) – The progress percentage string that can be printed.

	Raises

	
	ValueError – percentage is not in the range [0, 1]

	ValueError – bar_length must be an integer >= 1

	ValueError – bar_marker must be a string of length 1

Examples

This for loop:

n_iters = 2000
for k in range(n_iters):
 print_dynamic(progress_bar_str(float(k) / (n_iters-1)))

prints a progress bar of the form:

[=============] 68%

 bytes_str

bytes_str

	
menpo.visualize.bytes_str(num)[source]

	Converts bytes to a human readable format. For example:

print_bytes(12345) returns '12.06 KB'
print_bytes(123456789) returns '117.74 MB'

	Parameters

	num (int) – The size in bytes.

	Raises

	ValueError – num must be int >= 0

 plot_curve

plot_curve

	
menpo.visualize.plot_curve(x_axis, y_axis, figure_id=None, new_figure=True, legend_entries=None, title='', x_label='', y_label='', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, render_lines=True, line_colour=None, line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour=None, marker_edge_colour='k', marker_edge_width=1.0, render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(7, 7), render_grid=True, grid_line_style='--', grid_line_width=1)[source]

	Plot a single or multiple curves on the same figure.

	Parameters

	
	x_axis (list or array) – The values of the horizontal axis. They are common for all curves.

	y_axis (list of lists or arrays) – A list with lists or arrays with the values of the vertical axis
for each curve.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	legend_entries (list of `str or None, optional) – If list of str, it must have the same length as errors list and
each str will be used to name each curve. If None, the CED curves
will be named as ‘Curve %d’.

	title (str, optional) – The figure’s title.

	x_label (str, optional) – The label of the horizontal axis.

	y_label (str, optional) – The label of the vertical axis.

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None, then the
limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height. If
tuple or list, then it defines the axis limits. If None, then the
limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	render_lines (bool or list of bool, optional) – If True, the line will be rendered. If bool, this value will be
used for all curves. If list, a value must be specified for each
curve, thus it must have the same length as y_axis.

	line_colour (colour or list of colour or None, optional) – The colour of the lines. If not a list, this value will be
used for all curves. If list, a value must be specified for each
curve, thus it must have the same length as y_axis. If None, the
colours will be linearly sampled from jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'} or list of those, optional) – The style of the lines. If not a list, this value will be used for all
curves. If list, a value must be specified for each curve, thus it must
have the same length as y_axis.

	line_width (float or list of float, optional) – The width of the lines. If float, this value will be used for all
curves. If list, a value must be specified for each curve, thus it must
have the same length as y_axis.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. If bool, this value will be
used for all curves. If list, a value must be specified for each
curve, thus it must have the same length as y_axis.

	marker_style (marker or list of markers, optional) – The style of the markers. If not a list, this value will be used for
all curves. If list, a value must be specified for each curve, thus it
must have the same length as y_axis.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int or list of int, optional) – The size of the markers in points. If int, this value will be used
for all curves. If list, a value must be specified for each curve, thus
it must have the same length as y_axis.

	marker_face_colour (colour or list of colour or None, optional) – The face (filling) colour of the markers. If not a list, this value
will be used for all curves. If list, a value must be specified for
each curve, thus it must have the same length as y_axis. If None,
the colours will be linearly sampled from jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or list of colour or None, optional) – The edge colour of the markers. If not a list, this value will be used
for all curves. If list, a value must be specified for each curve, thus
it must have the same length as y_axis. If None, the colours will
be linearly sampled from jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. If float, this value will be used for
all curves. If list, a value must be specified for each curve, thus it
must have the same length as y_axis.

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	legend_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See below, optional) – The font weight of the legend.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float), optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Raises

	ValueError – legend_entries list has different length than y_axis list

	Returns

	viewer (GraphPlotter) – The viewer object.

 plot_gaussian_ellipses

plot_gaussian_ellipses

	
menpo.visualize.plot_gaussian_ellipses(covariances, means, n_std=2, render_colour_bar=True, colour_bar_label='Normalized Standard Deviation', colour_map='jet', figure_id=None, new_figure=False, image_view=True, line_colour='r', line_style='-', line_width=1.0, render_markers=True, marker_edge_colour='k', marker_face_colour='k', marker_edge_width=1.0, marker_size=5, marker_style='o', render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', crop_proportion=0.1, figure_size=(7, 7))[source]

	Method that renders the Gaussian ellipses that correspond to a set of
covariance matrices and mean vectors. Naturally, this only works for
2-dimensional random variables.

	Parameters

	
	covariances (list of (2, 2) ndarray) – The covariance matrices that correspond to each ellipse.

	means (list of (2,) ndarray) – The mean vectors that correspond to each ellipse.

	n_std (float, optional) – This defines the size of the ellipses in terms of number of standard
deviations.

	render_colour_bar (bool, optional) – If True, then the ellipses will be coloured based on their
normalized standard deviations and a colour bar will also appear on
the side. If False, then all the ellipses will have the same colour.

	colour_bar_label (str, optional) – The title of the colour bar. It only applies if render_colour_bar
is True.

	colour_map (str, optional) – A valid Matplotlib colour map. For more info, please refer to
matplotlib.cm.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	image_view (bool, optional) – If True the ellipses will be rendered in the image coordinates
system.

	line_colour (See Below, optional) – The colour of the lines of the ellipses.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style ({-, --, -., :}, optional) – The style of the lines of the ellipses.

	line_width (float, optional) – The width of the lines of the ellipses.

	render_markers (bool, optional) – If True, the centers of the ellipses will be rendered.

	marker_style (See Below, optional) – The style of the centers of the ellipses. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the centers of the ellipses in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the centers of the ellipses.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the centers of the ellipses.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The edge width of the centers of the ellipses.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
semibold,demibold, demi, bold, heavy, extra bold, black}

	crop_proportion (float, optional) – The proportion to be left around the centers’ pointcloud.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

 Changelog

Changelog

0.11.0 (2021/01/09)

Very important change! The license text has been changed to a more generic
BSD 3-Clause. Functionally (and hopefully legally) this changes nothing as the
license a BSD 3-Clause anyway but with non-standard text -> it was based on
the Scipy license. After agreement from all copyright holders (see #841 [https://github.com/menpo/menpo/pull/841])
we changed the license to make it clearer that the project is licensed in a
standard way.

Other major breaking change is the removal of the menpowidgets code as this
has been functionally broken for probably close to 2 years. Removing this
code simplifies the API and removes a common source of confusion. Examples
still need to be updated across the board.

The project now has a unit test for passing mypy and passes a clean (non-strict)
mypy check.

Python 3.9 builds are now supported by CI.

Github Pull Requests

	#841 [https://github.com/menpo/menpo/pull/841] Simplify the license to an unmodified BSD 3-Clause (@patricksnape)

	#842 [https://github.com/menpo/menpo/pull/842] Run black on all code and add unit test (@patricksnape)

	#847 [https://github.com/menpo/menpo/pull/847] Fix exporting and importing of graphs without labels (@patricksnape)

	#849 [https://github.com/menpo/menpo/pull/849] Add basic mypy testing (@patricksnape)

	#850 [https://github.com/menpo/menpo/pull/850] Remove python 2 future imports (@patricksnape)

	#851 [https://github.com/menpo/menpo/pull/851] Remove menpowidgets and associated methods (@patricksnape)

	#852 [https://github.com/menpo/menpo/pull/852] Change from Travis to CircleCI (@patricksnape)

0.10.0 (2020/01/01)

Remove the last of the Cython code. This is in an effort to make supporting the
package easier and also installing the package easier. Although we no longer
support Windows in the open source builds - installing the package using
pypi should now be trivial and thus essentially re-enable installation on
Windows.

The breaking changes are possible differences in pixel outputs due to changing
sampling methodologies.

	Patch extraction now uses a pure Python fallback. In particular in the
case where out of bounds patch extraction happens this now falls back to
a sampling based strategy. The upside is that it is now possible to extract
patches at subpixel locations using strategies such as cubic interpolation.
The downside is that the nominal case of in bounds nearest neighbour
sampling is now around 2x slower.

	Remove Cython based image warping. Previously we maintained a fork of
scikit-image’s fast interpolation code for Affine transforms. Since warping
is one of the key capabilities of Menpo, we have added a fast OpenCV based
fallback for Homogeneous transforms (actually more general transforms than
previously). If OpenCV is not available then a Scipy fallback is used. The
OpenCV fast path is actually around 3 times faster for common operations
such as rescaling an image by 2x. The scipy fallback, however, remains
around 4 times slower so having OpenCV installed is recommended. Note that
OpenCV does appear to have minor differences in behaviour to scikit-image
particularly on the boundaries so this is considered a breaking change.

	Remove hog and lbp features. The HoG and LBP features were difficult
to maintain and underutilized in the package. According to
Antonakos et al [https://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2015feature.pdf]
Dense-Sift features outperform all other features. For this reason, we have
removed the old features as a number of bugs were identified when using them
that could cause Python to segfault.

Github Pull Requests

	#818 [https://github.com/menpo/menpo/pull/818] Pure-Python implementations of patch extraction (@jabooth, @patricksnape)

	#822 [https://github.com/menpo/menpo/pull/822] remove native image features (hog/lbp) (@jabooth)

	#839 [https://github.com/menpo/menpo/pull/839] Remove Cython image warping (@patricksnape)

0.9.2 (2019/08/19)

Remove more Cython code, in this case the gradient computation as the per Python
code gives identical results. Fix the Trimesh.boundary_tri_index() method
and add a unit test checking it’s behaviour. Fix was required for correct
non-rigid ICP computation.

Github Pull Requests

	#821 [https://github.com/menpo/menpo/pull/821] remove cython gradient implementation (@jabooth)

	#832 [https://github.com/menpo/menpo/pull/832] Fix boundary_tri_index (@patricksnape)

0.9.1 (2019/07/12)

Remove the Cython version of the normal method and just use the Python version
as the two have similar performance. Also make the Cython interpolation module
optional.

Github Pull Requests

	#816 [https://github.com/menpo/menpo/pull/816] Make skimage interpolation optional (@jabooth)

	#820 [https://github.com/menpo/menpo/pull/820] remove cython normals module (@jabooth)

0.9.0 (2019/07/10)

Remove Python 2.x from the build matrix as it is to difficult to continue
support as all major packages are sunsetting Python 2.x support in 2020. At this
time no regressions have been added but Python 2.x compatibility will not be
guaranteed from this release onwards. This release also adds Python 3.7 support
and builds.

Furthermore, the build system has moved to using conda-forge as its package
repository. This is in preparation for adding Menpo to conda-forge. Many
requirements were updated in turn and this the major version bump.

This also adds support for the LJSONv3 format
(https://github.com/menpo/landmarker.io/wiki/LEP-0001:-LJSON-v3)

Github Pull Requests

	#785 [https://github.com/menpo/menpo/pull/785] Migrate towards LJSONv3. (@grigorisg9gr)

	#802 [https://github.com/menpo/menpo/pull/802] minor .lms fix in test (@jabooth)

	#803 [https://github.com/menpo/menpo/pull/803] 3D LabelledPointUndirectedGraph visualization (@nontas)

	#805 [https://github.com/menpo/menpo/pull/805] Update base.py (@georgesterpu)

	#807 [https://github.com/menpo/menpo/pull/807] Fall-back to querying numpy for inc dir (@jabooth)

	#811 [https://github.com/menpo/menpo/pull/811] Pytest and upgrade to Matplotlib 2.x (@patricksnape)

	#814 [https://github.com/menpo/menpo/pull/814] Bump deps, fix or disable problematic tests (@jabooth)

	#815 [https://github.com/menpo/menpo/pull/815] Pure-Python mesh normal calculation fallback (@jabooth)

	#817 [https://github.com/menpo/menpo/pull/817] remove (unused) Cython PWA (@jabooth)

	#829 [https://github.com/menpo/menpo/pull/829] Move to conda-forge, update dependencies and drop Python 2.7 from build config (@patricksnape)

0.8.1 (2017/05/06)

Menpo 0.8.1 includes a few new minor features, and Python 3.6 support.

Github Pull Requests

	#753 [https://github.com/menpo/menpo/pull/753] .view_widget() on LazyList (@jabooth)

	#777 [https://github.com/menpo/menpo/pull/777] convenience constructors for 3D rotations (@jabooth)

0.8.0 (2017/05/04)

Menpo 0.8.0 includes a variety of minor bug fixes and a few major features:

A large simplification is made to how Menpo handles landmarks. In the past, Landmarks were a
special type in Menpo, they weren’t shapes. That meant we frequently had to access the underlying
shape information (at .lms), which was always a litle clunky and confusing, especailly to
newcomers.

In this release, we instead change the dynamic so that any shape can be attached as a landmark
directly. If you only need to store a list of points with no groups or labels, you can now
just use a PointCloud, which is totally natural in Menpo. The traditional features of LandmarkGroup
(handling groups etc) are now available in a speciailization Shape called LabelledPointUndirectedGraph.

The migration is simple - just remove .lms anywhere from your codebase (a warning will be raised when
you do use .lms - this will be deprecated in the future).

A smaller set of additional features in 0.8:

	Most menpo objects print a sensible string for their __repr__, which is helpful in the notebook.

	you can now tab complete landmark keys in the notebook.

Github Pull Requests

	#766 [https://github.com/menpo/menpo/pull/766] upgrades for menpowidgets (ipywidgets 6) (@nontas)

	#798 [https://github.com/menpo/menpo/pull/798] move back to making macOS builds with travis (@patricksnape)

	#799 [https://github.com/menpo/menpo/pull/799] move back to making Win builds with appveyor (@patricksnape)

	#792 [https://github.com/menpo/menpo/pull/792] add throttling to print_progress for fast iterations (@jabooth)

	#790 [https://github.com/menpo/menpo/pull/790] fix __setstate__ for old landmarks (@jabooth)

	#787 [https://github.com/menpo/menpo/pull/787] add a default __str__ implementation to avoid inf recursion on __repr__ (@jabooth)

	#782 [https://github.com/menpo/menpo/pull/782] __repr__ return __str__ for all Copyable objects (@jabooth)

	#780 [https://github.com/menpo/menpo/pull/780] add support for ipython tab complete landmarks (@jabooth)

	#675 [https://github.com/menpo/menpo/pull/675] LandmarkGroups are now Shapes (@patricksnape, @jabooth, @nontas)

	#778 [https://github.com/menpo/menpo/pull/778] Minor documentation clarification in image rasterize utility (@grigorisg9gr)

	#761 [https://github.com/menpo/menpo/pull/761] Add clip_pixels to Image and automatically clip RGB visualisations (@grigorisg9gr)

0.7.7 (2017/01/05)

Minor bug fixes

Github Pull Requests

	#767 [https://github.com/menpo/menpo/pull/767] Minor fixes (@patricksnape)

	#774 [https://github.com/menpo/menpo/pull/774] Fix pip install by properly including source files (@patricksnape)

	#775 [https://github.com/menpo/menpo/pull/775] Allow Pillow 4.x (@patricksnape)

	#776 [https://github.com/menpo/menpo/pull/776] Manifest includes should be recursive (@jabooth)

0.7.6 (2016/12/10)

Minor bug fixes and three new pieces of functionality:

	3D visualization improvements (@nontas)

	Bounding cubiod method for 3D shapes (@nontas)

	New transforms to change dimensionality of shapes (@jabooth)

Github Pull Requests

	#745 [https://github.com/menpo/menpo/pull/745] Documentation change in image gradient for int pixels dtype. (@grigorisg9gr)

	#750 [https://github.com/menpo/menpo/pull/750] Copy landmarks and path (@jabooth)

	#751 [https://github.com/menpo/menpo/pull/751] WithDims transform and with_dims method (@jabooth)

	#754 [https://github.com/menpo/menpo/pull/754] Restrict the video channels in exports(@grigorisg9gr)

	#755 [https://github.com/menpo/menpo/pull/755] fix ndarray slicing of lazylist, cleaner __add__ implementation (@jabooth)

	#756 [https://github.com/menpo/menpo/pull/756] remove duplicate import_pickles def (!) (@jabooth)

	#757 [https://github.com/menpo/menpo/pull/757] don’t print_dynamic size report in as_matrix (@jabooth)

	#759 [https://github.com/menpo/menpo/pull/759] Bounding cuboid (@nontas)

	#760 [https://github.com/menpo/menpo/pull/760] Quaternions for 3D Rotations (@nontas)

	#762 [https://github.com/menpo/menpo/pull/762] 3D Visualization Upgrade (@nontas)

	#764 [https://github.com/menpo/menpo/pull/764] Fix NUMPY_INC_PATH detection for multiple dirs found (@jabooth)

0.7.5 (2016/11/17)

Minor bug fixes and three new pieces of functionality:

	Fix bug in video importing when importing long videos (closed pipe) (@patricksnape)

	Update MANIFEST.in to include the LICENSE.txt and AUTHORS.txt

	Add new transform_about_centre method on images. Allow easily performing operations such as
rotating an image about it’s centre or shearing an image about it’s centre.

	Allow path only exporters (rather than hard requiring a buffer). The exporting
logic was also updated to support multiple kwargs to be passed through to the
exporters easily.

	New transforms to move between image and texture coordinates. (@jabooth).

Github Pull Requests

	#724 [https://github.com/menpo/menpo/pull/724] add transforms for tcoords -> image coords (@jabooth)

	#733 [https://github.com/menpo/menpo/pull/733] Remove user guide as it now lives at www.menpo.org (@nontas)

	#729 [https://github.com/menpo/menpo/pull/729] Fix PCA docs w.r.t centre parameter (@jabooth)

	#736 [https://github.com/menpo/menpo/pull/736] Fix bug importing boolean images with pillow (@grigorisg9gr)

	#739 [https://github.com/menpo/menpo/pull/739] Fix PointGraph printing to mention dimensionality (@nontas)

	#737 [https://github.com/menpo/menpo/pull/737] Allow path only exporters. Fix landmarking exporting on Python 3. (@patricksnape)

	#735 [https://github.com/menpo/menpo/pull/735] Fix init_from_channels_at_back to support 2D arrays. (@grigorisg9gr, @patricksnape)

	#738 [https://github.com/menpo/menpo/pull/738] Add transform_about_centre to images (@nontas, @patricksnape)

	#743 [https://github.com/menpo/menpo/pull/743] Set nan values to None in video importing (@JeanKossaifi)

	#744 [https://github.com/menpo/menpo/pull/744] Fix Regression: Allow None for landmark_resolver (@grigorisg9gr, @patricksnape)

0.7.4 (2016/08/18)

Minor fixes and additions including improved compatibility with loading older menpo PCAModel pickles and importing Python 2 pickles in Python 3.

Github Pull Requests

	#723 [https://github.com/menpo/menpo/pull/723] Add optional ‘encoding’ argument to import_pickle. (@patricksnape)

	#728 [https://github.com/menpo/menpo/pull/728] Allow for unpickling of the older PCAModel. (@patricksnape)

	#726 [https://github.com/menpo/menpo/pull/726] Improve pip install. (@patricksnape)

	#731 [https://github.com/menpo/menpo/pull/731] Pin setuptools to 23.x. (@jabooth)

0.7.3 (2016/08/05)

Minor fixes and additions including allowing more flexibility in FFMPEG exporting options,
supporting more types with normal calculations, and tidying up the conda build recipe.

Github Pull Requests

	#716 [https://github.com/menpo/menpo/pull/716] allow for forced inexact frame count in FFMpegVideoReader. (@san-bil)

	#714 [https://github.com/menpo/menpo/pull/714] Utilise the kwargs in exporting video with ffmpeg. (@grigorisg9gr)

	#720 [https://github.com/menpo/menpo/pull/720] Simplify the conda build. (@patricksnape)

	#719 [https://github.com/menpo/menpo/pull/719] Support more types for normals. (@patricksnape)

0.7.2 (2016/06/22)

Minor fixes including allowing exporting grayscale videos and fixing a minor
bug in PointGraph masking. The Menpo logo has also been updated.

Github Pull Requests

	#709 [https://github.com/menpo/menpo/pull/709] Minor change in documentation of pickle, contrain_landmarks in image. (@grigorisg9gr)

	#713 [https://github.com/menpo/menpo/pull/713] Remove zero edge adjacency check. (@patricksnape)

	#711 [https://github.com/menpo/menpo/pull/711] Enable greyscale video to be exported. (@grigorisg9gr,@patricksnape)

0.7.1 (2016/06/10)

We now ship our own FFMPEG video importer based on piping, thus removing the
dependency on imageio. A couple of further minor improvements were also
introduced:

	Added register_* methods to the importing packages to make it simpler to
add custom importers. For example, use
menpo.io.register_image_importer('.extension', your_method) to register
a new importer.

	Fix rasterization bug for maplotlib on Python 3.x

	normalise keyword arguments are now deprecated in favour of
normalize to make spelling consistent across project.

	LazyList is now copyable -> LazyList.copy

	LazyList map method now accepts a list of callables as well as a
single callable.

	Add LazyList.init_from_iterable for easily creating lazy lists from
existing iterables.

	Fix small visualisation bug for viewing of LandmarkGroup that contain
PointClouds

	New pixel_with_channels_at_back method for images

	Deprecate init_from_rolled_channels in favour of new method
init_from_channels_at_back

	Deprecate as_imageio

Finally, as of this release we no longer use Appveyor, in favour of our own
Windows Jenkins build boxes.

Github Pull Requests

	#694 [https://github.com/menpo/menpo/pull/694] Functional IO Package. (@patricksnape)

	#703 [https://github.com/menpo/menpo/pull/703] Fix the bug with rasterize landmarks with matplotlib backend. (@grigorisg9gr)

	#700 [https://github.com/menpo/menpo/pull/700] Standardise the normalize spelling in importers. (@grigorisg9gr)

	#702 [https://github.com/menpo/menpo/pull/702] Now reading videos using subprocess and ffmpeg. Drop ImageIO. (@JeanKossaifi,@patricksnape)

	#706 [https://github.com/menpo/menpo/pull/706] Autoscale PointCloud if no limits set. (@patricksnape)

	#707 [https://github.com/menpo/menpo/pull/707] LazyList init methods and are now Copyable. (@patricksnape)

	#708 [https://github.com/menpo/menpo/pull/708] Remove appveyor in favour of Jenkins. (@patricksnape)

0.7.0 (2016/05/20)

New release that contains some minor breaking changes. In general, the biggest
changes are:

	Use ImageIO [https://imageio.github.io/] rather than Pillow for basic
importing of some image types.
The most important aspect of this change is that we now support importing
videos! Our GIF support also became much more robust. Note that importing
videos is still considered to be relatively experimental due to the
underlying implementation in imageio not being 100% accurate. Therefore,
we warn our users that importing videos for important experiments is
not advised.

	Change multi-asset importing to use a new type - the LazyList. Lazy
lists are a generic concept for a container that holds onto a list of
callables which are invoked on indexing. This means that image importing,
for example, returns immediately but can be randomly indexed. This is
in contrast to generators, which have to be sequentially accessed. This
is particularly important for video support, as the frames can be accessed
randomly or sliced from the end (rather than having to pay the penalty
of importing the entirety of a long video just to access the last frame,
for example). A simple example of using the LazyList to import
images is as follows:

import menpo.io as mio
images = mio.import_images('/path/to/many/images') # Returns immediately
image0 = images[0] # Loading performed at access

Example of much simpler preprocessing
preprocess_func = lambda x: x.as_greyscale()
greyscale_images = images.map(preprocess_func) # Returns immediately
grey_image0 = greyscale_images[0] # Loading and as_greyscale() performed at access

Visualizing randomly is now much simpler too!
% matplotlib inline
from menpowidgets import visualize_images
visualize_images(greyscale_images) # Can now randomly access list

	Move one step closer to ensuring that all image operatons are copies rather
than inplace. This means breaking some methods as there was no ‘non’ inplace
method (the break was to change them to return a copy). Likely the most
common anti-pattern was code such as:

import menpo.io as mio
image = mio.import_builtin_asset.takeo_ppm().as_masked()
image.constrain_landmarks_to_bounds()

Which now requires assigning the call to constrain_landmarks_to_bounds
to a variable, as a copy is returned:

import menpo.io as mio
image = mio.import_builtin_asset.takeo_ppm().as_masked()
image = image.constrain_landmarks_to_bounds()

Note that this release also officially supports Python 3.5!

Breaking Changes

	ImageIO is used for importing. Therefore, the pixel values of some images
have changed due to the difference in underlying importing code.

	Multi-asset importers are now of type LazyList.

	HOG previously returned negative values due to rounding errors on binning.
This has been rectified, so the output values of HOG are now slightly
different.

	set_boundary_pixels is no longer in place.

	normalize_inplace has been deprecated and removed. normalize is now
a feature that abstracts out the normalisation logic.

	gaussian_pyramid and pyramid always return copies (before the first
image was the original image, not copied).

	constrain_to_landmarks/constrain_to_pointcloud/constrain_mask_to_landmarks
are no longer in place.

	set_patches is no longer in place.

	has_landmarks_outside_bounds is now a method.

New Features

	from_tri_mask method added to TriMesh

	LazyList type that holds a list of callables that are invoked on
indexing.

	New rasterize methods. Given an image and a landmark group, return a new
image with the landmarks rasterized onto the image. Useful for saving
results to disk.

	Python 3.5 support!

	Better support for non float64 image types. For example,
as_greyscale can be called on a uint8 image.

	New method rasterize_landmarks that allows easy image rasterization.
By default, MaskedImages are masked with a black background. Use
as_unmasked to change the colour/not returned masked image.

	Add bounds method to images. This is defined as
((0, 0), (height - 1, width - 1)) - the set of indices that are
indexable into the image for sampling.

	Add constrain_to_bounds to PointCloud. Snaps the pointcloud exactly
to the bounds given.

	init_from_pointcloud method add to Image. Allows the creation of an
image that completely bounds a given pointcloud. This is useful for both
viewing images of pointclouds and for creating ‘reference frames’ for
algorithms like Active Appearance Models.

	init_from_depth_image method on PointCloud and subclasses. Allows
the creation of a mesh from an image that contains pixel values that
represent depth/height values. Very useful for visualising RGB-D data.

	pickle_paths method.

	Overwriting images now throws OverwriteError rather than just
ValueError (OverwriteError is a subclass of ValueError) so
this is not a breaking change.

Deprecated

	The previously deprecated inplace image methods were not removed
in this release.

	set_h_matrix is deprecated for Homogeneous transforms.

	set_masked_pixels is deprecated in favor of from_vector.

	Deprecate constrain_landmarks_to_bounds on images.

Github Pull Requests

	#698 [https://github.com/menpo/menpo/pull/698] Video importing warnings. (@patricksnape)

	#697 [https://github.com/menpo/menpo/pull/697] Relex version constraints on dependencies. (@jabooth)

	#695 [https://github.com/menpo/menpo/pull/695] condaci fixes. (@patricksnape)

	#692 [https://github.com/menpo/menpo/pull/692] new OverwriteError raised specifically for overwrite errors in io.export. (@jabooth)

	#691 [https://github.com/menpo/menpo/pull/691] Add mio.pickle_paths(glob). (@jabooth)

	#690 [https://github.com/menpo/menpo/pull/690] Fix init_2d_grid for TriMesh subclasses + add init_from_depth_image. (@patricksnape)

	#687 [https://github.com/menpo/menpo/pull/687] WIP: BREAKING: Various release fixes. (@patricksnape)

	#685 [https://github.com/menpo/menpo/pull/685] GMRF mahalanobis computation with sparse precision. (@nontas)

	#684 [https://github.com/menpo/menpo/pull/684] Video importer docs and negative max_images. (@grigorisg9gr)

	#683 [https://github.com/menpo/menpo/pull/683] Bugfix: Widget imports. (@nontas)

	#682 [https://github.com/menpo/menpo/pull/682] Update the view_patches to show only the selected landmarks. (@grigorisg9gr)

	#680 [https://github.com/menpo/menpo/pull/680] Expose file extension to exporters (Fix PIL exporter bug). (@patricksnape)

	#678 [https://github.com/menpo/menpo/pull/678] Deprecate set_h_matrix and fix #677. (@patricksnape)

	#676 [https://github.com/menpo/menpo/pull/676] Implement LazyList __add__. (@patricksnape)

	#673 [https://github.com/menpo/menpo/pull/673] Fix the widgets in PCA. (@grigorisg9gr)

	#672 [https://github.com/menpo/menpo/pull/672] Use Conda environment.yml on RTD. (@patricksnape)

	#670 [https://github.com/menpo/menpo/pull/670] Rasterize 2D Landmarks Method. (@patricksnape)

	#669 [https://github.com/menpo/menpo/pull/669] BREAKING: Add LazyList - default importing is now Lazy. (@patricksnape)

	#668 [https://github.com/menpo/menpo/pull/668] Speedup as_greyscale. (@patricksnape)

	#666 [https://github.com/menpo/menpo/pull/666] Add the protocol option in exporting pickle. (@grigorisg9gr)

	#665 [https://github.com/menpo/menpo/pull/665] Fix bug with patches of different type than float64. (@patricksnape)

	#664 [https://github.com/menpo/menpo/pull/664] Python 3.5 builds. (@patricksnape)

	#661 [https://github.com/menpo/menpo/pull/661] Return labels - which maps to a KeysView as a list. (@patricksnape)

	#648 [https://github.com/menpo/menpo/pull/648] Turn coverage checking back on. (@patricksnape)

	#644 [https://github.com/menpo/menpo/pull/644] Remove label kwarg. (@patricksnape)

	#639 [https://github.com/menpo/menpo/pull/639] add from_tri_mask method to TriMesh instances. (@jabooth)

	#633 [https://github.com/menpo/menpo/pull/633] BREAKING: Imageio. (@patricksnape)

	#606 [https://github.com/menpo/menpo/pull/606] Fix negative values in HOG calculation. (@patricksnape)

0.6.2 (2015/12/13)

Add axes ticks option to view_patches.

Github Pull Requests

	#659 [https://github.com/menpo/menpo/pull/659] Add axes ticks options to view_patches (@nontas)

0.6.1 (2015/12/09)

Fix a nasty bug pertaining to a Diamond inheritance problem in PCA. Add the
Gaussion Markov Random Field (GRMF) model. Also a couple of other
bugfixes for visualization.

Github Pull Requests

	#658 [https://github.com/menpo/menpo/pull/658] PCA Diamond problem fix (@patricksnape)

	#655 [https://github.com/menpo/menpo/pull/655] Bugfix and improvements in visualize package (@nontas)

	#656 [https://github.com/menpo/menpo/pull/656] print_dynamic bugfix (@nontas)

	#635 [https://github.com/menpo/menpo/pull/635] Gaussian Markov Random Field (@nontas, @patricksnape)

0.6.0 (2015/11/26)

This release is another set of breaking changes for Menpo. All in_place
methods have been deprecated to make the API clearer (always copy). The largest
change is the removal of all widgets into a subpackage called menpowidgets [https://github.com/menpo/menpowidgets].
To continue using widgets within the Jupyter notebook, you should install
menpowidgets.

Breaking Changes

	Procrustes analysis now checks for mirroring and disables it by default.
This is a change in behaviour.

	The sample_offsets argument of
menpo.image.Image.extract_patches() now expects a
numpy array rather than a PointCloud.

	All widgets are removed and now exist as part of the menpowidgets [https://github.com/menpo/menpowidgets]
project. The widgets are now only compatible with Jupyter 4.0 and above.

	Landmark labellers have been totally refactored and renamed. They have
not been deprecated due to the changes. However, the new changes mean
that the naming scheme of labels is now much more intuitive. Practically,
the usage of labelling has only changed in that now it is possible to label
not only LandmarkGroup but also PointCloud and numpy arrays
directly.

	Landmarks are now warped by default, where previously they were not.

	All vlfeat features have now become optional and will not appear if
cyvlfeat is not installed.

	All label keyword arguments have been removed. They were not found
to be useful. For the same effect, you can always create a new landmark
group that only contains that label and use that as the group key.

New Features

	New SIFT type features that return vectors rather than dense features.
(menpo.feature.vector_128_dsift(),
menpo.feature.hellinger_vector_128_dsift())

	menpo.shape.PointCloud.init_2d_grid() static constructor for
PointCloud and subclasses.

	Add PCAVectorModel class that allows performing PCA directly on
arrays.

	New static constructors on PCA models for building PCA directly from
covariance matrices or components
(menpo.model.PCAVectorModel.init_from_components() and
menpo.model.PCAVectorModel.init_from_covariance_matrix()).

	New menpo.image.Image.mirror() method on images.

	New menpo.image.Image.set_patches() methods on images.

	New menpo.image.Image.rotate_ccw_about_centre() method on images.

	When performing operations on images, you can now add the
return_transform kwarg that will return both the new image and the
transform that created the image. This can be very useful for processing
landmarks after images have been cropped and rescaled for example.

Github Pull Requests

	#652 [https://github.com/menpo/menpo/pull/652] Deprecate a number of inplace methods (@jabooth)

	#653 [https://github.com/menpo/menpo/pull/653] New features (vector dsift) (@patricksnape)

	#651 [https://github.com/menpo/menpo/pull/651] remove deprecations from 0.5.0 (@jabooth)

	#650 [https://github.com/menpo/menpo/pull/650] PointCloud init_2d_grid (@patricksnape)

	#646 [https://github.com/menpo/menpo/pull/646] Add ibug_49 -> ibug_49 labelling (@patricksnape)

	#645 [https://github.com/menpo/menpo/pull/645] Add new PCAVectorModel class, refactor model package (@patricksnape, @nontas)

	#644 [https://github.com/menpo/menpo/pull/644] Remove label kwarg (@patricksnape)

	#643 [https://github.com/menpo/menpo/pull/643] Build fixes (@patricksnape)

	#638 [https://github.com/menpo/menpo/pull/638] bugfix 2D triangle areas sign was ambiguous (@jabooth)

	#634 [https://github.com/menpo/menpo/pull/634] Fixing @patricksnape and @nontas foolish errors (@yuxiang-zhou)

	#542 [https://github.com/menpo/menpo/pull/542] Add mirroring check to procrustes (@nontas, @patricksnape)

	#632 [https://github.com/menpo/menpo/pull/632] Widgets Migration (@patricksnape, @nontas)

	#631 [https://github.com/menpo/menpo/pull/631] Optional transform return on Image methods (@nontas)

	#628 [https://github.com/menpo/menpo/pull/628] Patches Visualization (@nontas)

	#629 [https://github.com/menpo/menpo/pull/629] Image counter-clockwise rotation (@nontas)

	#630 [https://github.com/menpo/menpo/pull/630] Mirror image (@nontas)

	#625 [https://github.com/menpo/menpo/pull/625] Labellers Refactoring (@patricksnape)

	#623 [https://github.com/menpo/menpo/pull/623] Fix widgets for new Jupyter/IPython 4 release (@patricksnape)

	#620 [https://github.com/menpo/menpo/pull/620] Define patches offsets as ndarray (@nontas)

0.5.3 (2015/08/12)

Tiny point release just fixing a typo in the unique_edge_indices method.

0.5.2 (2015/08/04)

Minor bug fixes and impovements including:

	Menpo is now better at preserving dtypes other than np.float through common
operations

	Image has a new convenience constructor init_from_rolled_channels() to
handle building images that have the channels at the back of the array.

	There are also new crop_to_pointcloud() and
crop_to_pointcloud_proportion() methods to round out the Image API,
and a deprecation of rescale_to_reference_shape() in favour of
rescale_to_pointcloud() to make things more consistent.

	The gradient() method is deprecated (use menpo.feature.gradient
instead)

	Propagation of the .path property when using as_masked() was fixed

	Fix for exporting 3D LJSON landmark files

	A new shuffle kwarg (default False) is present on all multi
importers.

Github Pull Requests

	#617 [https://github.com/menpo/menpo/pull/617] add shuffle kwarg to multi import generators (@jabooth)

	#619 [https://github.com/menpo/menpo/pull/619] Ensure that LJSON landmarks are read in as floats (@jabooth)

	#618 [https://github.com/menpo/menpo/pull/618] Small image fix (@patricksnape)

	#613 [https://github.com/menpo/menpo/pull/613] Balance out rescale/crop methods (@patricksnape)

	#615 [https://github.com/menpo/menpo/pull/615] Allow exporting of 3D landmarks. (@mmcauliffe)

	#612 [https://github.com/menpo/menpo/pull/612] Type maintain (@patricksnape)

	#602 [https://github.com/menpo/menpo/pull/602] Extract patches types (@patricksnape)

	#608 [https://github.com/menpo/menpo/pull/608] Slider for selecting landmark group on widgets (@nontas)

	#605 [https://github.com/menpo/menpo/pull/605] tmp move to master condaci (@jabooth)

0.5.1 (2015/07/16)

A small point release that improves the Cython code (particularly
extracting patches) compatibility with different data types. In particular,
more floating point data types are now supported. print_progress
was added and widgets were fixed after the Jupyter 4.0 release. Also,
upgrade cyvlfeat requirement to 0.4.0.

Github Pull Requests

	#604 [https://github.com/menpo/menpo/pull/604] print_progress enhancements (@jabooth)

	#603 [https://github.com/menpo/menpo/pull/603] Fixes for new cyvlfeat (@patricksnape)

	#599 [https://github.com/menpo/menpo/pull/599] Add erode and dilate methods to MaskedImage (@jalabort)

	#601 [https://github.com/menpo/menpo/pull/601] Add sudo: false to turn on container builds (@patricksnape)

	#600 [https://github.com/menpo/menpo/pull/600] Human3.6M labels (@nontas)

0.5.0 (2015/06/25)

This release of Menpo makes a number of very important BREAKING changes
to the format of Menpo’s core data types. Most importantly is #524 [https://github.com/menpo/menpo/pull/524] which
swaps the position of the channels on an image from the last axis to the first.
This is to maintain row-major ordering and make iterating over the pixels
of a channel efficient. This made a huge improvement in speed in other packages
such as MenpoFit. It also makes common operations such as iterating over
the pixels in an image much simpler:

for channels in image.pixels:
 print(channels.shape) # This will be a (height x width) ndarray

Other important changes include:

	Updating all widgets to work with IPython 3

	Incremental PCA was added.

	non-inplace cropping methods

	Dense SIFT features provided by vlfeat

	The implementation of graphs was changed to use sparse matrices by default.
This may cause breaking changes.

	Many other improvements detailed in the pull requests below!

If you have serialized data using Menpo, you will likely find you have trouble
reimporting it. If this is the case, please visit the user group for advice.

Github Pull Requests

	#598 [https://github.com/menpo/menpo/pull/598] Visualize sum of channels in widgets (@nontas, @patricksnape)

	#597 [https://github.com/menpo/menpo/pull/597] test new dev tag behavior on condaci (@jabooth)

	#591 [https://github.com/menpo/menpo/pull/591] Scale around centre (@patricksnape)

	#596 [https://github.com/menpo/menpo/pull/596] Update to versioneer v0.15 (@jabooth, @patricksnape)

	#495 [https://github.com/menpo/menpo/pull/495] SIFT features (@nontas, @patricksnape, @jabooth, @jalabort)

	#595 [https://github.com/menpo/menpo/pull/595] Update mean_pointcloud (@patricksnape, @jalabort)

	#541 [https://github.com/menpo/menpo/pull/541] Add triangulation labels for ibug_face_(66/51/49) (@jalabort)

	#590 [https://github.com/menpo/menpo/pull/590] Fix centre and diagonal being properties on Images (@patricksnape)

	#592 [https://github.com/menpo/menpo/pull/592] Refactor out bounding_box method (@patricksnape)

	#566 [https://github.com/menpo/menpo/pull/566] TriMesh utilities (@jabooth)

	#593 [https://github.com/menpo/menpo/pull/593] Minor bugfix on AnimationOptionsWidget (@nontas)

	#587 [https://github.com/menpo/menpo/pull/587] promote non-inplace crop methods, crop performance improvements (@jabooth, @patricksnape)

	#586 [https://github.com/menpo/menpo/pull/586] fix as_matrix where the iterator finished early (@jabooth)

	#574 [https://github.com/menpo/menpo/pull/574] Widgets for IPython3 (@nontas, @patricksnape, @jabooth)

	#588 [https://github.com/menpo/menpo/pull/588] test condaci 0.2.1, less noisy slack notifications (@jabooth)

	#568 [https://github.com/menpo/menpo/pull/568] rescale_pixels() for rescaling the range of pixels (@jabooth)

	#585 [https://github.com/menpo/menpo/pull/585] Hotfix: suffix change led to double path resolution. (@patricksnape)

	#581 [https://github.com/menpo/menpo/pull/581] Fix the landmark importer in case the landmark file has a ‘.’ in its filename. (@grigorisg9gr)

	#584 [https://github.com/menpo/menpo/pull/584] new print_progress visualization function (@jabooth)

	#580 [https://github.com/menpo/menpo/pull/580] export_pickle now ensures pathlib.Path save as PurePath (@jabooth)

	#582 [https://github.com/menpo/menpo/pull/582] New readers for Middlebury FLO and FRGC ABS files (@patricksnape)

	#579 [https://github.com/menpo/menpo/pull/579] Fix the image importer in case of upper case letters in the suffix (@grigorisg9gr)

	#575 [https://github.com/menpo/menpo/pull/575] Allowing expanding user paths in exporting pickle (@patricksnape)

	#577 [https://github.com/menpo/menpo/pull/577] Change to using run_test.py (@patricksnape)

	#570 [https://github.com/menpo/menpo/pull/570] Zoom (@jabooth, @patricksnape)

	#569 [https://github.com/menpo/menpo/pull/569] Add new point_in_pointcloud kwarg to constrain (@patricksnape)

	#563 [https://github.com/menpo/menpo/pull/563] TPS Updates (@patricksnape)

	#567 [https://github.com/menpo/menpo/pull/567] Optional cmaps (@jalabort)

	#559 [https://github.com/menpo/menpo/pull/559] Graphs with isolated vertices (@nontas)

	#564 [https://github.com/menpo/menpo/pull/564] Bugfix: PCAModel print (@nontas)

	#565 [https://github.com/menpo/menpo/pull/565] fixed minor typo in introduction.rst (@evanjbowling)

	#562 [https://github.com/menpo/menpo/pull/562] IPython3 widgets (@patricksnape, @jalabort)

	#558 [https://github.com/menpo/menpo/pull/558] Channel roll (@patricksnape)

	#524 [https://github.com/menpo/menpo/pull/524] BREAKING CHANGE: Channels flip (@patricksnape, @jabooth, @jalabort)

	#512 [https://github.com/menpo/menpo/pull/512] WIP: remove_all_landmarks convienience method, quick lm filter (@jabooth)

	#554 [https://github.com/menpo/menpo/pull/554] Bugfix:visualize_images (@nontas)

	#553 [https://github.com/menpo/menpo/pull/553] Transform docs fixes (@nontas)

	#533 [https://github.com/menpo/menpo/pull/533] LandmarkGroup.init_with_all_label, init_* convenience constructors (@jabooth, @patricksnape)

	#552 [https://github.com/menpo/menpo/pull/552] Many fixes for Python 3 support (@patricksnape)

	#532 [https://github.com/menpo/menpo/pull/532] Incremental PCA (@patricksnape, @jabooth, @jalabort)

	#528 [https://github.com/menpo/menpo/pull/528] New as_matrix and from_matrix methods (@patricksnape)

0.4.4 (2015/03/05)

A hotfix release for properly handling nan values in the landmark formats. Also,
a few other bug fixes crept in:

	Fix 3D Ljson importing

	Fix trim_components on PCA

	Fix setting None key on the landmark manager

	Making mean_pointcloud faster

Also makes an important change to the build configuration that syncs this
version of Menpo to IPython 2.x.

Github Pull Requests

	#560 [https://github.com/menpo/menpo/pull/560] Assorted fixes (@patricksnape)

	#557 [https://github.com/menpo/menpo/pull/557] Ljson nan fix (@patricksnape)

0.4.3 (2015/02/19)

Adds the concept of nan values to the landmarker format for labelling missing
landmarks.

Github Pull Requests

	#556 [https://github.com/menpo/menpo/pull/556] [0.4.x] Ljson nan/null fixes (@patricksnape)

0.4.2 (2015/02/19)

A hotfix release for landmark groups that have no connectivity.

Github Pull Requests

	#555 [https://github.com/menpo/menpo/pull/555] don’t try and build a Graph with no connectivity (@jabooth)

0.4.1 (2015/02/07)

A hotfix release to enable compatibility with landmarker.io.

Github Pull Requests

	#551 [https://github.com/menpo/menpo/pull/551] HOTFIX: remove incorrect tojson() methods (@jabooth)

0.4.0 (2015/02/04)

The 0.4.0 release (pending any currently unknown bugs), represents a very
significant overhaul of Menpo from v0.3.0. In particular, Menpo has been
broken into four distinct packages: Menpo, MenpoFit, Menpo3D and MenpoDetect.

Visualization has had major improvements for 2D viewing, in particular
through the use of IPython widgets and explicit options on the viewing methods
for common tasks (like changing the landmark marker color). This final release
is a much smaller set of changes over the alpha releases, so please check the
full changelog for the alphas to see all changes from v0.3.0 to v0.4.0.

Summary of changes since v0.4.0a2:

	Lots of documentation rendering fixes and style fixes including this
changelog.

	Move the LJSON format to V2. V1 is now being deprecated over the next
version.

	More visualization customization fixes including multiple marker colors
for landmark groups.

Github Pull Requests

	#546 [https://github.com/menpo/menpo/pull/546] IO doc fixes (@jabooth)

	#545 [https://github.com/menpo/menpo/pull/545] Different marker colour per label (@nontas)

	#543 [https://github.com/menpo/menpo/pull/543] Bug fix for importing an image, case of a dot in image name. (@grigorisg9gr)

	#544 [https://github.com/menpo/menpo/pull/544] Move docs to Sphinx 1.3b2 (@patricksnape)

	#536 [https://github.com/menpo/menpo/pull/536] Docs fixes (@patricksnape)

	#530 [https://github.com/menpo/menpo/pull/530] Visualization and Widgets upgrade (@patricksnape, @nontas)

	#540 [https://github.com/menpo/menpo/pull/540] LJSON v2 (@jabooth)

	#537 [https://github.com/menpo/menpo/pull/537] fix BU3DFE connectivity, pretty JSON files (@jabooth)

	#529 [https://github.com/menpo/menpo/pull/529] BU3D-FE labeller added (@jabooth)

	#527 [https://github.com/menpo/menpo/pull/527] fixes paths for pickle importing (@jabooth)

	#525 [https://github.com/menpo/menpo/pull/525] Fix .rst doc files, auto-generation script (@jabooth)

v0.4.0a2 (2014/12/03)

Alpha 2 moves towards extending the graphing API so that visualization is
more dependable.

Summary:

	Add graph classes, PointUndirectedGraph, PointDirectedGraph,
PointTree. This makes visualization of landmarks much nicer looking.

	Better support of pickling menpo objects

	Add a bounding box method to PointCloud for calculating the correctly
oriented bounding box of point clouds.

	Allow PCA to operate in place for large data matrices.

Github Pull Requests

	#522 [https://github.com/menpo/menpo/pull/522] Add bounding box method to pointclouds (@patricksnape)

	#523 [https://github.com/menpo/menpo/pull/523] HOTFIX: fix export_pickle bug, add path support (@jabooth)

	#521 [https://github.com/menpo/menpo/pull/521] menpo.io add pickle support, move to pathlib (@jabooth)

	#520 [https://github.com/menpo/menpo/pull/520] Documentation fixes (@patricksnape, @jabooth)

	#518 [https://github.com/menpo/menpo/pull/518] PCA memory improvements, inplace dot product (@jabooth)

	#519 [https://github.com/menpo/menpo/pull/519] replace wrapt with functools.wraps - we can pickle (@jabooth)

	#517 [https://github.com/menpo/menpo/pull/517] (@jabooth)

	#514 [https://github.com/menpo/menpo/pull/514] Remove the use of triplot (@patricksnape)

	#516 [https://github.com/menpo/menpo/pull/516] Fix how images are converted to PIL (@patricksnape)

	#515 [https://github.com/menpo/menpo/pull/515] Show the path in the image widgets (@patricksnape)

	#511 [https://github.com/menpo/menpo/pull/511] 2D Rotation convenience constructor, Image.rotate_ccw_about_centre (@jabooth)

	#510 [https://github.com/menpo/menpo/pull/510] all menpo io glob operations are now always sorted (@jabooth)

	#508 [https://github.com/menpo/menpo/pull/508] visualize image on MaskedImage reports Mask proportion (@jabooth)

	#509 [https://github.com/menpo/menpo/pull/509] path is now preserved on image warping (@jabooth)

	#507 [https://github.com/menpo/menpo/pull/507] fix rounding issue in n_components (@jabooth)

	#506 [https://github.com/menpo/menpo/pull/506] is_tree update in Graph (@nontas)

	#505 [https://github.com/menpo/menpo/pull/505] (@nontas)

	#504 [https://github.com/menpo/menpo/pull/504] explicitly have kwarg in IO for landmark extensions (@jabooth)

	#503 [https://github.com/menpo/menpo/pull/503] Update the README (@patricksnape)

v0.4.0a1 (2014/10/31)

This first alpha release makes a number of large, breaking changes to Menpo
from v0.3.0. The biggest change is that Menpo3D and MenpoFit were created
and thus all AAM and 3D visualization/rasterization code has been moved out
of the main Menpo repository. This is working towards Menpo being pip
installable.

Summary:

	Fixes memory leak whereby weak references were being kept between
landmarks and their host objects. The Landmark manager now no longer
keeps references to its host object. This also helps with serialization.

	Use pathlib instead of strings for paths in the io module.

	Importing of builtin assets from a simple function

	Improve support for image importing (including ability to import without
normalising)

	Add fast methods for image warping, warp_to_mask and warp_to_shape
instead of warp_to

	Allow masking of triangle meshes

	Add IPython visualization widgets for our core types

	All expensive properties (properties that would be worth caching in
a variable and are not merely a lookup) are changed to methods.

Github Pull Requests

	#502 [https://github.com/menpo/menpo/pull/502] Fixes pseudoinverse for Alignment Transforms (@jalabort, @patricksnape)

	#501 [https://github.com/menpo/menpo/pull/501] Remove menpofit widgets (@nontas)

	#500 [https://github.com/menpo/menpo/pull/500] Shapes widget (@nontas)

	#499 [https://github.com/menpo/menpo/pull/499] spin out AAM, CLM, SDM, ATM and related code to menpofit (@jabooth)

	#498 [https://github.com/menpo/menpo/pull/498] Minimum spanning tree bug fix (@nontas)

	#492 [https://github.com/menpo/menpo/pull/492] Some fixes for PIL image importing (@patricksnape)

	#494 [https://github.com/menpo/menpo/pull/494] Widgets bug fix and Active Template Model widget (@nontas)

	#491 [https://github.com/menpo/menpo/pull/491] Widgets fixes (@nontas)

	#489 [https://github.com/menpo/menpo/pull/489] remove _view, fix up color_list -> colour_list (@jabooth)

	#486 [https://github.com/menpo/menpo/pull/486] Image visualisation improvements (@patricksnape)

	#488 [https://github.com/menpo/menpo/pull/488] Move expensive image properties to methods (@jabooth)

	#487 [https://github.com/menpo/menpo/pull/487] Change expensive PCA properties to methods (@jabooth)

	#485 [https://github.com/menpo/menpo/pull/485] MeanInstanceLinearModel.mean is now a method (@jabooth)

	#452 [https://github.com/menpo/menpo/pull/452] Advanced widgets (@patricksnape, @nontas)

	#481 [https://github.com/menpo/menpo/pull/481] Remove 3D (@patricksnape)

	#480 [https://github.com/menpo/menpo/pull/480] Graphs functionality (@nontas)

	#479 [https://github.com/menpo/menpo/pull/479] Extract patches on image (@patricksnape)

	#469 [https://github.com/menpo/menpo/pull/469] Active Template Models (@nontas)

	#478 [https://github.com/menpo/menpo/pull/478] Fix residuals for AAMs (@patricksnape, @jabooth)

	#474 [https://github.com/menpo/menpo/pull/474] remove HDF5able making room for h5it (@jabooth)

	#475 [https://github.com/menpo/menpo/pull/475] Normalize norm and std of Image object (@nontas)

	#472 [https://github.com/menpo/menpo/pull/472] Daisy features (@nontas)

	#473 [https://github.com/menpo/menpo/pull/473] Fix from_mask for Trimesh subclasses (@patricksnape)

	#470 [https://github.com/menpo/menpo/pull/470] expensive properties should really be methods (@jabooth)

	#467 [https://github.com/menpo/menpo/pull/467] get a progress bar on top level feature computation (@jabooth)

	#466 [https://github.com/menpo/menpo/pull/466] Spin out rasterization and related methods to menpo3d (@jabooth)

	#465 [https://github.com/menpo/menpo/pull/465] ‘me_norm’ error type in tests (@nontas)

	#463 [https://github.com/menpo/menpo/pull/463] goodbye ioinfo, hello path (@jabooth)

	#464 [https://github.com/menpo/menpo/pull/464] make mayavi an optional dependency (@jabooth)

	#447 [https://github.com/menpo/menpo/pull/447] Displacements in fitting result (@nontas)

	#451 [https://github.com/menpo/menpo/pull/451] AppVeyor Windows continuous builds from condaci (@jabooth)

	#445 [https://github.com/menpo/menpo/pull/445] Serialize fit results (@patricksnape)

	#444 [https://github.com/menpo/menpo/pull/444] remove pyramid_on_features from Menpo (@jabooth)

	#443 [https://github.com/menpo/menpo/pull/443] create_pyramid now applies features even if pyramid_on_features=False, SDM uses it too (@jabooth)

	#369 [https://github.com/menpo/menpo/pull/369] warp_to_mask, warp_to_shape, fast resizing of images (@nontas, @patricksnape, @jabooth)

	#442 [https://github.com/menpo/menpo/pull/442] add rescale_to_diagonal, diagonal property to Image (@jabooth)

	#441 [https://github.com/menpo/menpo/pull/441] adds constrain_to_landmarks on BooleanImage (@jabooth)

	#440 [https://github.com/menpo/menpo/pull/440] pathlib.Path can no be used in menpo.io (@jabooth)

	#439 [https://github.com/menpo/menpo/pull/439] Labelling fixes (@jabooth, @patricksnape)

	#438 [https://github.com/menpo/menpo/pull/438] extract_channels (@jabooth)

	#437 [https://github.com/menpo/menpo/pull/437] GLRasterizer becomes HDF5able (@jabooth)

	#435 [https://github.com/menpo/menpo/pull/435] import_builtin_asset.ASSET_NAME (@jabooth)

	#434 [https://github.com/menpo/menpo/pull/434] check_regression_features unified with check_features, classmethods removed from SDM (@jabooth)

	#433 [https://github.com/menpo/menpo/pull/433] tidy classifiers (@jabooth)

	#432 [https://github.com/menpo/menpo/pull/432] aam.fitter, clm.fitter, sdm.trainer packages (@jabooth)

	#431 [https://github.com/menpo/menpo/pull/431] More fitmultilevel tidying (@jabooth)

	#430 [https://github.com/menpo/menpo/pull/430] Remove classmethods from DeformableModelBuilder (@jabooth)

	#412 [https://github.com/menpo/menpo/pull/412] First visualization widgets (@jalabort, @nontas)

	#429 [https://github.com/menpo/menpo/pull/429] Masked image fixes (@patricksnape)

	#426 [https://github.com/menpo/menpo/pull/426] rename ‘feature_type’ to ‘features throughout Menpo (@jabooth)

	#427 [https://github.com/menpo/menpo/pull/427] Adds HDF5able serialization support to Menpo (@jabooth)

	#425 [https://github.com/menpo/menpo/pull/425] Faster cached piecewise affine, Cython varient demoted (@jabooth)

	#424 [https://github.com/menpo/menpo/pull/424] (@nontas)

	#378 [https://github.com/menpo/menpo/pull/378] Fitting result fixes (@jabooth, @nontas, @jalabort)

	#423 [https://github.com/menpo/menpo/pull/423] name now displays on constrained features (@jabooth)

	#421 [https://github.com/menpo/menpo/pull/421] Travis CI now makes builds, Linux/OS X Python 2.7/3.4 (@jabooth, @patricksnape)

	#400 [https://github.com/menpo/menpo/pull/400] Features as functions (@nontas, @patricksnape, @jabooth)

	#420 [https://github.com/menpo/menpo/pull/420] move IOInfo to use pathlib (@jabooth)

	#405 [https://github.com/menpo/menpo/pull/405] import menpo is now twice as fast (@jabooth)

	#416 [https://github.com/menpo/menpo/pull/416] waffle.io Badge (@waffle-iron)

	#415 [https://github.com/menpo/menpo/pull/415] export_mesh with .OBJ exporter (@jabooth, @patricksnape)

	#410 [https://github.com/menpo/menpo/pull/410] Fix the render_labels logic (@patricksnape)

	#407 [https://github.com/menpo/menpo/pull/407] Exporters (@patricksnape)

	#406 [https://github.com/menpo/menpo/pull/406] Fix greyscale PIL images (@patricksnape)

	#404 [https://github.com/menpo/menpo/pull/404] LandmarkGroup tojson method and PointGraph (@patricksnape)

	#403 [https://github.com/menpo/menpo/pull/403] Fixes a couple of viewing problems in fitting results (@patricksnape)

	#402 [https://github.com/menpo/menpo/pull/402] Landmarks fixes (@jabooth, @patricksnape)

	#401 [https://github.com/menpo/menpo/pull/401] Dogfood landmark_resolver in menpo.io (@jabooth)

	#399 [https://github.com/menpo/menpo/pull/399] bunch of Python 3 compatibility fixes (@jabooth)

	#398 [https://github.com/menpo/menpo/pull/398] throughout Menpo. (@jabooth)

	#397 [https://github.com/menpo/menpo/pull/397] Performance improvements for Similarity family (@jabooth)

	#396 [https://github.com/menpo/menpo/pull/396] More efficient initialisations of Menpo types (@jabooth)

	#395 [https://github.com/menpo/menpo/pull/395] remove cyclic target reference from landmarks (@jabooth)

	#393 [https://github.com/menpo/menpo/pull/393] Groundwork for dense correspondence pipeline (@jabooth)

	#394 [https://github.com/menpo/menpo/pull/394] weakref to break cyclic references (@jabooth)

	#389 [https://github.com/menpo/menpo/pull/389] assorted fixes (@jabooth)

	#390 [https://github.com/menpo/menpo/pull/390] (@jabooth)

	#387 [https://github.com/menpo/menpo/pull/387] Adds landmark label for tongues (@nontas)

	#386 [https://github.com/menpo/menpo/pull/386] Adds labels for the ibug eye annotation scheme (@jalabort)

	#382 [https://github.com/menpo/menpo/pull/382] BUG fixed: block element not reset if norm=0 (@dubzzz)

	#381 [https://github.com/menpo/menpo/pull/381] Recursive globbing (@jabooth)

	#384 [https://github.com/menpo/menpo/pull/384] Adds support for odd patch shapes in function extract_local_patches_fast (@jalabort)

	#379 [https://github.com/menpo/menpo/pull/379] imported textures have ioinfo, docs improvements (@jabooth)

v0.3.0 (2014/05/27)

First public release of Menpo, this release coincided with submission
to the ACM Multimedia Open Source Software Competition 2014. This provides
the basic scaffolding for Menpo, but it is not advised to use this version
over the improvements in 0.4.0.

Github Pull Requests

	#377 [https://github.com/menpo/menpo/pull/377] Simple fixes (@patricksnape)

	#375 [https://github.com/menpo/menpo/pull/375] improvements to importing multiple assets (@jabooth)

	#374 [https://github.com/menpo/menpo/pull/374] Menpo’s User guide (@jabooth)

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	_compose_after_inplace() (menpo.transform.base.composable.ComposableTransform method)

 	_compose_before_inplace() (menpo.transform.base.composable.ComposableTransform method)

 	_transform_inplace() (menpo.transform.base.Transformable method)

 	_view_2d() (menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	
 	_view_landmarks_2d() (menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

A

 	
 	add_label() (menpo.shape.LabelledPointUndirectedGraph method)

 	Affine (class in menpo.transform)

 	aligned_source() (menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.alignment.Alignment method)

 	(menpo.transform.ThinPlateSplines method)

 	Alignment (class in menpo.transform.base.alignment)

 	alignment_error() (menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.alignment.Alignment method)

 	(menpo.transform.ThinPlateSplines method)

 	AlignmentAffine (class in menpo.transform)

 	AlignmentRotation (class in menpo.transform)

 	AlignmentSimilarity (class in menpo.transform)

 	AlignmentTranslation (class in menpo.transform)

 	AlignmentUniformScale (class in menpo.transform)

 	all_true() (menpo.image.BooleanImage method)

 	apply() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	apply_inplace() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	
 	as_greyscale() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_histogram() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_imageio() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_masked() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_matrix() (in module menpo.math)

 	as_non_alignment() (menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	as_PILImage() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	as_pointgraph() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	as_unmasked() (menpo.image.MaskedImage method)

 	as_vector() (menpo.base.Vectorizable method)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.base.Shape method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	axis_and_angle_of_rotation() (menpo.transform.AlignmentRotation method)

 	(menpo.transform.Rotation method)

B

 	
 	BooleanImage (class in menpo.image)

 	boundary_tri_index() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	bounding_box() (in module menpo.shape)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	bounding_box_mirrored_to_bounding_box() (in module menpo.landmark)

 	bounding_box_to_bounding_box() (in module menpo.landmark)

 	
 	bounding_cuboid() (in module menpo.shape)

 	bounds() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	bounds_false() (menpo.image.BooleanImage method)

 	bounds_true() (menpo.image.BooleanImage method)

 	build_mask_around_landmarks() (menpo.image.MaskedImage method)

 	bytes_str() (in module menpo.visualize)

C

 	
 	car_streetscene_20_to_car_streetscene_view_0_8() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_1_14() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_2_10() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_3_14() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_4_14() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_5_10() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_6_14() (in module menpo.landmark)

 	car_streetscene_20_to_car_streetscene_view_7_8() (in module menpo.landmark)

 	centre() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	centre_of_bounds() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	chain_graph() (in module menpo.shape)

 	children() (menpo.shape.DirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	clear() (menpo.landmark.LandmarkManager method)

 	clear_figure() (menpo.visualize.MatplotlibRenderer method)

 	(menpo.visualize.Renderer method)

 	clip_pixels() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	clip_texture() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	ColouredTriMesh (class in menpo.shape)

 	complete_graph() (in module menpo.shape)

 	component() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	component_vector() (menpo.model.PCAModel method)

 	components() (menpo.model.LinearVectorModel property)

 	(menpo.model.MeanLinearVectorModel property)

 	(menpo.model.PCAModel property)

 	(menpo.model.PCAVectorModel property)

 	ComposableTransform (class in menpo.transform.base.composable)

 	compose_after() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	compose_after_from_vector_inplace() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.VComposable method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	compose_after_inplace() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	compose_before() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	compose_before_inplace() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	
 	composes_inplace_with() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.composable.ComposableTransform property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.TransformChain property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	composes_with() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.composable.ComposableTransform property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.TransformChain property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	constrain_landmarks_to_bounds() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	constrain_mask_to_landmarks() (menpo.image.MaskedImage method)

 	constrain_mask_to_patches_around_landmarks() (menpo.image.MaskedImage method)

 	constrain_points_to_bounds() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	constrain_to_bounds() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	constrain_to_landmarks() (menpo.image.BooleanImage method)

 	constrain_to_pointcloud() (menpo.image.BooleanImage method)

 	copy() (menpo.base.Copyable method)

 	(menpo.base.LazyList method)

 	(menpo.base.Targetable method)

 	(menpo.base.Vectorizable method)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.landmark.Landmarkable method)

 	(menpo.landmark.LandmarkManager method)

 	(menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	(menpo.shape.base.Shape method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.alignment.Alignment method)

 	(menpo.transform.base.composable.ComposableTransform method)

 	(menpo.transform.base.Transformable method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.R2LogR2RBF method)

 	(menpo.transform.R2LogRRBF method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Transform method)

 	(menpo.transform.TransformChain method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	Copyable (class in menpo.base)

 	count() (menpo.base.LazyList method)

 	crop() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_landmarks() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_landmarks_proportion() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_pointcloud() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_pointcloud_proportion() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	crop_to_true_mask() (menpo.image.MaskedImage method)

D

 	
 	daisy() (in module menpo.feature)

 	data_dir_path() (in module menpo.io)

 	data_path_to() (in module menpo.io)

 	decompose() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.homogeneous.affine.DiscreteAffine method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	delaunay_graph() (in module menpo.shape)

 	depth_of_vertex() (menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	
 	diagonal() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	dilate() (menpo.image.MaskedImage method)

 	DirectedGraph (class in menpo.shape)

 	DiscreteAffine (class in menpo.transform.homogeneous.affine)

 	distance_to() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	dot_inplace_left() (in module menpo.math)

 	dot_inplace_right() (in module menpo.math)

 	double_igo() (in module menpo.feature)

E

 	
 	edge_indices() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	edge_lengths() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	edge_vectors() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	edges() (menpo.shape.DirectedGraph property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.Tree property)

 	(menpo.shape.UndirectedGraph property)

 	eigenvalue_decomposition() (in module menpo.math)

 	eigenvalues() (menpo.model.PCAModel property)

 	(menpo.model.PCAVectorModel property)

 	eigenvalues_cumulative_ratio() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	
 	eigenvalues_ratio() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	empty_graph() (in module menpo.shape)

 	erode() (menpo.image.MaskedImage method)

 	es() (in module menpo.feature)

 	export_image() (in module menpo.io)

 	export_landmark_file() (in module menpo.io)

 	export_pickle() (in module menpo.io)

 	export_video() (in module menpo.io)

 	extract_channels() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	extract_patches() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	extract_patches_around_landmarks() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	eye_ibug_close_17_to_eye_ibug_close_17() (in module menpo.landmark)

 	eye_ibug_close_17_to_eye_ibug_close_17_trimesh() (in module menpo.landmark)

 	eye_ibug_open_38_to_eye_ibug_open_38() (in module menpo.landmark)

 	eye_ibug_open_38_to_eye_ibug_open_38_trimesh() (in module menpo.landmark)

F

 	
 	face_bu3dfe_83_to_face_bu3dfe_83() (in module menpo.landmark)

 	face_ibug_49_to_face_ibug_49() (in module menpo.landmark)

 	face_ibug_68_mirrored_to_face_ibug_68() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_49() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_49_trimesh() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_51() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_51_trimesh() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_65() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_66() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_66_trimesh() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_68() (in module menpo.landmark)

 	face_ibug_68_to_face_ibug_68_trimesh() (in module menpo.landmark)

 	face_imm_58_to_face_imm_58() (in module menpo.landmark)

 	face_lfpw_29_to_face_lfpw_29() (in module menpo.landmark)

 	false_indices() (menpo.image.BooleanImage method)

 	find_all_paths() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	find_all_shortest_paths() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	find_path() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	find_shortest_path() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	force_draw() (menpo.visualize.MatplotlibRenderer method)

 	(menpo.visualize.Renderer method)

 	from_mask() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	
 	from_matrix() (in module menpo.math)

 	from_tri_mask() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	from_vector() (menpo.base.Vectorizable method)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.base.Shape method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	from_vector_inplace() (menpo.base.Vectorizable method)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.base.Shape method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

G

 	
 	gaussian_filter() (in module menpo.feature)

 	gaussian_pyramid() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	GeneralizedProcrustesAnalysis (class in menpo.transform)

 	get() (menpo.landmark.LandmarkManager method)

 	get_adjacency_list() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	
 	get_figure() (menpo.visualize.MatplotlibRenderer method)

 	(menpo.visualize.Renderer method)

 	get_label() (menpo.shape.LabelledPointUndirectedGraph method)

 	GMRFModel (class in menpo.model)

 	GMRFVectorModel (class in menpo.model)

 	gradient() (in module menpo.feature)

 	group_labels() (menpo.landmark.LandmarkManager property)

H

 	
 	h_matrix() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	h_matrix_is_mutable() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	h_points() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	hand_ibug_39_to_hand_ibug_39() (in module menpo.landmark)

 	has_cycles() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	has_isolated_vertices() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	has_landmarks() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	(menpo.landmark.Landmarkable property)

 	(menpo.landmark.LandmarkManager property)

 	(menpo.shape.base.Shape property)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	
 	has_landmarks_outside_bounds() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	has_nan_values() (menpo.base.Vectorizable method)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	(menpo.shape.base.Shape method)

 	(menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	(menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	has_true_inverse() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.invertible.Invertible property)

 	(menpo.transform.base.invertible.VInvertible property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.ThinPlateSplines property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	height() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	Homogeneous (class in menpo.transform)

I

 	
 	igo() (in module menpo.feature)

 	Image (class in menpo.image)

 	image_paths() (in module menpo.io)

 	ImageBoundaryError (class in menpo.image)

 	import_builtin_asset() (in module menpo.io)

 	import_image() (in module menpo.io)

 	import_images() (in module menpo.io)

 	import_landmark_file() (in module menpo.io)

 	import_landmark_files() (in module menpo.io)

 	import_pickle() (in module menpo.io)

 	import_pickles() (in module menpo.io)

 	import_video() (in module menpo.io)

 	import_videos() (in module menpo.io)

 	increment() (menpo.model.GMRFModel method)

 	(menpo.model.GMRFVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	index() (menpo.base.LazyList method)

 	indices() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	init_2d_grid() (menpo.shape.ColouredTriMesh class method)

 	(menpo.shape.LabelledPointUndirectedGraph class method)

 	(menpo.shape.PointCloud class method)

 	(menpo.shape.PointDirectedGraph class method)

 	(menpo.shape.PointTree class method)

 	(menpo.shape.PointUndirectedGraph class method)

 	(menpo.shape.TexturedTriMesh class method)

 	(menpo.shape.TriMesh class method)

 	init_3d_from_quaternion() (menpo.transform.AlignmentRotation class method)

 	(menpo.transform.Rotation class method)

 	init_blank() (menpo.image.BooleanImage class method)

 	(menpo.image.Image class method)

 	(menpo.image.MaskedImage class method)

 	init_from_2d_ccw_angle() (menpo.transform.AlignmentRotation class method)

 	(menpo.transform.Rotation class method)

 	init_from_2d_shear() (menpo.transform.Affine class method)

 	(menpo.transform.AlignmentAffine class method)

 	(menpo.transform.AlignmentRotation class method)

 	(menpo.transform.AlignmentSimilarity class method)

 	(menpo.transform.AlignmentTranslation class method)

 	(menpo.transform.AlignmentUniformScale class method)

 	(menpo.transform.NonUniformScale class method)

 	(menpo.transform.Rotation class method)

 	(menpo.transform.Similarity class method)

 	(menpo.transform.Translation class method)

 	(menpo.transform.UniformScale class method)

 	init_from_3d_ccw_angle_around_x() (menpo.transform.AlignmentRotation class method)

 	(menpo.transform.Rotation class method)

 	init_from_3d_ccw_angle_around_y() (menpo.transform.AlignmentRotation class method)

 	(menpo.transform.Rotation class method)

 	init_from_3d_ccw_angle_around_z() (menpo.transform.AlignmentRotation class method)

 	(menpo.transform.Rotation class method)

 	init_from_channels_at_back() (menpo.image.BooleanImage class method)

 	(menpo.image.Image class method)

 	(menpo.image.MaskedImage class method)

 	init_from_components() (menpo.model.PCAModel class method)

 	(menpo.model.PCAVectorModel class method)

 	init_from_covariance_matrix() (menpo.model.PCAModel class method)

 	(menpo.model.PCAVectorModel class method)

 	init_from_depth_image() (menpo.shape.ColouredTriMesh class method)

 	(menpo.shape.LabelledPointUndirectedGraph class method)

 	(menpo.shape.PointCloud class method)

 	(menpo.shape.PointDirectedGraph class method)

 	(menpo.shape.PointTree class method)

 	(menpo.shape.PointUndirectedGraph class method)

 	(menpo.shape.TexturedTriMesh class method)

 	(menpo.shape.TriMesh class method)

 	
 	init_from_edges() (menpo.shape.DirectedGraph class method)

 	(menpo.shape.LabelledPointUndirectedGraph class method)

 	(menpo.shape.PointDirectedGraph class method)

 	(menpo.shape.PointTree class method)

 	(menpo.shape.PointUndirectedGraph class method)

 	(menpo.shape.Tree class method)

 	(menpo.shape.UndirectedGraph class method)

 	init_from_index_callable() (menpo.base.LazyList class method)

 	init_from_indices_mapping() (menpo.shape.LabelledPointUndirectedGraph class method)

 	init_from_iterable() (menpo.base.LazyList class method)

 	init_from_pointcloud() (menpo.image.BooleanImage class method)

 	(menpo.image.Image class method)

 	(menpo.image.MaskedImage class method)

 	init_from_rolled_channels() (menpo.image.BooleanImage class method)

 	(menpo.image.Image class method)

 	(menpo.image.MaskedImage class method)

 	init_identity() (menpo.transform.Affine class method)

 	(menpo.transform.AlignmentAffine class method)

 	(menpo.transform.AlignmentRotation class method)

 	(menpo.transform.AlignmentSimilarity class method)

 	(menpo.transform.AlignmentTranslation class method)

 	(menpo.transform.AlignmentUniformScale class method)

 	(menpo.transform.Homogeneous class method)

 	(menpo.transform.NonUniformScale class method)

 	(menpo.transform.Rotation class method)

 	(menpo.transform.Similarity class method)

 	(menpo.transform.Translation class method)

 	(menpo.transform.UniformScale class method)

 	init_with_all_label() (menpo.shape.LabelledPointUndirectedGraph class method)

 	instance() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	instance_vector() (menpo.model.PCAModel method)

 	instance_vectors() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	inverse_noise_variance() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	invert() (menpo.image.BooleanImage method)

 	Invertible (class in menpo.transform.base.invertible)

 	ipca() (in module menpo.math)

 	is_edge() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	is_leaf() (menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	is_tree() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	isolated_vertices() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	items() (menpo.landmark.LandmarkManager method)

 	items_matching() (menpo.landmark.LandmarkManager method)

K

 	
 	keys() (menpo.landmark.LandmarkManager method)

 	
 	keys_matching() (menpo.landmark.LandmarkManager method)

L

 	
 	LabelledPointUndirectedGraph (class in menpo.shape)

 	labeller() (in module menpo.landmark)

 	LabellingError (class in menpo.landmark)

 	labels() (menpo.shape.LabelledPointUndirectedGraph property)

 	landmark_file_paths() (in module menpo.io)

 	Landmarkable (class in menpo.landmark)

 	LandmarkableViewable (class in menpo.visualize)

 	LandmarkManager (class in menpo.landmark)

 	landmarks() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	(menpo.landmark.Landmarkable property)

 	(menpo.shape.base.Shape property)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	LazyList (class in menpo.base)

 	leaves() (menpo.shape.PointTree property)

 	(menpo.shape.Tree property)

 	
 	linear_component() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	LinearModel (in module menpo.model)

 	LinearVectorModel (class in menpo.model)

 	lms() (menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	log_gabor() (in module menpo.math)

 	ls_builtin_assets() (in module menpo.io)

M

 	
 	mahalanobis_distance() (menpo.model.GMRFModel method)

 	(menpo.model.GMRFVectorModel method)

 	map() (menpo.base.LazyList method)

 	mask() (menpo.image.BooleanImage property)

 	masked_pixels() (menpo.image.MaskedImage method)

 	MaskedImage (class in menpo.image)

 	MatplotlibRenderer (class in menpo.visualize)

 	maximum_depth() (menpo.shape.PointTree property)

 	(menpo.shape.Tree property)

 	mean() (menpo.model.GMRFModel method)

 	(menpo.model.GMRFVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	mean_aligned_shape() (menpo.transform.GeneralizedProcrustesAnalysis method)

 	mean_alignment_error() (menpo.transform.GeneralizedProcrustesAnalysis method)

 	mean_edge_length() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	
 	mean_pointcloud() (in module menpo.shape)

 	mean_tri_area() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	mean_vector() (menpo.model.PCAModel property)

 	MeanLinearModel (in module menpo.model)

 	MeanLinearVectorModel (class in menpo.model)

 	menpo_src_dir_path() (in module menpo.base)

 	MenpoDeprecationWarning (class in menpo.base)

 	MenpoMissingDependencyError (class in menpo.base)

 	minimum_spanning_tree() (menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.UndirectedGraph method)

 	mirror() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	msg (menpo.base.MenpoMissingDependencyError attribute)

 	MultipleAlignment (class in menpo.transform.groupalign.base)

N

 	
 	n_active_components() (menpo.model.PCAModel property)

 	(menpo.model.PCAVectorModel property)

 	n_centres() (menpo.transform.R2LogR2RBF property)

 	(menpo.transform.R2LogRRBF property)

 	n_channels() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.TexturedTriMesh property)

 	n_children() (menpo.shape.DirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	n_components() (menpo.model.LinearVectorModel property)

 	(menpo.model.MeanLinearVectorModel property)

 	(menpo.model.PCAModel property)

 	(menpo.model.PCAVectorModel property)

 	n_dims() (menpo.base.Targetable property)

 	(menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	(menpo.landmark.Landmarkable method)

 	(menpo.landmark.LandmarkManager property)

 	(menpo.shape.base.Shape method)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	(menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.alignment.Alignment property)

 	(menpo.transform.base.composable.ComposableTransform property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.R2LogR2RBF property)

 	(menpo.transform.R2LogRRBF property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.ThinPlateSplines property)

 	(menpo.transform.Transform property)

 	(menpo.transform.TransformChain property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	n_dims_output() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.composable.ComposableTransform property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.R2LogR2RBF property)

 	(menpo.transform.R2LogRRBF property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.ThinPlateSplines property)

 	(menpo.transform.Transform property)

 	(menpo.transform.TransformChain property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	n_edges() (menpo.shape.DirectedGraph property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.Tree property)

 	(menpo.shape.UndirectedGraph property)

 	n_elements() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	n_false() (menpo.image.BooleanImage method)

 	n_false_elements() (menpo.image.MaskedImage method)

 	n_false_pixels() (menpo.image.MaskedImage method)

 	n_features() (menpo.model.LinearVectorModel property)

 	(menpo.model.MeanLinearVectorModel property)

 	(menpo.model.PCAModel property)

 	(menpo.model.PCAVectorModel property)

 	n_groups() (menpo.landmark.LandmarkManager property)

 	n_labels() (menpo.shape.LabelledPointUndirectedGraph property)

 	n_landmark_groups() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	(menpo.landmark.Landmarkable property)

 	(menpo.shape.base.Shape property)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	n_landmarks() (menpo.shape.LabelledPointUndirectedGraph property)

 	n_leaves() (menpo.shape.PointTree property)

 	(menpo.shape.Tree property)

 	
 	n_neighbours() (menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.UndirectedGraph method)

 	n_parameters() (menpo.base.Vectorizable property)

 	(menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	(menpo.shape.base.Shape property)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	(menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.Homogeneous property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	n_parents() (menpo.shape.DirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	n_paths() (menpo.shape.DirectedGraph method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.Tree method)

 	(menpo.shape.UndirectedGraph method)

 	n_pixels() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	n_points() (menpo.base.Targetable property)

 	(menpo.shape.ColouredTriMesh property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointCloud property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.alignment.Alignment property)

 	(menpo.transform.ThinPlateSplines property)

 	n_tris() (menpo.shape.ColouredTriMesh property)

 	(menpo.shape.TexturedTriMesh property)

 	(menpo.shape.TriMesh property)

 	n_true() (menpo.image.BooleanImage method)

 	n_true_elements() (menpo.image.MaskedImage method)

 	n_true_pixels() (menpo.image.MaskedImage method)

 	n_vertices() (menpo.shape.DirectedGraph property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.Tree property)

 	(menpo.shape.UndirectedGraph property)

 	n_vertices_at_depth() (menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	name (menpo.base.MenpoMissingDependencyError attribute)

 	name_of_callable() (in module menpo.base)

 	neighbours() (menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.UndirectedGraph method)

 	no_op() (in module menpo.feature)

 	noise_variance() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	noise_variance_ratio() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	NonUniformScale (class in menpo.transform)

 	norm() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	normalize() (in module menpo.feature)

 	normalize_norm() (in module menpo.feature)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	normalize_std() (in module menpo.feature)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	normalize_var() (in module menpo.feature)

O

 	
 	original_variance() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	orthonormalize_against_inplace() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	
 	orthonormalize_inplace() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	OutOfMaskSampleError (class in menpo.image)

P

 	
 	parent() (menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	parents() (menpo.shape.DirectedGraph method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	path (menpo.base.MenpoMissingDependencyError attribute)

 	pca() (in module menpo.math)

 	pcacov() (in module menpo.math)

 	PCAModel (class in menpo.model)

 	PCAVectorModel (class in menpo.model)

 	pickle_paths() (in module menpo.io)

 	PiecewiseAffine (in module menpo.transform)

 	pixels_range() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	pixels_with_channels_at_back() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	plot_curve() (in module menpo.visualize)

 	plot_eigenvalues() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	plot_eigenvalues_cumulative_ratio() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	plot_eigenvalues_ratio() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	plot_gaussian_ellipses() (in module menpo.visualize)

 	PointCloud (class in menpo.shape)

 	PointDirectedGraph (class in menpo.shape)

 	PointTree (class in menpo.shape)

 	PointUndirectedGraph (class in menpo.shape)

 	pop() (menpo.landmark.LandmarkManager method)

 	popitem() (menpo.landmark.LandmarkManager method)

 	pose_flic_11_to_pose_flic_11() (in module menpo.landmark)

 	pose_human36M_32_to_pose_human36M_17() (in module menpo.landmark)

 	pose_human36M_32_to_pose_human36M_32() (in module menpo.landmark)

 	pose_lsp_14_to_pose_lsp_14() (in module menpo.landmark)

 	pose_stickmen_12_to_pose_stickmen_12() (in module menpo.landmark)

 	principal_components_analysis() (menpo.model.GMRFModel method)

 	(menpo.model.GMRFVectorModel method)

 	print_dynamic() (in module menpo.visualize)

 	print_progress() (in module menpo.visualize)

 	progress_bar_str() (in module menpo.visualize)

 	project() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	project_out() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	
 	project_out_vector() (menpo.model.PCAModel method)

 	project_out_vectors() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	project_vector() (menpo.model.PCAModel method)

 	project_vectors() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	project_whitened() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	project_whitened_vector() (menpo.model.PCAModel method)

 	proportion_false() (menpo.image.BooleanImage method)

 	proportion_true() (menpo.image.BooleanImage method)

 	pseudoinverse() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.invertible.Invertible method)

 	(menpo.transform.base.invertible.VInvertible method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.ThinPlateSplines method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	pseudoinverse_vector() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.invertible.VInvertible method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	pyramid() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

R

 	
 	R2LogR2RBF (class in menpo.transform)

 	R2LogRRBF (class in menpo.transform)

 	range() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	rasterize_landmarks() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	reconstruct() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	reconstruct_vector() (menpo.model.PCAModel method)

 	reconstruct_vectors() (menpo.model.LinearVectorModel method)

 	(menpo.model.MeanLinearVectorModel method)

 	(menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	register_image_importer() (in module menpo.io)

 	register_landmark_importer() (in module menpo.io)

 	register_pickle_importer() (in module menpo.io)

 	register_video_importer() (in module menpo.io)

 	relative_location_edge() (menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	relative_locations() (menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	remove_label() (menpo.shape.LabelledPointUndirectedGraph method)

 	render() (menpo.visualize.MatplotlibRenderer method)

 	(menpo.visualize.Renderer method)

 	
 	Renderer (class in menpo.visualize)

 	repeat() (menpo.base.LazyList method)

 	rescale() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_landmarks_to_diagonal_range() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_pixels() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_texture() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	rescale_to_diagonal() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rescale_to_pointcloud() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	resize() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rolled_channels() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	rotate_ccw_about_centre() (in module menpo.transform)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	Rotation (class in menpo.transform)

 	rotation_matrix() (menpo.transform.AlignmentRotation property)

 	(menpo.transform.Rotation property)

S

 	
 	sample() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	save_figure() (menpo.visualize.MatplotlibRenderer method)

 	(menpo.visualize.Renderer method)

 	Scale() (in module menpo.transform)

 	scale() (menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.UniformScale property)

 	scale_about_centre() (in module menpo.transform)

 	set_boundary_pixels() (menpo.image.MaskedImage method)

 	set_h_matrix() (menpo.transform.Affine method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.Homogeneous method)

 	(menpo.transform.NonUniformScale method)

 	(menpo.transform.Rotation method)

 	(menpo.transform.Similarity method)

 	(menpo.transform.Translation method)

 	(menpo.transform.UniformScale method)

 	set_masked_pixels() (menpo.image.MaskedImage method)

 	set_patches() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	set_patches_around_landmarks() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	
 	set_rotation_matrix() (menpo.transform.AlignmentRotation method)

 	(menpo.transform.Rotation method)

 	set_target() (menpo.base.Targetable method)

 	(menpo.transform.AlignmentAffine method)

 	(menpo.transform.AlignmentRotation method)

 	(menpo.transform.AlignmentSimilarity method)

 	(menpo.transform.AlignmentTranslation method)

 	(menpo.transform.AlignmentUniformScale method)

 	(menpo.transform.base.alignment.Alignment method)

 	(menpo.transform.ThinPlateSplines method)

 	setdefault() (menpo.landmark.LandmarkManager method)

 	Shape (class in menpo.shape.base)

 	shape() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	shear_about_centre() (in module menpo.transform)

 	Similarity (class in menpo.transform)

 	source() (menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.alignment.Alignment property)

 	(menpo.transform.ThinPlateSplines property)

 	star_graph() (in module menpo.shape)

 	stencil_grid() (in module menpo.shape)

 	sum_channels() (in module menpo.feature)

T

 	
 	target() (menpo.base.Targetable property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.base.alignment.Alignment property)

 	(menpo.transform.ThinPlateSplines property)

 	Targetable (class in menpo.base)

 	tcoords_pixel_scaled() (menpo.shape.TexturedTriMesh method)

 	TexturedTriMesh (class in menpo.shape)

 	ThinPlateSplines (class in menpo.transform)

 	tojson() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	tongue_ibug_19_to_tongue_ibug_19() (in module menpo.landmark)

 	Transform (class in menpo.transform)

 	transform_about_centre() (in module menpo.transform)

 	(menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	
 	Transformable (class in menpo.transform.base)

 	TransformChain (class in menpo.transform)

 	Translation (class in menpo.transform)

 	translation_component() (menpo.transform.Affine property)

 	(menpo.transform.AlignmentAffine property)

 	(menpo.transform.AlignmentRotation property)

 	(menpo.transform.AlignmentSimilarity property)

 	(menpo.transform.AlignmentTranslation property)

 	(menpo.transform.AlignmentUniformScale property)

 	(menpo.transform.NonUniformScale property)

 	(menpo.transform.Rotation property)

 	(menpo.transform.Similarity property)

 	(menpo.transform.Translation property)

 	(menpo.transform.UniformScale property)

 	Tree (class in menpo.shape)

 	tri_areas() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	tri_normals() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	trim_components() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	TriMesh (class in menpo.shape)

 	true_indices() (menpo.image.BooleanImage method)

U

 	
 	UndirectedGraph (class in menpo.shape)

 	UniformScale (class in menpo.transform)

 	unique_edge_indices() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	unique_edge_lengths() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	
 	unique_edge_vectors() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	update() (menpo.landmark.LandmarkManager method)

V

 	
 	values() (menpo.landmark.LandmarkManager method)

 	variance() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	variance_ratio() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	VComposable (class in menpo.transform.base.composable)

 	Vectorizable (class in menpo.base)

 	vertex_normals() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	vertices() (menpo.shape.DirectedGraph property)

 	(menpo.shape.LabelledPointUndirectedGraph property)

 	(menpo.shape.PointDirectedGraph property)

 	(menpo.shape.PointTree property)

 	(menpo.shape.PointUndirectedGraph property)

 	(menpo.shape.Tree property)

 	(menpo.shape.UndirectedGraph property)

 	
 	vertices_at_depth() (menpo.shape.PointTree method)

 	(menpo.shape.Tree method)

 	video_paths() (in module menpo.io)

 	view_patches() (in module menpo.visualize)

 	Viewable (class in menpo.visualize)

 	VInvertible (class in menpo.transform.base.invertible)

W

 	
 	warp_to_mask() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	warp_to_shape() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 	whitened_components() (menpo.model.PCAModel method)

 	(menpo.model.PCAVectorModel method)

 	width() (menpo.image.BooleanImage property)

 	(menpo.image.Image property)

 	(menpo.image.MaskedImage property)

 	with_dims() (menpo.shape.ColouredTriMesh method)

 	(menpo.shape.LabelledPointUndirectedGraph method)

 	(menpo.shape.PointCloud method)

 	(menpo.shape.PointDirectedGraph method)

 	(menpo.shape.PointTree method)

 	(menpo.shape.PointUndirectedGraph method)

 	(menpo.shape.TexturedTriMesh method)

 	(menpo.shape.TriMesh method)

 	
 	with_labels() (menpo.shape.LabelledPointUndirectedGraph method)

 	with_traceback() (menpo.base.MenpoDeprecationWarning method)

 	(menpo.base.MenpoMissingDependencyError method)

 	(menpo.image.ImageBoundaryError method)

 	(menpo.image.OutOfMaskSampleError method)

 	(menpo.landmark.LabellingError method)

 	without_labels() (menpo.shape.LabelledPointUndirectedGraph method)

Z

 	
 	zoom() (menpo.image.BooleanImage method)

 	(menpo.image.Image method)

 	(menpo.image.MaskedImage method)

 Overview: module code

 All modules for which code is available

	collections.abc

	menpo.base

	menpo.feature.features

	menpo.feature.visualize

	menpo.image.base

	menpo.image.boolean

	menpo.image.masked

	menpo.io.input.base

	menpo.io.output.base

	menpo.landmark.base

	menpo.landmark.exceptions

	menpo.landmark.labels.base

	menpo.landmark.labels.bounding_box

	menpo.landmark.labels.car

	menpo.landmark.labels.human.face

	menpo.landmark.labels.human.face_3d

	menpo.landmark.labels.human.hand

	menpo.landmark.labels.human.pose

	menpo.math.convolution

	menpo.math.decomposition

	menpo.math.linalg

	menpo.model.gmrf

	menpo.model.linear

	menpo.model.pca

	menpo.model.vectorizable

	menpo.shape.base

	menpo.shape.graph

	menpo.shape.graph_predefined

	menpo.shape.groupops

	menpo.shape.labelled

	menpo.shape.mesh.base

	menpo.shape.mesh.coloured

	menpo.shape.mesh.textured

	menpo.shape.pointcloud

	menpo.transform.base

	menpo.transform.base.alignment

	menpo.transform.base.composable

	menpo.transform.base.invertible

	menpo.transform.compositions

	menpo.transform.groupalign.base

	menpo.transform.groupalign.procrustes

	menpo.transform.homogeneous.affine

	menpo.transform.homogeneous.base

	menpo.transform.homogeneous.rotation

	menpo.transform.homogeneous.scale

	menpo.transform.homogeneous.similarity

	menpo.transform.homogeneous.translation

	menpo.transform.piecewiseaffine.base

	menpo.transform.rbf

	menpo.transform.thinplatesplines

	menpo.visualize.base

	menpo.visualize.textutils

	menpo.visualize.viewmatplotlib

 collections.abc

 Source code for collections.abc

from _collections_abc import *
from _collections_abc import __all__

 menpo.base

 Source code for menpo.base

import collections.abc as collections_abc
import os
import textwrap
import warnings
from functools import partial, wraps
from itertools import chain
from pprint import pformat

[docs]class Copyable(object):
 """
 Efficient copying of classes containing numpy arrays.

 Interface that provides a single method for copying classes very
 efficiently.
 """

[docs] def copy(self):
 r"""
 Generate an efficient copy of this object.

 Note that Numpy arrays and other :map:`Copyable` objects on ``self``
 will be deeply copied. Dictionaries and sets will be shallow copied,
 and everything else will be assigned (no copy will be made).

 Classes that store state other than numpy arrays and immutable types
 should overwrite this method to ensure all state is copied.

 Returns

 ``type(self)``
 A copy of this object
 """
 new = self.__class__.__new__(self.__class__)
 for k, v in self.__dict__.items():
 try:
 new.__dict__[k] = v.copy()
 except AttributeError:
 new.__dict__[k] = v
 return new

 def __str__(self):
 # We have to be sure that we implement __str__ otherwise the __repr__
 # implementation below will lead to an infinite recursion.
 return "Copyable Menpo Object with keys:\n{}".format(pformat(self.__dict__))

 def __repr__(self):
 # Most classes in Menpo derive from Copyable, so it's a handy place
 # to implement Menpo-wide behavior. For use in the notebook, we find
 # __repr__ representations not of very much use, so we default to
 # showing the string representation for this case. See
 # https://github.com/menpo/menpo/issues/752 for discussion.
 return self.__str__()

[docs]class Vectorizable(Copyable):
 """
 Flattening of rich objects to vectors and rebuilding them back.

 Interface that provides methods for 'flattening' an object into a
 vector, and restoring from the same vectorized form. Useful for
 statistical analysis of objects, which commonly requires the data
 to be provided as a single vector.
 """

 @property
 def n_parameters(self):
 r"""The length of the vector that this object produces.

 :type: `int`
 """
 return (self.as_vector()).shape[0]

[docs] def as_vector(self, **kwargs):
 """
 Returns a flattened representation of the object as a single
 vector.

 Returns

 vector : (N,) ndarray
 The core representation of the object, flattened into a
 single vector. Note that this is always a view back on to the
 original object, but is not writable.
 """
 v = self._as_vector(**kwargs)
 v.flags.writeable = False
 return v

 def _as_vector(self, **kwargs):
 """
 Returns a flattened representation of the object as a single
 vector.

 Returns

 vector : ``(n_parameters,)`` `ndarray`
 The core representation of the object, flattened into a
 single vector.
 """
 raise NotImplementedError()

[docs] def from_vector_inplace(self, vector):
 """
 Deprecated. Use the non-mutating API, :map:`from_vector`.

 For internal usage in performance-sensitive spots,
 see `_from_vector_inplace()`

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of this object
 """
 warnings.warn(
 "the public API for inplace operations is deprecated "
 "and will be removed in a future version of Menpo. "
 "Use .from_vector() instead.",
 MenpoDeprecationWarning,
)
 return self._from_vector_inplace(vector)

 def _from_vector_inplace(self, vector):
 """
 Update the state of this object from a vector form.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of this object
 """
 raise NotImplementedError()

[docs] def from_vector(self, vector):
 """
 Build a new instance of the object from it's vectorized state.

 ``self`` is used to fill out the missing state required to
 rebuild a full object from it's standardized flattened state. This
 is the default implementation, which is which is a ``deepcopy`` of the
 object followed by a call to :meth:`from_vector_inplace()`. This method
 can be overridden for a performance benefit if desired.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of the object.

 Returns

 object : ``type(self)``
 An new instance of this class.
 """
 new = self.copy()
 new._from_vector_inplace(vector)
 return new

[docs] def has_nan_values(self):
 """
 Tests if the vectorized form of the object contains ``nan`` values or
 not. This is particularly useful for objects with unknown values that
 have been mapped to ``nan`` values.

 Returns

 has_nan_values : `bool`
 If the vectorized object contains ``nan`` values.
 """
 import numpy as np

 return np.any(np.isnan(self.as_vector()))

[docs]class Targetable(Copyable):
 """Interface for objects that can produce a target :map:`PointCloud`.

 This could for instance be the result of an alignment or a generation of a
 :map:`PointCloud` instance from a shape model.

 Implementations must define sensible behavior for:

 - what a target is: see :attr:`target`
 - how to set a target: see :meth:`set_target`
 - how to update the object after a target is set:
 see :meth:`_sync_state_from_target`
 - how to produce a new target after the changes:
 see :meth:`_new_target_from_state`

 Note that :meth:`_sync_target_from_state` needs to be triggered as
 appropriate by subclasses e.g. when :map:`from_vector_inplace` is
 called. This will in turn trigger :meth:`_new_target_from_state`, which each
 subclass must implement.
 """

 @property
 def n_dims(self):
 r"""The number of dimensions of the :attr:`target`.

 :type: `int`
 """
 return self.target.n_dims

 @property
 def n_points(self):
 r"""The number of points on the :attr:`target`.

 :type: `int`
 """
 return self.target.n_points

 @property
 def target(self):
 r"""The current :map:`PointCloud` that this object produces.

 :type: :map:`PointCloud`
 """
 raise NotImplementedError()

[docs] def set_target(self, new_target):
 r"""
 Update this object so that it attempts to recreate the ``new_target``.

 Parameters

 new_target : :map:`PointCloud`
 The new target that this object should try and regenerate.
 """
 self._target_setter_with_verification(new_target) # trigger the update
 self._sync_state_from_target() # and a sync

 def _target_setter_with_verification(self, new_target):
 r"""Updates the target, checking it is sensible, without triggering a
 sync.

 Should be called by :meth:`_sync_target_from_state` once it has
 generated a suitable target representation.

 Parameters

 new_target : :map:`PointCloud`
 The new target that should be set.
 """
 self._verify_target(new_target)
 self._target_setter(new_target)

 def _verify_target(self, new_target):
 r"""Performs sanity checks to ensure that the new target is valid.

 This includes checking the dimensionality matches and the number of
 points matches the current target's values.

 Parameters

 new_target : :map:`PointCloud`
 The target that needs to be verified.

 Raises

 ValueError
 If the ``new_target`` has differing ``n_points`` or ``n_dims`` to
 ``self``.
 """
 # If the target is None (i.e. on construction) then dodge the
 # verification
 if self.target is None:
 return
 if new_target.n_dims != self.target.n_dims:
 raise ValueError(
 "The current target is {}D, the new target is {}D - new "
 "target has to have the same dimensionality as the "
 "old".format(self.target.n_dims, new_target.n_dims)
)
 elif new_target.n_points != self.target.n_points:
 raise ValueError(
 "The current target has {} points, the new target has {} "
 "- new target has to have the same number of points as the"
 " old".format(self.target.n_points, new_target.n_points)
)

 def _target_setter(self, new_target):
 r"""Sets the target to the new value.

 Does no synchronization. Note that it is advisable that
 :meth:`_target_setter_with_verification` is called from
 subclasses instead of this.

 Parameters

 new_target : :map:`PointCloud`
 The new target that will be set.
 """
 raise NotImplementedError()

 def _sync_target_from_state(self):
 new_target = self._new_target_from_state()
 self._target_setter_with_verification(new_target)

 def _new_target_from_state(self):
 r"""Generate a new target that is correct after changes to the object.

 Returns

 object : ``type(self)``
 """
 raise NotImplementedError()

 def _sync_state_from_target(self):
 r"""Synchronizes the object state to be correct after changes to the
 target.

 Called automatically from the target setter. This is called after the
 target is updated - only handle synchronization here.
 """
 raise NotImplementedError()

[docs]def menpo_src_dir_path():
 r"""The path to the top of the menpo Python package.

 Useful for locating where the data folder is stored.

 Returns

 path : ``pathlib.Path``
 The full path to the top of the Menpo package
 """
 from pathlib import Path # to avoid cluttering the menpo.base namespace

 return Path(os.path.abspath(__file__)).parent

[docs]class MenpoDeprecationWarning(Warning):
 r"""
 A warning that functionality in Menpo will be deprecated in a future major
 release.
 """
 pass

[docs]class MenpoMissingDependencyError(ImportError):
 r"""
 An exception that a dependency required for the requested functionality
 was not detected.
 """

 def __init__(self, package_name):
 super(MenpoMissingDependencyError, self).__init__()
 if isinstance(package_name, ImportError):
 package_name = self._handle_importerror(package_name)

 self.message = textwrap.dedent(
 """
 You need to install the '{pname}' package in order to use this
 functionality. We recommend that you use conda to achieve this -
 try the command

 conda install {pname}

 in your terminal. Note that this package may be provided by another
 channel such as the "menpo" channel or the "conda-forge" channel.
 Failing that, try installing use pip:

 pip install {pname}

 Note that some packages (e.g. scikit-image) may have a different
 name on pypi/conda than their import (skimage) and thus the above
 commands may fail.
 """.format(
 pname=package_name
)
)

 self.missing_name = package_name

 def _handle_importerror(self, error):
 if hasattr(error, "name"):
 return error.name
 else:
 try:
 # Python 2 doesn't have ModuleNotFoundError
 # (so doesn't have the name attribute)
 base_name = error.message.split("No module named ")[1]
 # Furthermore - the default ImportError includes the full path
 # so we split the name and return just the first part
 # (presumably the name of the package)
 return base_name.split(".")[0]
 except:
 # Worst case, just stringify the error
 return str(error)

 def __str__(self):
 return self.message

[docs]def name_of_callable(c):
 r"""
 Return the name of a callable (function or callable class) as a string.
 Recurses on partial function to attempt to find the wrapped
 methods actual name.

 Parameters

 c : `callable`
 A callable class or function, or any valid Python object that can
 be wrapped with partial.

 Returns

 name : `str`
 The name of the passed object.
 """
 try:
 if isinstance(c, partial): # partial
 # Recursively call as partial may be wrapping either a callable
 # or a function (or another partial for some reason!)
 return name_of_callable(c.func)
 else:
 return c.__name__ # function
 except AttributeError:
 return c.__class__.__name__ # callable class

class doc_inherit(object):
 """
 Docstring inheriting method descriptor.

 This uses some Python magic in order to create a decorator that implements
 the descriptor protocol that allows functions to inherit documentation.
 This is particularly useful for methods that directly override methods
 on their base class and simply alter the implementation but not the
 effective behaviour. Usage of this decorator is as follows:

 @doc_inherit()
 def foo():
 # Do something, but inherit the documentation from the method
 # called 'foo' found on the super() chain.

 @doc_inherit(name="foo2")
 def foo():
 # Do something, but inherit the documentation from the method
 # called 'foo2' found on the super() chain.

 When no argument is passed the name of the method being decorated is
 looked up on the ``super`` call chain.

 Parameters

 name : `str`
 The name of the method to copy documentation from that exists somewhere
 on the ``super`` inheritance hierarchy.
 """

 def __init__(self, name=None):
 self.name = name

 def __call__(self, mthd):
 # Implementing the call method on a decorator allows the decorator
 # to recieve arguments in the constructor (__init__). Therefore,
 # the argument to the call method is always the method being wrapped.
 self.mthd = mthd
 # If name is None then default to the name of the method being wrapped.
 if self.name is None:
 self.name = self.mthd.__name__
 return self

 def __get__(self, obj, cls):
 # Implement the descriptor protocol. There are two different calling
 # strategies that involve whether the wrapped method has been passed
 # an instance or not.
 if obj:
 return self._get_with_instance(obj, cls)
 else:
 return self._get_with_no_instance(cls)

 def _get_with_instance(self, obj, cls):
 # An instance was passed, so lookup the name on the super chain
 overridden = getattr(super(cls, obj), self.name, None)

 # Return the wrapped method, passing through the arguments and the
 # object instance.
 @wraps(self.mthd, assigned=("__name__", "__module__"))
 def f(*args, **kwargs):
 return self.mthd(obj, *args, **kwargs)

 return self._use_parent_doc(f, overridden)

 def _get_with_no_instance(self, cls):

 # This case is more complicated (than when an instance is passed). Here
 # we use reflection to try and lookup the method. When found, we drop
 # out the loop.
 for parent in cls.__mro__[1:]:
 overridden = getattr(parent, self.name, None)
 if overridden:
 break

 # Return the wrapped method, passing through the arguments and the
 # object instance.
 @wraps(self.mthd, assigned=("__name__", "__module__"))
 def f(*args, **kwargs):
 return self.mthd(*args, **kwargs)

 return self._use_parent_doc(f, overridden)

 def _use_parent_doc(self, func, source):
 # Attach the documentation (unless the method was not found on the
 # super chain).
 if source is None:
 raise NameError("Can't find '{}' in parents".format(self.name))
 func.__doc__ = source.__doc__
 return func

[docs]class LazyList(collections_abc.Sequence, Copyable):
 r"""
 An immutable sequence that provides the ability to lazily access objects.
 In truth, this sequence simply wraps a list of callables which are then
 indexed and invoked. However, if the callable represents a function that
 lazily access memory, then this list simply implements a lazy list
 paradigm.

 When slicing, another `LazyList` is returned, containing the subset
 of callables.

 Parameters

 callables : list of `callable`
 A list of `callable` objects that will be invoked if directly indexed.
 """

 def __init__(self, callables):
 self._callables = callables

 def __getitem__(self, slice_):
 # note that we have to check for iterable *before* __index__ as ndarray
 # has both (but we expect the iteration behavior when slicing)
 if isinstance(slice_, collections_abc.Iterable):
 # An iterable object is passed - return a new LazyList
 return LazyList([self._callables[s] for s in slice_])
 elif isinstance(slice_, int) or hasattr(slice_, "__index__"):
 # PEP 357 and single integer index access - returns element
 return self._callables[slice_]()
 else:
 # A slice or unknown type is passed - let List handle it
 return LazyList(self._callables[slice_])

 def __len__(self):
 return len(self._callables)

[docs] @classmethod
 def init_from_iterable(cls, iterable, f=None):
 r"""
 Create a lazy list from an existing iterable (think Python `list`) and
 optionally a `callable` that expects a single parameter which will be
 applied to each element of the list. This allows for simply
 creating a `LazyList` from an existing list and if no `callable` is
 provided the identity function is assumed.

 Parameters

 iterable : `collections.Iterable`
 An iterable object such as a `list`.
 f : `callable`, optional
 Callable expecting a single parameter.

 Returns

 lazy : `LazyList`
 A LazyList where each element returns each item of the provided
 iterable, optionally with `f` applied to it.
 """
 if f is None:
 # The identity function
 def f(i):
 return i

 return cls([partial(f, x) for x in iterable])

[docs] @classmethod
 def init_from_index_callable(cls, f, n_elements):
 r"""
 Create a lazy list from a `callable` that expects a single parameter,
 the index into an underlying sequence. This allows for simply
 creating a `LazyList` from a `callable` that likely wraps
 another list in a closure.

 Parameters

 f : `callable`
 Callable expecting a single integer parameter, index. This is an
 index into (presumably) an underlying sequence.
 n_elements : `int`
 The number of elements in the underlying sequence.

 Returns

 lazy : `LazyList`
 A LazyList where each element returns the underlying indexable
 object wrapped by ``f``.
 """
 return cls([partial(f, i) for i in range(n_elements)])

[docs] def map(self, f):
 r"""
 Create a new LazyList where the passed callable ``f`` wraps
 each element.

 ``f`` should take a single parameter, ``x``, that is the result
 of the underlying callable - it must also return a value. Note that
 mapping is lazy and thus calling this function should return
 immediately.

 Alternatively, ``f`` may be a list of `callable`, one per entry
 in the underlying list, with the same specification as above.

 Parameters

 f : `callable` or `iterable` of `callable`
 Callable to wrap each element with. If an iterable of callables
 (think list) is passed then it **must** by the same length as
 this LazyList.

 Returns

 lazy : `LazyList`
 A new LazyList where each element is wrapped by (each) ``f``.
 """

 # We need this delayed helper function in order to ensure that f
 # is passed the actual instantiated object and not the callable itself.
 def delayed(delay_f, delay_x):
 return delay_f(delay_x())

 if isinstance(f, collections_abc.Iterable) and callable(f):
 raise ValueError(
 "It is ambiguous whether the provided argument "
 "is an iterable object or a callable."
)

 new = self.copy()
 if isinstance(f, collections_abc.Iterable):
 if len(f) != len(new):
 raise ValueError(
 "A callable per element of the LazyList must " "be passed."
)
 new._callables = [
 partial(delayed, one_f, x) for one_f, x in zip(f, new._callables)
]
 else:
 new._callables = [partial(delayed, f, x) for x in new._callables]
 return new

[docs] def repeat(self, n):
 r"""
 Repeat each item of the underlying LazyList ``n`` times. Therefore,
 if a list currently has ``D`` items, the returned list will contain
 ``D * n`` items and will return immediately (method is lazy).

 Parameters

 n : `int`
 The number of times to repeat each item.

 Returns

 lazy : `LazyList`
 A LazyList where each element returns each item of the provided
 iterable, optionally with `f` applied to it.

 Examples

 >>> from menpo.base import LazyList
 >>> ll = LazyList.init_from_list([0, 1])
 >>> repeated_ll = ll.repeat(2) # Returns immediately
 >>> items = list(repeated_ll) # [0, 0, 1, 1]
 """
 new = self.copy()
 new._callables = list(chain(*zip(*[new._callables] * n)))
 return new

[docs] def copy(self):
 r"""
 Generate an efficient copy of this LazyList - copying the underlying
 callables will be lazy and shallow (each callable will **not** be
 called nor copied) but they will reside within in a new `list`.

 Returns

 ``type(self)``
 A copy of this LazyList.
 """
 new = Copyable.copy(self)
 new._callables = list(self._callables)
 return new

 def __add__(self, other):
 r"""
 Create a new LazyList from this list and the given list. The passed list
 items will be concatenated to the end of this list to give a new
 LazyList that contains the concatenation of the two lists.

 If a Python list is passed then the elements are wrapped in a function
 that just returns their values to maintain the callable nature of
 LazyList elements.

 Parameters

 other : `collections.Sequence`
 Sequence to concatenate with this list.

 Returns

 lazy : `LazyList`
 A new LazyList formed of the concatenation of this list and
 the ``other`` list.

 Raises

 ValueError
 If other is not a LazyList or an Iterable
 """
 if isinstance(other, LazyList):
 return LazyList(self._callables + other._callables)
 elif isinstance(other, collections_abc.Iterable):
 return self + LazyList.init_from_iterable(other)
 else:
 raise ValueError(
 "Can only add another LazyList or an Iterable to a LazyList "
 "- {} is neither".format(type(other))
)

 def __str__(self):
 return "LazyList containing {} items".format(len(self))

def partial_doc(func, *args, **kwargs):
 r"""
 Return a partial function but the __doc__ attached to the returned
 partial. Note that no effort is made to correct the docstring for
 any parameters that are covered by the partial.

 Parameters

 func : `callable`
 The func to partial and whose docs should be copied.
 args : ...
 Any arguments to partial.
 kwargs : `dict`
 Any keyword arguments to partial.

 Returns

 p_func : `callable`
 The partially wrapped func with __doc__ attached.
 """
 p = partial(func, *args, **kwargs)
 p.__doc__ = func.__doc__
 return p

def copy_landmarks_and_path(source, target):
 r"""
 Transfers over the landmarks and path, if any, from one object to another.
 This should be called in conversion and copy functions.

 See `.as_masked()` on :map:`Image` as an example of usage.

 Parameters

 source : :map:`Landmarkable`
 The object who's landmarks and path, if any, will be copied
 target : :map:`Landmarkable`
 The object who will have landmarks and path set on

 Returns

 target : :map:`Landmarkable`
 The updated target.
 """
 if source.has_landmarks:
 target.landmarks = source.landmarks
 if hasattr(source, "path"):
 target.path = source.path
 return target

 menpo.feature.features

 Source code for menpo.feature.features

import itertools
import warnings

import numpy as np

from .base import imgfeature, ndfeature

[docs]@ndfeature
def gradient(pixels):
 r"""
 Calculates the gradient of an input image. The image is assumed to have
 channel information on the first axis. In the case of multiple channels,
 it returns the gradient over each axis over each channel as the first axis.

 The gradient is computed using second order accurate central differences in
 the interior and first order accurate one-side (forward or backwards)
 differences at the boundaries.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array where the first dimension
 is interpreted as channels. This means an N-dimensional image is
 represented by an N+1 dimensional array.
 If the image is 2-dimensional the pixels should be of type
 float/double (int is not supported).

 Returns

 gradient : `ndarray`
 The gradient over each axis over each channel. Therefore, the
 first axis of the gradient of a 2D, single channel image, will have
 length `2`. The first axis of the gradient of a 2D, 3-channel image,
 will have length `6`, the ordering being
 ``I[:, 0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]``. To be clear,
 all the ``y``-gradients are returned over each channel, then all
 the ``x``-gradients.
 """
 if pixels.dtype == np.uint8:
 raise TypeError("Attempting to take the gradient on a uint8 image.")
 n_dims = pixels.ndim - 1
 grad_per_dim_per_channel = [np.gradient(g, edge_order=1) for g in pixels]
 # Flatten out the separate dims
 grad_per_channel = list(itertools.chain.from_iterable(grad_per_dim_per_channel))
 # Add a channel axis for broadcasting
 grad_per_channel = [g[None, ...] for g in grad_per_channel]

 # Permute the list so it is first axis, second axis, etc
 grad_per_channel = [grad_per_channel[i::n_dims] for i in range(n_dims)]
 grad_per_channel = list(itertools.chain.from_iterable(grad_per_channel))

 # Concatenate gradient list into an array (the new_image)
 return np.concatenate(grad_per_channel, axis=0)

[docs]@ndfeature
def gaussian_filter(pixels, sigma):
 r"""
 Calculates the convolution of the input image with a multidimensional
 Gaussian filter.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 sigma : `float` or `list` of `float`
 The standard deviation for Gaussian kernel. The standard deviations of
 the Gaussian filter are given for each axis as a `list`, or as a single
 `float`, in which case it is equal for all axes.

 Returns

 output_image : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The filtered image has the same type and size as the input ``pixels``.
 """
 from scipy.ndimage import gaussian_filter as scipy_gaussian_filter # expensive

 output = np.empty(pixels.shape, dtype=pixels.dtype)
 for dim in range(pixels.shape[0]):
 scipy_gaussian_filter(pixels[dim], sigma, output=output[dim])
 return output

[docs]@ndfeature
def igo(pixels, double_angles=False, verbose=False):
 r"""
 Extracts Image Gradient Orientation (IGO) features from the input image.
 The output image has ``N * C`` number of channels, where ``N`` is the
 number of channels of the original image and ``C = 2`` or ``C = 4``
 depending on whether double angles are used.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 double_angles : `bool`, optional
 Assume that ``phi`` represents the gradient orientations.

 If this flag is ``False``, the features image is the concatenation of
 ``cos(phi)`` and ``sin(phi)``, thus 2 channels.

 If ``True``, the features image is the concatenation of
 ``cos(phi)``, ``sin(phi)``, ``cos(2 * phi)``, ``sin(2 * phi)``, thus 4
 channels.
 verbose : `bool`, optional
 Flag to print IGO related information.

 Returns

 igo : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The IGO features image. It has the same type and shape as the input
 ``pixels``. The output number of channels depends on the
 ``double_angles`` flag.

 Raises

 ValueError
 Image has to be 2D in order to extract IGOs.

 References

 .. [1] G. Tzimiropoulos, S. Zafeiriou and M. Pantic, "Subspace learning
 from image gradient orientations", IEEE Transactions on Pattern Analysis
 and Machine Intelligence, vol. 34, num. 12, p. 2454--2466, 2012.
 """
 # check number of dimensions
 if len(pixels.shape) != 3:
 raise ValueError(
 "IGOs only work on 2D images. Expects image data "
 "to be 3D, channels + shape."
)
 n_img_chnls = pixels.shape[0]
 # feature channels per image channel
 feat_chnls = 2
 if double_angles:
 feat_chnls = 4

 # compute gradients
 grad = gradient(pixels)
 # compute angles
 grad_orient = np.angle(grad[:n_img_chnls] + 1j * grad[n_img_chnls:])
 # compute igo image
 igo_pixels = np.empty(
 (n_img_chnls * feat_chnls, pixels.shape[1], pixels.shape[2]), dtype=pixels.dtype
)

 if double_angles:
 dbl_grad_orient = 2 * grad_orient
 # y angles
 igo_pixels[:n_img_chnls] = np.sin(grad_orient)
 igo_pixels[n_img_chnls : n_img_chnls * 2] = np.sin(dbl_grad_orient)

 # x angles
 igo_pixels[n_img_chnls * 2 : n_img_chnls * 3] = np.cos(grad_orient)
 igo_pixels[n_img_chnls * 3 :] = np.cos(dbl_grad_orient)
 else:
 igo_pixels[:n_img_chnls] = np.sin(grad_orient) # y
 igo_pixels[n_img_chnls:] = np.cos(grad_orient) # x

 # print information
 if verbose:
 info_str = "IGO Features:\n"
 info_str = "{} - Input image is {}W x {}H with {} channels.\n".format(
 info_str, pixels.shape[2], pixels.shape[1], n_img_chnls
)
 info_str = "{} - Double angles are {}.\n".format(
 info_str, "enabled" if double_angles else "disabled"
)
 info_str = "{}Output image size {}W x {}H with {} channels.".format(
 info_str, igo_pixels.shape[2], igo_pixels.shape[1], n_img_chnls
)
 print(info_str)
 return igo_pixels

[docs]@ndfeature
def es(pixels, verbose=False):
 r"""
 Extracts Edge Structure (ES) features from the input image. The output image
 has ``N * C`` number of channels, where ``N`` is the number of channels of
 the original image and ``C = 2``.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either an image object itself or an array where the first axis
 represents the number of channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 verbose : `bool`, optional
 Flag to print ES related information.

 Returns

 es : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The ES features image. It has the same type and shape as the input
 ``pixels``. The output number of channels is ``C = 2``.

 Raises

 ValueError
 Image has to be 2D in order to extract ES features.

 References

 .. [1] T. Cootes, C. Taylor, "On representing edge structure for model
 matching", Proceedings of the IEEE Conference on Computer Vision and
 Pattern Recognition (CVPR), 2001.
 """
 # check number of dimensions
 if len(pixels.shape) != 3:
 raise ValueError(
 "ES features only work on 2D images. Expects "
 "image data to be 3D, channels + shape."
)
 n_img_chnls = pixels.shape[0]
 # feature channels per image channel
 feat_channels = 2
 # compute gradients
 grad = gradient(pixels)
 # compute magnitude
 grad_abs = np.abs(grad[:n_img_chnls] + 1j * grad[n_img_chnls:])
 # compute es image
 grad_abs = grad_abs + np.median(grad_abs)
 es_pixels = np.empty(
 (pixels.shape[0] * feat_channels, pixels.shape[1], pixels.shape[2]),
 dtype=pixels.dtype,
)

 es_pixels[:n_img_chnls] = grad[:n_img_chnls] / grad_abs
 es_pixels[n_img_chnls:] = grad[n_img_chnls:] / grad_abs

 # print information
 if verbose:
 info_str = "ES Features:\n"
 info_str = "{} - Input image is {}W x {}H with {} channels.\n".format(
 info_str, pixels.shape[2], pixels.shape[1], n_img_chnls
)
 info_str = "{}Output image size {}W x {}H with {} channels.".format(
 info_str, es_pixels.shape[2], es_pixels.shape[1], n_img_chnls
)
 print(info_str)
 return es_pixels

[docs]@ndfeature
def daisy(
 pixels,
 step=1,
 radius=15,
 rings=2,
 histograms=2,
 orientations=8,
 normalization="l1",
 sigmas=None,
 ring_radii=None,
 verbose=False,
):
 r"""
 Extracts Daisy features from the input image. The output image has ``N * C``
 number of channels, where ``N`` is the number of channels of the original
 image and ``C`` is the feature channels determined by the input options.
 Specifically, ``C = (rings * histograms + 1) * orientations``.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 step : `int`, optional
 The sampling step that defines the density of the output image.
 radius : `int`, optional
 The radius (in pixels) of the outermost ring.
 rings : `int`, optional
 The number of rings to be used.
 histograms : `int`, optional
 The number of histograms sampled per ring.
 orientations : `int`, optional
 The number of orientations (bins) per histogram.
 normalization : ['l1', 'l2', 'daisy', None], optional
 It defines how to normalize the descriptors
 If 'l1' then L1-normalization is applied at each descriptor.
 If 'l2' then L2-normalization is applied at each descriptor.
 If 'daisy' then L2-normalization is applied at individual histograms.
 If None then no normalization is employed.
 sigmas : `list` of `float` or ``None``, optional
 Standard deviation of spatial Gaussian smoothing for the centre
 histogram and for each ring of histograms. The `list` of sigmas should
 be sorted from the centre and out. I.e. the first sigma value defines
 the spatial smoothing of the centre histogram and the last sigma value
 defines the spatial smoothing of the outermost ring. Specifying sigmas
 overrides the `rings` parameter by setting ``rings = len(sigmas) - 1``.
 ring_radii : `list` of `float` or ``None``, optional
 Radius (in pixels) for each ring. Specifying `ring_radii` overrides the
 `rings` and `radius` parameters by setting ``rings = len(ring_radii)``
 and ``radius = ring_radii[-1]``.

 If both sigmas and ring_radii are given, they must satisfy ::

 len(ring_radii) == len(sigmas) + 1

 since no radius is needed for the centre histogram.
 verbose : `bool`
 Flag to print Daisy related information.

 Returns

 daisy : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 The ES features image. It has the same type and shape as the input
 ``pixels``. The output number of channels is
 ``C = (rings * histograms + 1) * orientations``.

 Raises

 ValueError
 len(sigmas)-1 != len(ring_radii)
 ValueError
 Invalid normalization method.

 References

 .. [1] E. Tola, V. Lepetit and P. Fua, "Daisy: An efficient dense descriptor
 applied to wide-baseline stereo", IEEE Transactions on Pattern Analysis
 and Machine Intelligence, vol. 32, num. 5, p. 815-830, 2010.
 """
 from menpo.external.skimage._daisy import _daisy

 # Parse options
 if (
 sigmas is not None
 and ring_radii is not None
 and len(sigmas) - 1 != len(ring_radii)
):
 raise ValueError("`len(sigmas)-1 != len(ring_radii)`")
 if ring_radii is not None:
 rings = len(ring_radii)
 radius = ring_radii[-1]
 if sigmas is not None:
 rings = len(sigmas) - 1
 if sigmas is None:
 sigmas = [radius * (i + 1) / float(2 * rings) for i in range(rings)]
 if ring_radii is None:
 ring_radii = [radius * (i + 1) / float(rings) for i in range(rings)]
 if normalization is None:
 normalization = "off"
 if normalization not in ["l1", "l2", "daisy", "off"]:
 raise ValueError("Invalid normalization method.")

 # Compute daisy features
 daisy_descriptor = _daisy(
 pixels,
 step=step,
 radius=radius,
 rings=rings,
 histograms=histograms,
 orientations=orientations,
 normalization=normalization,
 sigmas=sigmas,
 ring_radii=ring_radii,
)

 # print information
 if verbose:
 info_str = "Daisy Features:\n"
 info_str = "{} - Input image is {}W x {}H with {} channels.\n".format(
 info_str, pixels.shape[2], pixels.shape[1], pixels.shape[0]
)
 info_str = "{} - Sampling step is {}.\n".format(info_str, step)
 info_str = (
 "{} - Radius of {} pixels, {} rings and {} histograms "
 "with {} orientations.\n".format(
 info_str, radius, rings, histograms, orientations
)
)
 if not normalization == "off":
 info_str = "{} - Using {} normalization.\n".format(info_str, normalization)
 else:
 info_str = "{} - No normalization emplyed.\n".format(info_str)
 info_str = "{}Output image size {}W x {}H x {}.".format(
 info_str,
 daisy_descriptor.shape[2],
 daisy_descriptor.shape[1],
 daisy_descriptor.shape[0],
)
 print(info_str)

 return daisy_descriptor

[docs]@imgfeature
def normalize(img, scale_func=None, mode="all", error_on_divide_by_zero=True):
 r"""
 Normalize the pixel values via mean centering and an optional scaling. By
 default the scaling will be ``1.0``. The ``mode`` parameter selects
 whether the normalisation is computed across all pixels in the image or
 per-channel.

 Parameters

 img : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 scale_func : `callable`, optional
 Compute the scaling factor. Expects a single parameter and an optional
 `axis` keyword argument and will be passed the entire pixel array.
 Should return a 1D numpy array of one or more values.
 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 error_on_divide_by_zero : `bool`, optional
 If ``True``, will raise a ``ValueError`` on dividing by zero.
 If ``False``, will merely raise a warning and only those values
 with non-zero denominators will be normalized.

 Returns

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 A normalized copy of the image that was passed in.

 Raises

 ValueError
 If any of the denominators are 0 and ``error_on_divide_by_zero`` is
 ``True``.
 """
 if scale_func is None:

 def scale_func(_, axis=None):
 return np.array([1.0])

 pixels = img.as_vector(keep_channels=True)

 if mode == "all":
 centered_pixels = pixels - np.mean(pixels)
 scale_factor = scale_func(centered_pixels)
 elif mode == "per_channel":
 centered_pixels = pixels - np.mean(pixels, axis=1, keepdims=True)
 scale_factor = scale_func(centered_pixels, axis=1).reshape([-1, 1])
 else:
 raise ValueError(
 "Supported modes are {{'all', 'per_channel'}} - '{}' "
 "is not known".format(mode)
)

 zero_denom = (scale_factor == 0).ravel()
 any_non_zero = np.any(zero_denom)
 if error_on_divide_by_zero and any_non_zero:
 raise ValueError("Computed scale factor cannot be 0.0")
 elif any_non_zero:
 warnings.warn(
 "One or more the scale factors are 0.0 and thus these"
 "entries will be skipped during normalization."
)
 non_zero_denom = ~zero_denom
 centered_pixels[non_zero_denom] = (
 centered_pixels[non_zero_denom] / scale_factor[non_zero_denom]
)
 return img.from_vector(centered_pixels)
 else:
 return img.from_vector(centered_pixels / scale_factor)

[docs]@ndfeature
def normalize_norm(pixels, mode="all", error_on_divide_by_zero=True):
 r"""
 Normalize the pixels to be mean centred and have unit norm. The ``mode``
 parameter selects whether the normalisation is computed across all pixels in
 the image or per-channel.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 error_on_divide_by_zero : `bool`, optional
 If ``True``, will raise a ``ValueError`` on dividing by zero.
 If ``False``, will merely raise a warning and only those values
 with non-zero denominators will be normalized.

 Returns

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 A normalized copy of the image that was passed in.

 Raises

 ValueError
 If any of the denominators are 0 and ``error_on_divide_by_zero`` is
 ``True``.
 """

 def unit_norm(x, axis=None):
 return np.linalg.norm(x, axis=axis)

 return normalize(
 pixels,
 scale_func=unit_norm,
 mode=mode,
 error_on_divide_by_zero=error_on_divide_by_zero,
)

[docs]@ndfeature
def normalize_std(pixels, mode="all", error_on_divide_by_zero=True):
 r"""
 Normalize the pixels to be mean centred and have unit standard deviation.
 The ``mode`` parameter selects whether the normalisation is computed across
 all pixels in the image or per-channel.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 error_on_divide_by_zero : `bool`, optional
 If ``True``, will raise a ``ValueError`` on dividing by zero.
 If ``False``, will merely raise a warning and only those values
 with non-zero denominators will be normalized.

 Returns

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 A normalized copy of the image that was passed in.

 Raises

 ValueError
 If any of the denominators are 0 and ``error_on_divide_by_zero`` is
 ``True``.
 """

 def unit_std(x, axis=None):
 return np.std(x, axis=axis)

 return normalize(
 pixels,
 scale_func=unit_std,
 mode=mode,
 error_on_divide_by_zero=error_on_divide_by_zero,
)

[docs]@ndfeature
def normalize_var(pixels, mode="all", error_on_divide_by_zero=True):
 r"""
 Normalize the pixels to be mean centred and normalize according
 to the variance.
 The ``mode`` parameter selects whether the normalisation is computed across
 all pixels in the image or per-channel.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.
 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 error_on_divide_by_zero : `bool`, optional
 If ``True``, will raise a ``ValueError`` on dividing by zero.
 If ``False``, will merely raise a warning and only those values
 with non-zero denominators will be normalized.

 Returns

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 A normalized copy of the image that was passed in.

 Raises

 ValueError
 If any of the denominators are 0 and ``error_on_divide_by_zero`` is
 ``True``.
 """

 def unit_var(x, axis=None):
 return np.var(x, axis=axis)

 return normalize(
 pixels,
 scale_func=unit_var,
 mode=mode,
 error_on_divide_by_zero=error_on_divide_by_zero,
)

[docs]@ndfeature
def no_op(pixels):
 r"""
 A no operation feature - does nothing but return a copy of the pixels
 passed in.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels. This means an N-dimensional image
 is represented by an N+1 dimensional array.

 Returns

 pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray`
 A copy of the image that was passed in.
 """
 return pixels.copy()

 menpo.feature.visualize

 Source code for menpo.feature.visualize

import numpy as np

from .base import ndfeature

[docs]@ndfeature
def sum_channels(pixels, channels=None):
 r"""
 Create the sum of the channels of an image that can be used for
 visualization.

 Parameters

 pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray`
 Either the image object itself or an array with the pixels. The first
 dimension is interpreted as channels.
 channels : `list` of `int` or ``None``
 The list of channels to be used. If ``None``, then all the channels are
 employed.
 """
 # if channels is None, then all channels are used
 if channels is None:
 # Not indexing is twice as fast
 sum_image = np.sum(pixels, axis=0)
 else:
 sum_image = np.sum(pixels[channels], axis=0)
 return sum_image.reshape((1,) + sum_image.shape) # add a channel axis

 menpo.image.base

 Source code for menpo.image.base

from typing import Iterable, Optional
from warnings import warn

import PIL.Image as PILImage
import numpy as np

from menpo.base import MenpoDeprecationWarning, Vectorizable, copy_landmarks_and_path
from menpo.landmark import Landmarkable
from menpo.shape import PointCloud, bounding_box
from menpo.transform import (
 AlignmentUniformScale,
 Homogeneous,
 NonUniformScale,
 Rotation,
 Translation,
 scale_about_centre,
 transform_about_centre,
)
from menpo.visualize.base import ImageViewer, LandmarkableViewable, Viewable
from .interpolation import scipy_interpolation

try:
 from .interpolation import cv2_perspective_interpolation
except ImportError:
 warn("Falling back to scipy interpolation for affine warps")
 cv2_perspective_interpolation = None # type: ignore
from .patches import (
 extract_patches_with_slice,
 set_patches,
 extract_patches_by_sampling,
)

Cache the greyscale luminosity coefficients as they are invariant.
_greyscale_luminosity_coef: Optional[np.ndarray] = None

[docs]class ImageBoundaryError(ValueError):
 r"""
 Exception that is thrown when an attempt is made to crop an image beyond
 the edge of it's boundary.

 Parameters

 requested_min : ``(d,)`` `ndarray`
 The per-dimension minimum index requested for the crop
 requested_max : ``(d,)`` `ndarray`
 The per-dimension maximum index requested for the crop
 snapped_min : ``(d,)`` `ndarray`
 The per-dimension minimum index that could be used if the crop was
 constrained to the image boundaries.
 requested_max : ``(d,)`` `ndarray`
 The per-dimension maximum index that could be used if the crop was
 constrained to the image boundaries.
 """

 def __init__(self, requested_min, requested_max, snapped_min, snapped_max):
 super(ImageBoundaryError, self).__init__()
 self.requested_min = requested_min
 self.requested_max = requested_max
 self.snapped_min = snapped_min
 self.snapped_max = snapped_max

def indices_for_image_of_shape(shape):
 r"""
 The indices of all pixels in an image with a given shape (without
 channel information).

 Parameters

 shape : ``(n_dims, n_pixels)`` `ndarray`
 The shape of the image.

 Returns

 indices : `ndarray`
 The indices of all the pixels in the image.
 """
 return np.indices(shape).reshape([len(shape), -1]).T

def normalize_pixels_range(pixels, error_on_unknown_type=True):
 r"""
 Normalize the given pixels to the Menpo valid floating point range, [0, 1].
 This is a single place to handle normalising pixels ranges. At the moment
 the supported types are uint8 and uint16.

 Parameters

 pixels : `ndarray`
 The pixels to normalize in the floating point range.
 error_on_unknown_type : `bool`, optional
 If ``True``, this method throws a ``ValueError`` if the given pixels
 array is an unknown type. If ``False``, this method performs no
 operation.

 Returns

 normalized_pixels : `ndarray`
 The normalized pixels in the range [0, 1].

 Raises

 ValueError
 If ``pixels`` is an unknown type and ``error_on_unknown_type==True``
 """
 dtype = pixels.dtype
 if dtype == np.uint8:
 max_range = 255.0
 elif dtype == np.uint16:
 max_range = 65535.0
 else:
 if error_on_unknown_type:
 raise ValueError(
 "Unexpected dtype ({}) - normalisation range "
 "is unknown".format(dtype)
)
 else:
 # Do nothing
 return pixels
 # This multiplication is quite a bit faster than just dividing - will
 # automatically cast it up to float64
 return pixels * (1.0 / max_range)

def denormalize_pixels_range(pixels, out_dtype):
 """
 Denormalize the given pixels array into the range of the given out dtype.
 If the given pixels are floating point or boolean then the values
 are scaled appropriately and cast to the output dtype. If the pixels
 are already the correct dtype they are immediately returned.
 Floating point pixels must be in the range [0, 1].
 Currently uint8 and uint16 output dtypes are supported.

 Parameters

 pixels : `ndarray`
 The pixels to denormalize.
 out_dtype : `np.dtype`
 The numpy data type to output and scale the values into.

 Returns

 out_pixels : `ndarray`
 Will be in the correct range and will have type ``out_dtype``.

 Raises

 ValueError
 Pixels are floating point and range outside [0, 1]
 ValueError
 Input pixels dtype not in the set {float32, float64, bool}.
 ValueError
 Output dtype not in the set {uint8, uint16}
 """
 in_dtype = pixels.dtype
 if in_dtype == out_dtype:
 return pixels

 if np.issubclass_(in_dtype.type, np.floating) or in_dtype == np.float:
 if np.issubclass_(out_dtype, np.floating) or out_dtype == np.float:
 return pixels.astype(out_dtype)
 else:
 p_min = pixels.min()
 p_max = pixels.max()
 if p_min < 0.0 or p_max > 1.0:
 raise ValueError(
 "Unexpected input range [{}, {}] - pixels "
 "must be in the range [0, 1]".format(p_min, p_max)
)
 elif in_dtype != np.bool:
 raise ValueError(
 "Unexpected input dtype ({}) - only float32, float64 "
 "and bool supported".format(in_dtype)
)

 if out_dtype == np.uint8:
 max_range = 255.0
 elif out_dtype == np.uint16:
 max_range = 65535.0
 else:
 raise ValueError(
 "Unexpected output dtype ({}) - normalisation range "
 "is unknown".format(out_dtype)
)

 return (pixels * max_range).astype(out_dtype)

def channels_to_back(pixels):
 r"""
 Roll the channels from the front to the back for an image. If the image
 that is passed is already a numpy array, then that is also fine.

 Always returns a numpy array because our :map:`Image` containers do not
 support channels at the back.

 Parameters

 image : `ndarray`
 The pixels or image to roll the channel back for.

 Returns

 rolled_pixels : `ndarray`
 The numpy array of pixels with the channels on the last axis.
 """
 return np.require(
 np.rollaxis(pixels, 0, pixels.ndim), dtype=pixels.dtype, requirements=["C"]
)

def channels_to_front(pixels):
 r"""
 Convert the given pixels array (channels assumed to be at the last axis
 as is common in other imaging packages) into a numpy array.

 Parameters

 pixels : ``(H, W, C)`` `buffer`
 The pixels to convert to the Menpo channels at axis 0.

 Returns

 pixels : ``(C, H, W)`` `ndarray`
 Numpy array, channels as axis 0.
 """
 if not isinstance(pixels, np.ndarray):
 pixels = np.array(pixels)
 return np.require(np.rollaxis(pixels, -1), dtype=pixels.dtype, requirements=["C"])

[docs]class Image(Vectorizable, Landmarkable, Viewable, LandmarkableViewable):
 r"""
 An n-dimensional image.

 Images are n-dimensional homogeneous regular arrays of data. Each
 spatially distinct location in the array is referred to as a `pixel`.
 At a pixel, ``k`` distinct pieces of information can be stored. Each
 datum at a pixel is refereed to as being in a `channel`. All pixels in
 the image have the same number of channels, and all channels have the
 same data-type (`float64`).

 Parameters

 image_data : ``(C, M, N ..., Q)`` `ndarray`
 Array representing the image pixels, with the first axis being
 channels.
 copy : `bool`, optional
 If ``False``, the ``image_data`` will not be copied on assignment.
 Note that this will miss out on additional checks. Further note that we
 still demand that the array is C-contiguous - if it isn't, a copy will
 be generated anyway.
 In general, this should only be used if you know what you are doing.

 Raises

 Warning
 If ``copy=False`` cannot be honoured
 ValueError
 If the pixel array is malformed
 """

 def __init__(self, image_data, copy=True):
 super(Image, self).__init__()
 if not copy:
 if not image_data.flags.c_contiguous:
 image_data = np.array(image_data, copy=True, order="C")
 warn(
 "The copy flag was NOT honoured. A copy HAS been made. "
 "Please ensure the data you pass is C-contiguous."
)
 else:
 image_data = np.array(image_data, copy=True, order="C")

 # Degenerate case whereby we can just put the extra axis
 # on ourselves
 if image_data.ndim == 2:
 # Ensures that the data STAYS C-contiguous
 image_data = image_data.reshape((1,) + image_data.shape)

 if image_data.ndim < 2:
 raise ValueError(
 "Pixel array has to be 2D (implicitly 1 channel, "
 "2D shape) or 3D+ (n_channels, 2D+ shape) "
 " - a {}D array "
 "was provided".format(image_data.ndim)
)
 self.pixels = image_data

[docs] @classmethod
 def init_blank(cls, shape, n_channels=1, fill=0, dtype=np.float):
 r"""
 Returns a blank image.

 Parameters

 shape : `tuple` or `list`
 The shape of the image. Any floating point values are rounded up
 to the nearest integer.
 n_channels : `int`, optional
 The number of channels to create the image with.
 fill : `int`, optional
 The value to fill all pixels with.
 dtype : numpy data type, optional
 The data type of the image.

 Returns

 blank_image : :map:`Image`
 A new image of the requested size.
 """
 # Ensure that the '+' operator means concatenate tuples
 shape = tuple(np.ceil(shape).astype(np.int))
 if fill == 0:
 pixels = np.zeros((n_channels,) + shape, dtype=dtype)
 else:
 pixels = np.ones((n_channels,) + shape, dtype=dtype) * fill
 # We know there is no need to copy...
 return cls(pixels, copy=False)

[docs] @classmethod
 def init_from_rolled_channels(cls, pixels):
 r"""
 Deprecated - please use the equivalent ``init_from_channels_at_back`` method.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .init_from_channels_at_back instead.",
 MenpoDeprecationWarning,
)

 return cls.init_from_channels_at_back(pixels)

[docs] @classmethod
 def init_from_channels_at_back(cls, pixels):
 r"""
 Create an Image from a set of pixels where the channels axis is on
 the last axis (the back). This is common in other frameworks, and
 therefore this method provides a convenient means of creating a menpo
 Image from such data. Note that a copy is always created due to the
 need to rearrange the data.

 Parameters

 pixels : ``(M, N ..., Q, C)`` `ndarray`
 Array representing the image pixels, with the last axis being
 channels.

 Returns

 image : :map:`Image`
 A new image from the given pixels, with the FIRST axis as the
 channels.

 Raises

 ValueError
 If image is not at least 2D, i.e. has at least 2 dimensions plus
 the channels in the end.
 """
 if pixels.ndim == 2:
 pixels = pixels[..., None]

 if pixels.ndim < 2:
 raise ValueError(
 "Pixel array has to be 2D "
 "(2D shape, implicitly 1 channel) "
 "or 3D+ (2D+ shape, n_channels) "
 " - a {}D array "
 "was provided".format(pixels.ndim)
)
 return cls(channels_to_front(pixels))

[docs] @classmethod
 def init_from_pointcloud(
 cls,
 pointcloud,
 group=None,
 boundary=0,
 n_channels=1,
 fill=0,
 dtype=np.float,
 return_transform=False,
):
 r"""
 Create an Image that is big enough to contain the given pointcloud.
 The pointcloud will be translated to the origin and then translated
 according to its bounds in order to fit inside the new image.
 An optional boundary can be provided in order to increase the space
 around the boundary of the pointcloud. The boundary will be added
 to *all sides of the image* and so a boundary of 5 provides 10 pixels
 of boundary total for each dimension.

 Parameters

 pointcloud : :map:`PointCloud`
 Pointcloud to place inside the newly created image.
 group : `str`, optional
 If ``None``, the pointcloud will only be used to create the image.
 If a `str` then the pointcloud will be attached as a landmark
 group to the image, with the given string as key.
 boundary : `float`
 A optional padding distance that is added to the pointcloud bounds.
 Default is ``0``, meaning the max/min of tightest possible
 containing image is returned.
 n_channels : `int`, optional
 The number of channels to create the image with.
 fill : `int`, optional
 The value to fill all pixels with.
 dtype : numpy data type, optional
 The data type of the image.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 adjust the PointCloud in order to build the image, is returned.

 Returns

 image : ``type(cls)`` Image or subclass
 A new image with the same size as the given pointcloud, optionally
 with the pointcloud attached as landmarks.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 # Translate pointcloud to the origin
 minimum = pointcloud.bounds(boundary=boundary)[0]
 tr = Translation(-minimum)
 origin_pc = tr.apply(pointcloud)
 image_shape = origin_pc.range(boundary=boundary)
 new_image = cls.init_blank(
 image_shape, n_channels=n_channels, fill=fill, dtype=dtype
)
 if group is not None:
 new_image.landmarks[group] = origin_pc
 if return_transform:
 return new_image, tr
 else:
 return new_image

[docs] def as_masked(self, mask=None, copy=True):
 r"""
 Return a copy of this image with an attached mask behavior.

 A custom mask may be provided, or ``None``. See the :map:`MaskedImage`
 constructor for details of how the kwargs will be handled.

 Parameters

 mask : ``(self.shape)`` `ndarray` or :map:`BooleanImage`
 A mask to attach to the newly generated masked image.
 copy : `bool`, optional
 If ``False``, the produced :map:`MaskedImage` will share pixels with
 ``self``. Only suggested to be used for performance.

 Returns

 masked_image : :map:`MaskedImage`
 An image with the same pixels and landmarks as this one, but with
 a mask.
 """
 from menpo.image import MaskedImage

 return copy_landmarks_and_path(
 self, MaskedImage(self.pixels, mask=mask, copy=copy)
)

 @property
 def n_dims(self):
 r"""
 The number of dimensions in the image. The minimum possible ``n_dims``
 is 2.

 :type: `int`
 """
 return len(self.shape)

 @property
 def n_pixels(self):
 r"""
 Total number of pixels in the image ``(prod(shape),)``

 :type: `int`
 """
 return self.pixels[0, ...].size

 @property
 def n_elements(self):
 r"""
 Total number of data points in the image
 ``(prod(shape), n_channels)``

 :type: `int`
 """
 return self.pixels.size

 @property
 def n_channels(self):
 """
 The number of channels on each pixel in the image.

 :type: `int`
 """
 return self.pixels.shape[0]

 @property
 def width(self):
 r"""
 The width of the image.

 This is the width according to image semantics, and is thus the size
 of the **last** dimension.

 :type: `int`
 """
 return self.pixels.shape[-1]

 @property
 def height(self):
 r"""
 The height of the image.

 This is the height according to image semantics, and is thus the size
 of the **second to last** dimension.

 :type: `int`
 """
 return self.pixels.shape[-2]

 @property
 def shape(self):
 r"""
 The shape of the image
 (with ``n_channel`` values at each point).

 :type: `tuple`
 """
 return self.pixels.shape[1:]

[docs] def bounds(self):
 r"""
 The bounds of the image, minimum is always (0, 0). The maximum is
 the maximum **index** that can be used to index into the image for each
 dimension. Therefore, bounds will be of the form:
 ((0, 0), (self.height - 1, self.width - 1)) for a 2D image.

 Note that this is akin to supporting a nearest neighbour interpolation.
 Although the *actual* maximum subpixel value would be something
 like ``self.height - eps`` where ``eps`` is some value arbitrarily
 close to 0, this value at least allows sampling without worrying about
 floating point error.

 :type: `tuple`
 """
 return (0,) * self.n_dims, tuple(s - 1 for s in self.shape)

[docs] def diagonal(self):
 r"""
 The diagonal size of this image

 :type: `float`
 """
 return np.sqrt(np.sum(np.array(self.shape) ** 2))

[docs] def centre(self):
 r"""
 The geometric centre of the Image - the subpixel that is in the
 middle.

 Useful for aligning shapes and images.

 :type: (``n_dims``,) `ndarray`
 """
 return np.array(self.shape, dtype=np.double) / 2

 def _str_shape(self):
 if self.n_dims > 2:
 return " x ".join(str(dim) for dim in self.shape)
 elif self.n_dims == 2:
 return "{}W x {}H".format(self.width, self.height)

[docs] def indices(self):
 r"""
 Return the indices of all pixels in this image.

 :type: (``n_dims``, ``n_pixels``) ndarray

 """
 return indices_for_image_of_shape(self.shape)

 def _as_vector(self, keep_channels=False):
 r"""
 The vectorized form of this image.

 Parameters

 keep_channels : `bool`, optional

 ========== =============================
 Value Return shape
 ========== =============================
 `False` ``(n_channels * n_pixels,)``
 `True` ``(n_channels, n_pixels)``
 ========== =============================

 Returns

 vec : (See ``keep_channels`` above) `ndarray`
 Flattened representation of this image, containing all pixel
 and channel information.
 """
 if keep_channels:
 return self.pixels.reshape([self.n_channels, -1])
 else:
 return self.pixels.ravel()

[docs] def from_vector(self, vector, n_channels=None, copy=True):
 r"""
 Takes a flattened vector and returns a new image formed by reshaping
 the vector to the correct pixels and channels.

 The `n_channels` argument is useful for when we want to add an extra
 channel to an image but maintain the shape. For example, when
 calculating the gradient.

 Note that landmarks are transferred in the process.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 A flattened vector of all pixels and channels of an image.
 n_channels : `int`, optional
 If given, will assume that vector is the same shape as this image,
 but with a possibly different number of channels.
 copy : `bool`, optional
 If ``False``, the vector will not be copied in creating the new
 image.

 Returns

 image : :map:`Image`
 New image of same shape as this image and the number of
 specified channels.

 Raises

 Warning
 If the ``copy=False`` flag cannot be honored
 """
 # This is useful for when we want to add an extra channel to an image
 # but maintain the shape. For example, when calculating the gradient
 n_channels = self.n_channels if n_channels is None else n_channels
 image_data = vector.reshape((n_channels,) + self.shape)
 new_image = Image(image_data, copy=copy)
 new_image.landmarks = self.landmarks
 return new_image

 def _from_vector_inplace(self, vector, copy=True):
 r"""
 Takes a flattened vector and update this image by
 reshaping the vector to the correct dimensions.

 Parameters

 vector : ``(n_pixels,)`` `bool ndarray`
 A vector vector of all the pixels of a :map:`BooleanImage`.
 copy: `bool`, optional
 If ``False``, the vector will be set as the pixels. If ``True``, a
 copy of the vector is taken.

 Raises

 Warning
 If ``copy=False`` flag cannot be honored

 Note

 For :map:`BooleanImage` this is rebuilding a boolean image **itself**
 from boolean values. The mask is in no way interpreted in performing
 the operation, in contrast to :map:`MaskedImage`, where only the masked
 region is used in :meth:`from_vector_inplace` and :meth:`as_vector`.
 """
 image_data = vector.reshape(self.pixels.shape)
 if not copy:
 if not image_data.flags.c_contiguous:
 warn(
 "The copy flag was NOT honoured. A copy HAS been made. "
 "Please ensure the data you pass is C-contiguous."
)
 image_data = np.array(
 image_data, copy=True, order="C", dtype=image_data.dtype
)
 else:
 image_data = np.array(
 image_data, copy=True, order="C", dtype=image_data.dtype
)
 self.pixels = image_data

[docs] def extract_channels(self, channels):
 r"""
 A copy of this image with only the specified channels.

 Parameters

 channels : `int` or `[int]`
 The channel index or `list` of channel indices to retain.

 Returns

 image : `type(self)`
 A copy of this image with only the channels requested.
 """
 copy = self.copy()
 if not isinstance(channels, list):
 channels = [channels] # ensure we don't remove the channel axis
 copy.pixels = self.pixels[channels]
 return copy

[docs] def as_histogram(self, keep_channels=True, bins="unique"):
 r"""
 Histogram binning of the values of this image.

 Parameters

 keep_channels : `bool`, optional
 If set to ``False``, it returns a single histogram for all the
 channels of the image. If set to ``True``, it returns a `list` of
 histograms, one for each channel.
 bins : ``{unique}``, positive `int` or sequence of scalars, optional
 If set equal to ``'unique'``, the bins of the histograms are centred
 on the unique values of each channel. If set equal to a positive
 `int`, then this is the number of bins. If set equal to a
 sequence of scalars, these will be used as bins centres.

 Returns

 hist : `ndarray` or `list` with ``n_channels`` `ndarrays` inside
 The histogram(s). If ``keep_channels=False``, then hist is an
 `ndarray`. If ``keep_channels=True``, then hist is a `list` with
 ``len(hist)=n_channels``.
 bin_edges : `ndarray` or `list` with `n_channels` `ndarrays` inside
 An array or a list of arrays corresponding to the above histograms
 that store the bins' edges.

 Raises

 ValueError
 Bins can be either 'unique', positive int or a sequence of scalars.

 Examples

 Visualizing the histogram when a list of array bin edges is provided:

 >>> hist, bin_edges = image.as_histogram()
 >>> for k in range(len(hist)):
 >>> plt.subplot(1,len(hist),k)
 >>> width = 0.7 * (bin_edges[k][1] - bin_edges[k][0])
 >>> centre = (bin_edges[k][:-1] + bin_edges[k][1:]) / 2
 >>> plt.bar(centre, hist[k], align='center', width=width)
 """
 # parse options
 if isinstance(bins, str):
 if bins == "unique":
 bins = 0
 else:
 raise ValueError(
 "Bins can be either 'unique', positive int or"
 "a sequence of scalars."
)
 elif isinstance(bins, int) and bins < 1:
 raise ValueError(
 "Bins can be either 'unique', positive int or a " "sequence of scalars."
)
 # compute histogram
 vec = self.as_vector(keep_channels=keep_channels)
 if len(vec.shape) == 1 or vec.shape[0] == 1:
 if bins == 0:
 bins = np.unique(vec)
 hist, bin_edges = np.histogram(vec, bins=bins)
 else:
 hist = []
 bin_edges = []
 num_bins = bins
 for ch in range(vec.shape[0]):
 if bins == 0:
 num_bins = np.unique(vec[ch, :])
 h_tmp, c_tmp = np.histogram(vec[ch, :], bins=num_bins)
 hist.append(h_tmp)
 bin_edges.append(c_tmp)
 return hist, bin_edges

[docs] def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 channels=None,
 interpolation="bilinear",
 cmap_name=None,
 alpha=1.0,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 r"""
 View the image using the default image viewer. This method will appear
 on the Image as ``view`` if the Image is 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated.
 Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36,
 hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
 bessel, mitchell, sinc, lanczos}
 cmap_name: `str`, optional,
 If ``None``, single channel and three channel images default
 to greyscale and rgb colormaps respectively.
 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the Image as a percentage of the Image's width. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the Image as a percentage of the Image's height. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.

 Returns

 viewer : `ImageViewer`
 The image viewing object.
 """
 return ImageViewer(
 figure_id, new_figure, self.n_dims, self.pixels, channels=channels
).render(
 interpolation=interpolation,
 cmap_name=cmap_name,
 alpha=alpha,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

[docs] def _view_landmarks_2d(
 self,
 channels=None,
 group=None,
 with_labels=None,
 without_labels=None,
 figure_id=None,
 new_figure=False,
 interpolation="bilinear",
 cmap_name=None,
 alpha=1.0,
 render_lines=True,
 line_colour=None,
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour=None,
 marker_edge_colour=None,
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=False,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 """
 Visualize the landmarks. This method will appear on the Image as
 ``view_landmarks`` if the Image is 2D.

 Parameters

 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 group : `str` or``None`` optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated. Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

 cmap_name: `str`, optional,
 If ``None``, single channel and three channel images default
 to greyscale and rgb colormaps respectively.
 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the Image as a percentage of the Image's width. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the Image as a percentage of the Image's height. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 from menpo.visualize import view_image_landmarks

 return view_image_landmarks(
 self,
 channels,
 False,
 group,
 with_labels,
 without_labels,
 figure_id,
 new_figure,
 interpolation,
 cmap_name,
 alpha,
 render_lines,
 line_colour,
 line_style,
 line_width,
 render_markers,
 marker_style,
 marker_size,
 marker_face_colour,
 marker_edge_colour,
 marker_edge_width,
 render_numbering,
 numbers_horizontal_align,
 numbers_vertical_align,
 numbers_font_name,
 numbers_font_size,
 numbers_font_style,
 numbers_font_weight,
 numbers_font_colour,
 render_legend,
 legend_title,
 legend_font_name,
 legend_font_style,
 legend_font_size,
 legend_font_weight,
 legend_marker_scale,
 legend_location,
 legend_bbox_to_anchor,
 legend_border_axes_pad,
 legend_n_columns,
 legend_horizontal_spacing,
 legend_vertical_spacing,
 legend_border,
 legend_border_padding,
 legend_shadow,
 legend_rounded_corners,
 render_axes,
 axes_font_name,
 axes_font_size,
 axes_font_style,
 axes_font_weight,
 axes_x_limits,
 axes_y_limits,
 axes_x_ticks,
 axes_y_ticks,
 figure_size,
)

[docs] def crop(
 self,
 min_indices,
 max_indices,
 constrain_to_boundary=False,
 return_transform=False,
):
 r"""
 Return a cropped copy of this image using the given minimum and
 maximum indices. Landmarks are correctly adjusted so they maintain
 their position relative to the newly cropped image.

 Parameters

 min_indices : ``(n_dims,)`` `ndarray`
 The minimum index over each dimension.
 max_indices : ``(n_dims,)`` `ndarray`
 The maximum index over each dimension.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the cropping is also returned.

 Returns

 cropped_image : `type(self)`
 A new instance of self, but cropped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ValueError
 ``min_indices`` and ``max_indices`` both have to be of length
 ``n_dims``. All ``max_indices`` must be greater than
 ``min_indices``.
 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 min_indices = np.floor(min_indices)
 max_indices = np.ceil(max_indices)
 if not (min_indices.size == max_indices.size == self.n_dims):
 raise ValueError(
 "Both min and max indices should be 1D numpy arrays of"
 " length n_dims ({})".format(self.n_dims)
)
 elif not np.all(max_indices > min_indices):
 raise ValueError("All max indices must be greater that the min " "indices")
 min_bounded = self.constrain_points_to_bounds(min_indices)
 max_bounded = self.constrain_points_to_bounds(max_indices)
 all_max_bounded = np.all(min_bounded == min_indices)
 all_min_bounded = np.all(max_bounded == max_indices)
 if not (constrain_to_boundary or all_max_bounded or all_min_bounded):
 # points have been constrained and the user didn't want this -
 raise ImageBoundaryError(min_indices, max_indices, min_bounded, max_bounded)

 new_shape = (max_bounded - min_bounded).astype(np.int)
 return self.warp_to_shape(
 new_shape,
 Translation(min_bounded),
 order=0,
 warp_landmarks=True,
 return_transform=return_transform,
)

[docs] def crop_to_pointcloud(
 self, pointcloud, boundary=0, constrain_to_boundary=True, return_transform=False
):
 r"""
 Return a copy of this image cropped so that it is bounded around a
 pointcloud with an optional ``n_pixel`` boundary.

 Parameters

 pointcloud : :map:`PointCloud`
 The pointcloud to crop around.
 boundary : `int`, optional
 An extra padding to be added all around the landmarks bounds.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the cropping is also returned.

 Returns

 image : :map:`Image`
 A copy of this image cropped to the bounds of the pointcloud.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 min_indices, max_indices = pointcloud.bounds(boundary=boundary)
 return self.crop(
 min_indices,
 max_indices,
 constrain_to_boundary=constrain_to_boundary,
 return_transform=return_transform,
)

[docs] def crop_to_landmarks(
 self, group=None, boundary=0, constrain_to_boundary=True, return_transform=False
):
 r"""
 Return a copy of this image cropped so that it is bounded around a set
 of landmarks with an optional ``n_pixel`` boundary

 Parameters

 group : `str`, optional
 The key of the landmark set that should be used. If ``None``
 and if there is only one set of landmarks, this set will be used.
 boundary : `int`, optional
 An extra padding to be added all around the landmarks bounds.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the cropping is also returned.

 Returns

 image : :map:`Image`
 A copy of this image cropped to its landmarks.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 pc = self.landmarks[group]
 return self.crop_to_pointcloud(
 pc,
 boundary=boundary,
 constrain_to_boundary=constrain_to_boundary,
 return_transform=return_transform,
)

[docs] def crop_to_pointcloud_proportion(
 self,
 pointcloud,
 boundary_proportion,
 minimum=True,
 constrain_to_boundary=True,
 return_transform=False,
):
 r"""
 Return a copy of this image cropped so that it is bounded around a
 pointcloud with a border proportional to the pointcloud spread or range.

 Parameters

 pointcloud : :map:`PointCloud`
 The pointcloud to crop around.
 boundary_proportion : `float`
 Additional padding to be added all around the landmarks
 bounds defined as a proportion of the landmarks range. See
 the minimum parameter for a definition of how the range is
 calculated.
 minimum : `bool`, optional
 If ``True`` the specified proportion is relative to the minimum
 value of the pointclouds' per-dimension range; if ``False`` w.r.t.
 the maximum value of the pointclouds' per-dimension range.
 constrain_to_boundary : `bool`, optional
 If ``True``, the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the cropping is also returned.

 Returns

 image : :map:`Image`
 A copy of this image cropped to the border proportional to
 the pointcloud spread or range.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 if minimum:
 boundary = boundary_proportion * np.min(pointcloud.range())
 else:
 boundary = boundary_proportion * np.max(pointcloud.range())
 return self.crop_to_pointcloud(
 pointcloud,
 boundary=boundary,
 constrain_to_boundary=constrain_to_boundary,
 return_transform=return_transform,
)

[docs] def crop_to_landmarks_proportion(
 self,
 boundary_proportion,
 group=None,
 minimum=True,
 constrain_to_boundary=True,
 return_transform=False,
):
 r"""
 Crop this image to be bounded around a set of landmarks with a
 border proportional to the landmark spread or range.

 Parameters

 boundary_proportion : `float`
 Additional padding to be added all around the landmarks
 bounds defined as a proportion of the landmarks range. See
 the minimum parameter for a definition of how the range is
 calculated.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``
 and if there is only one set of landmarks, this set will be used.
 minimum : `bool`, optional
 If ``True`` the specified proportion is relative to the minimum
 value of the landmarks' per-dimension range; if ``False`` w.r.t. the
 maximum value of the landmarks' per-dimension range.
 constrain_to_boundary : `bool`, optional
 If ``True``, the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the cropping is also returned.

 Returns

 image : :map:`Image`
 This image, cropped to its landmarks with a border proportional to
 the landmark spread or range.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ImageBoundaryError
 Raised if ``constrain_to_boundary=False``, and an attempt is made
 to crop the image in a way that violates the image bounds.
 """
 pc = self.landmarks[group]
 return self.crop_to_pointcloud_proportion(
 pc,
 boundary_proportion,
 minimum=minimum,
 constrain_to_boundary=constrain_to_boundary,
 return_transform=return_transform,
)

[docs] def constrain_points_to_bounds(self, points):
 r"""
 Constrains the points provided to be within the bounds of this image.

 Parameters

 points : ``(d,)`` `ndarray`
 Points to be snapped to the image boundaries.

 Returns

 bounded_points : ``(d,)`` `ndarray`
 Points snapped to not stray outside the image edges.
 """
 bounded_points = points.copy()
 # check we don't stray under any edges
 bounded_points[bounded_points < 0] = 0
 # check we don't stray over any edges
 shape = np.array(self.shape)
 over_image = (shape - bounded_points) < 0
 bounded_points[over_image] = shape[over_image]
 return bounded_points

[docs] def extract_patches(
 self,
 patch_centers,
 patch_shape=(16, 16),
 sample_offsets=None,
 as_single_array=True,
 order=0,
 mode="constant",
 cval=0.0,
):
 r"""
 Extract a set of patches from an image. Given a set of patch centers
 and a patch size, patches are extracted from within the image, centred
 on the given coordinates. Sample offsets denote a set of offsets to
 extract from within a patch. This is very useful if you want to extract
 a dense set of features around a set of landmarks and simply sample the
 same grid of patches around the landmarks.

 If sample offsets are used, to access the offsets for each patch you
 need to slice the resulting `list`. So for 2 offsets, the first centers
 offset patches would be ``patches[:2]``.

 Currently only 2D images are supported.

 Note that the default is nearest neighbour sampling for the patches
 which is achieved via slicing and is much more efficient than using
 sampling/interpolation. Note that a significant performance decrease
 will be measured if the ``order`` or ``mode`` parameters are modified
 from ``order = 0`` and ``mode = 'constant'`` as internally sampling
 will be used rather than slicing.

 Parameters

 patch_centers : :map:`PointCloud`
 The centers to extract patches around.
 patch_shape : ``(1, n_dims)`` `tuple` or `ndarray`, optional
 The size of the patch to extract
 sample_offsets : ``(n_offsets, n_dims)`` `ndarray` or ``None``, optional
 The offsets to sample from within a patch. So ``(0, 0)`` is the
 centre of the patch (no offset) and ``(1, 0)`` would be sampling the
 patch from 1 pixel up the first axis away from the centre.
 If ``None``, then no offsets are applied.
 as_single_array : `bool`, optional
 If ``True``, an ``(n_center, n_offset, n_channels, patch_shape)``
 `ndarray`, thus a single numpy array is returned containing each
 patch. If ``False``, a `list` of ``n_center * n_offset``
 :map:`Image` objects is returned representing each patch.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5].
 See warp_to_shape for more information.
 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according to
 the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside the
 image boundaries.

 Returns

 patches : `list` or `ndarray`
 Returns the extracted patches. Returns a list if
 ``as_single_array=True`` and an `ndarray` if
 ``as_single_array=False``.

 Raises

 ValueError
 If image is not 2D
 """
 if self.n_dims != 2:
 raise ValueError(
 "Only two dimensional patch extraction is " "currently supported."
)

 if order == 0 and mode == "constant":
 # Fast path using slicing
 single_array = extract_patches_with_slice(
 self.pixels,
 patch_centers.points,
 patch_shape,
 offsets=sample_offsets,
 cval=cval,
)
 else:
 single_array = extract_patches_by_sampling(
 self.pixels,
 patch_centers.points,
 patch_shape,
 offsets=sample_offsets,
 order=order,
 mode=mode,
 cval=cval,
)

 if as_single_array:
 return single_array
 else:
 return [Image(o, copy=False) for p in single_array for o in p]

[docs] def extract_patches_around_landmarks(
 self,
 group=None,
 patch_shape=(16, 16),
 sample_offsets=None,
 as_single_array=True,
):
 r"""
 Extract patches around landmarks existing on this image. Provided the
 group label and optionally the landmark label extract a set of patches.

 See `extract_patches` for more information.

 Currently only 2D images are supported.

 Parameters

 group : `str` or ``None``, optional
 The landmark group to use as patch centres.
 patch_shape : `tuple` or `ndarray`, optional
 The size of the patch to extract
 sample_offsets : ``(n_offsets, n_dims)`` `ndarray` or ``None``, optional
 The offsets to sample from within a patch. So ``(0, 0)`` is the
 centre of the patch (no offset) and ``(1, 0)`` would be sampling the
 patch from 1 pixel up the first axis away from the centre.
 If ``None``, then no offsets are applied.
 as_single_array : `bool`, optional
 If ``True``, an ``(n_center, n_offset, n_channels, patch_shape)``
 `ndarray`, thus a single numpy array is returned containing each
 patch. If ``False``, a `list` of ``n_center * n_offset``
 :map:`Image` objects is returned representing each patch.

 Returns

 patches : `list` or `ndarray`
 Returns the extracted patches. Returns a list if
 ``as_single_array=True`` and an `ndarray` if
 ``as_single_array=False``.

 Raises

 ValueError
 If image is not 2D
 """
 return self.extract_patches(
 self.landmarks[group],
 patch_shape=patch_shape,
 sample_offsets=sample_offsets,
 as_single_array=as_single_array,
)

[docs] def set_patches(self, patches, patch_centers, offset=None, offset_index=None):
 r"""
 Set the values of a group of patches into the correct regions of a copy
 of this image. Given an array of patches and a set of patch centers,
 the patches' values are copied in the regions of the image that are
 centred on the coordinates of the given centers.

 The patches argument can have any of the two formats that are returned
 from the `extract_patches()` and `extract_patches_around_landmarks()`
 methods. Specifically it can be:

 1. ``(n_center, n_offset, self.n_channels, patch_shape)`` `ndarray`
 2. `list` of ``n_center * n_offset`` :map:`Image` objects

 Currently only 2D images are supported.

 Parameters

 patches : `ndarray` or `list`
 The values of the patches. It can have any of the two formats that
 are returned from the `extract_patches()` and
 `extract_patches_around_landmarks()` methods. Specifically, it can
 either be an ``(n_center, n_offset, self.n_channels, patch_shape)``
 `ndarray` or a `list` of ``n_center * n_offset`` :map:`Image`
 objects.
 patch_centers : :map:`PointCloud`
 The centers to set the patches around.
 offset : `list` or `tuple` or ``(1, 2)`` `ndarray` or ``None``, optional
 The offset to apply on the patch centers within the image.
 If ``None``, then ``(0, 0)`` is used.
 offset_index : `int` or ``None``, optional
 The offset index within the provided `patches` argument, thus the
 index of the second dimension from which to sample. If ``None``,
 then ``0`` is used.

 Raises

 ValueError
 If image is not 2D
 ValueError
 If offset does not have shape (1, 2)
 """
 # parse arguments
 if self.n_dims != 2:
 raise ValueError(
 "Only two dimensional patch insertion is " "currently supported."
)
 if offset is None:
 offset = np.zeros([1, 2], dtype=np.intp)
 elif isinstance(offset, tuple) or isinstance(offset, list):
 offset = np.asarray([offset])
 offset = np.require(offset, dtype=np.intp)
 if not offset.shape == (1, 2):
 raise ValueError(
 "The offset must be a tuple, a list or a "
 "numpy.array with shape (1, 2)."
)
 if offset_index is None:
 offset_index = 0

 # if patches is a list, convert it to array
 if isinstance(patches, list):
 patches = _convert_patches_list_to_single_array(
 patches, patch_centers.n_points
)

 copy = self.copy()
 # set patches
 set_patches(patches, copy.pixels, patch_centers.points, offset, offset_index)
 return copy

[docs] def set_patches_around_landmarks(
 self, patches, group=None, offset=None, offset_index=None
):
 r"""
 Set the values of a group of patches around the landmarks existing in a
 copy of this image. Given an array of patches, a group and a label, the
 patches' values are copied in the regions of the image that are
 centred on the coordinates of corresponding landmarks.

 The patches argument can have any of the two formats that are returned
 from the `extract_patches()` and `extract_patches_around_landmarks()`
 methods. Specifically it can be:

 1. ``(n_center, n_offset, self.n_channels, patch_shape)`` `ndarray`
 2. `list` of ``n_center * n_offset`` :map:`Image` objects

 Currently only 2D images are supported.

 Parameters

 patches : `ndarray` or `list`
 The values of the patches. It can have any of the two formats that
 are returned from the `extract_patches()` and
 `extract_patches_around_landmarks()` methods. Specifically, it can
 either be an ``(n_center, n_offset, self.n_channels, patch_shape)``
 `ndarray` or a `list` of ``n_center * n_offset`` :map:`Image`
 objects.
 group : `str` or ``None`` optional
 The landmark group to use as patch centres.
 offset : `list` or `tuple` or ``(1, 2)`` `ndarray` or ``None``, optional
 The offset to apply on the patch centers within the image.
 If ``None``, then ``(0, 0)`` is used.
 offset_index : `int` or ``None``, optional
 The offset index within the provided `patches` argument, thus the
 index of the second dimension from which to sample. If ``None``,
 then ``0`` is used.

 Raises

 ValueError
 If image is not 2D
 ValueError
 If offset does not have shape (1, 2)
 """
 return self.set_patches(
 patches, self.landmarks[group], offset=offset, offset_index=offset_index
)

[docs] def warp_to_mask(
 self,
 template_mask,
 transform,
 warp_landmarks=True,
 order=1,
 mode="constant",
 cval=0.0,
 batch_size=None,
 return_transform=False,
):
 r"""
 Return a copy of this image warped into a different reference space.

 Note that warping into a mask is slower than warping into a full image.
 If you don't need a non-linear mask, consider :meth:``warp_to_shape``
 instead.

 Parameters

 template_mask : :map:`BooleanImage`
 Defines the shape of the result, and what pixels should be sampled.
 transform : :map:`Transform`
 Transform **from the template space back to this image**.
 Defines, for each pixel location on the template, which pixel
 location should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as ``self``, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this
 value can cause warping to become much slower, particular for
 cached warps such as Piecewise Affine. This size indicates
 how many points in the image should be warped at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are warped at once.
 return_transform : `bool`, optional
 This argument is for internal use only. If ``True``, then the
 :map:`Transform` object is also returned.

 Returns

 warped_image : :map:`MaskedImage`
 A copy of this image, warped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 if self.n_dims != transform.n_dims:
 raise ValueError(
 "Trying to warp a {}D image with a {}D transform "
 "(they must match)".format(self.n_dims, transform.n_dims)
)
 template_points = template_mask.true_indices()
 points_to_sample = transform.apply(template_points, batch_size=batch_size)
 sampled = self.sample(points_to_sample, order=order, mode=mode, cval=cval)

 # set any nan values to 0
 sampled[np.isnan(sampled)] = 0
 # build a warped version of the image
 warped_image = self._build_warp_to_mask(template_mask, sampled)
 if warp_landmarks and self.has_landmarks:
 warped_image.landmarks = self.landmarks
 transform.pseudoinverse()._apply_inplace(warped_image.landmarks)
 if hasattr(self, "path"):
 warped_image.path = self.path
 # optionally return the transform
 if return_transform:
 return warped_image, transform
 else:
 return warped_image

 def _build_warp_to_mask(self, template_mask, sampled_pixel_values):
 r"""
 Builds the warped image from the template mask and sampled pixel values.
 Overridden for :map:`BooleanImage` as we can't use the usual
 :meth:`from_vector_inplace` method. All other :map:`Image` classes
 share the :map:`Image` implementation.

 Parameters

 template_mask : :map:`BooleanImage` or 2D `bool ndarray`
 Mask for warping.
 sampled_pixel_values : ``(n_true_pixels_in_mask,)`` `ndarray`
 Sampled value to rebuild the masked image from.
 """
 from menpo.image import MaskedImage

 warped_image = MaskedImage.init_blank(
 template_mask.shape, n_channels=self.n_channels, mask=template_mask
)
 warped_image._from_vector_inplace(sampled_pixel_values.ravel())
 return warped_image

[docs] def sample(self, points_to_sample, order=1, mode="constant", cval=0.0):
 r"""
 Sample this image at the given sub-pixel accurate points. The input
 PointCloud should have the same number of dimensions as the image e.g.
 a 2D PointCloud for a 2D multi-channel image. A numpy array will be
 returned the has the values for every given point across each channel
 of the image.

 Parameters

 points_to_sample : :map:`PointCloud`
 Array of points to sample from the image. Should be
 `(n_points, n_dims)`
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5].
 See warp_to_shape for more information.
 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 sampled_pixels : (`n_points`, `n_channels`) `ndarray`
 The interpolated values taken across every channel of the image.
 """
 # The public interface is a PointCloud, but when this is used internally
 # a numpy array is passed. So let's just treat the PointCloud as a
 # 'special case' and not document the ndarray ability.
 if isinstance(points_to_sample, PointCloud):
 points_to_sample = points_to_sample.points
 return scipy_interpolation(
 self.pixels, points_to_sample, order=order, mode=mode, cval=cval
)

[docs] def warp_to_shape(
 self,
 template_shape,
 transform,
 warp_landmarks=True,
 order=1,
 mode="constant",
 cval=0.0,
 batch_size=None,
 return_transform=False,
):
 """
 Return a copy of this image warped into a different reference space.

 Parameters

 template_shape : `tuple` or `ndarray`
 Defines the shape of the result, and what pixel indices should be
 sampled (all of them).
 transform : :map:`Transform`
 Transform **from the template_shape space back to this image**.
 Defines, for each index on template_shape, which pixel location
 should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this
 value can cause warping to become much slower, particular for
 cached warps such as Piecewise Affine. This size indicates
 how many points in the image should be warped at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are warped at once.
 return_transform : `bool`, optional
 This argument is for internal use only. If ``True``, then the
 :map:`Transform` object is also returned.

 Returns

 warped_image : `type(self)`
 A copy of this image, warped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 template_shape = np.array(template_shape, dtype=np.int)
 if (
 isinstance(transform, Homogeneous)
 and order in range(2)
 and self.n_dims == 2
 and cv2_perspective_interpolation is not None
):
 # we couldn't do the crop, but OpenCV has an optimised
 # interpolation for 2D perspective warps - let's use that
 warped_pixels = cv2_perspective_interpolation(
 self.pixels,
 template_shape,
 transform,
 order=order,
 mode=mode,
 cval=cval,
)
 else:
 template_points = indices_for_image_of_shape(template_shape)
 points_to_sample = transform.apply(template_points, batch_size=batch_size)
 sampled = self.sample(points_to_sample, order=order, mode=mode, cval=cval)

 # set any nan values to 0
 # (seems that map_coordinates can produce nan values)
 sampled[np.isnan(sampled)] = 0
 # build a warped version of the image
 warped_pixels = sampled.reshape((self.n_channels,) + tuple(template_shape))

 return self._build_warp_to_shape(
 warped_pixels, transform, warp_landmarks, return_transform
)

 def _build_warp_to_shape(
 self, warped_pixels, transform, warp_landmarks, return_transform
):
 # factored out common logic from the different paths we can take in
 # warp_to_shape. Rebuilds an image post-warp, adjusting landmarks
 # as necessary.
 warped_image = Image(warped_pixels, copy=False)

 # warp landmarks if requested.
 if warp_landmarks and self.has_landmarks:
 warped_image.landmarks = self.landmarks
 transform.pseudoinverse()._apply_inplace(warped_image.landmarks)
 if hasattr(self, "path"):
 warped_image.path = self.path

 # optionally return the transform
 if return_transform:
 return warped_image, transform
 else:
 return warped_image

[docs] def rescale(
 self, scale, round="ceil", order=1, warp_landmarks=True, return_transform=False
):
 r"""
 Return a copy of this image, rescaled by a given factor.
 Landmarks are rescaled appropriately.

 Parameters

 scale : `float` or `tuple` of `floats`
 The scale factor. If a tuple, the scale to apply to each dimension.
 If a single `float`, the scale will be applied uniformly across
 each dimension.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the rescale is also returned.

 Returns

 rescaled_image : ``type(self)``
 A copy of this image, rescaled.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ValueError:
 If less scales than dimensions are provided.
 If any scale is less than or equal to 0.
 """
 # Pythonic way of converting to list if we are passed a single float
 try:
 if len(scale) < self.n_dims:
 raise ValueError(
 "Must provide a scale per dimension."
 "{} scales were provided, {} were expected.".format(
 len(scale), self.n_dims
)
)
 except TypeError: # Thrown when len() is called on a float
 scale = [scale] * self.n_dims

 # Make sure we have a numpy array
 scale = np.asarray(scale)
 for s in scale:
 if s <= 0:
 raise ValueError("Scales must be positive floats.")

 transform = NonUniformScale(scale)
 # use the scale factor to make the template mask bigger
 # while respecting the users rounding preference.
 template_shape = round_image_shape(transform.apply(self.shape), round)
 # due to image indexing, we can't just apply the pseudoinverse
 # transform to achieve the scaling we want though!
 # Consider a 3x rescale on a 2x4 image. Looking at each dimension:
 # H 2 -> 6 so [0-1] -> [0-5] = 5/1 = 5x
 # W 4 -> 12 [0-3] -> [0-11] = 11/3 = 3.67x
 # => need to make the correct scale per dimension!
 shape = np.array(self.shape, dtype=np.float)
 # scale factors = max_index_after / current_max_index
 # (note that max_index = length - 1, as 0 based)
 scale_factors = (scale * shape - 1) / (shape - 1)
 inverse_transform = NonUniformScale(scale_factors).pseudoinverse()
 # for rescaling we enforce that mode is nearest to avoid num. errors
 return self.warp_to_shape(
 template_shape,
 inverse_transform,
 warp_landmarks=warp_landmarks,
 order=order,
 mode="nearest",
 return_transform=return_transform,
)

[docs] def rescale_to_diagonal(
 self, diagonal, round="ceil", warp_landmarks=True, return_transform=False
):
 r"""
 Return a copy of this image, rescaled so that the it's diagonal is a
 new size.

 Parameters

 diagonal: `int`
 The diagonal size of the new image.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the rescale is also returned.

 Returns

 rescaled_image : type(self)
 A copy of this image, rescaled.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 return self.rescale(
 diagonal / self.diagonal(),
 round=round,
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def rescale_to_pointcloud(
 self,
 pointcloud,
 group=None,
 round="ceil",
 order=1,
 warp_landmarks=True,
 return_transform=False,
):
 r"""
 Return a copy of this image, rescaled so that the scale of a
 particular group of landmarks matches the scale of the passed
 reference pointcloud.

 Parameters

 pointcloud: :map:`PointCloud`
 The reference pointcloud to which the landmarks specified by
 ``group`` will be scaled to match.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the rescale is also returned.

 Returns

 rescaled_image : ``type(self)``
 A copy of this image, rescaled.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 pc = self.landmarks[group]
 scale = AlignmentUniformScale(pc, pointcloud).as_vector().copy()
 return self.rescale(
 scale,
 round=round,
 order=order,
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def rescale_landmarks_to_diagonal_range(
 self,
 diagonal_range,
 group=None,
 round="ceil",
 order=1,
 warp_landmarks=True,
 return_transform=False,
):
 r"""
 Return a copy of this image, rescaled so that the ``diagonal_range`` of
 the bounding box containing its landmarks matches the specified
 ``diagonal_range`` range.

 Parameters

 diagonal_range: ``(n_dims,)`` `ndarray`
 The diagonal_range range that we want the landmarks of the returned
 image to have.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``
 and if there is only one set of landmarks, this set will be used.
 round : ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the rescale is also returned.

 Returns

 rescaled_image : ``type(self)``
 A copy of this image, rescaled.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 x, y = self.landmarks[group].range()
 scale = diagonal_range / np.sqrt(x ** 2 + y ** 2)
 return self.rescale(
 scale,
 round=round,
 order=order,
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def resize(self, shape, order=1, warp_landmarks=True, return_transform=False):
 r"""
 Return a copy of this image, resized to a particular shape.
 All image information (landmarks, and mask in the case of
 :map:`MaskedImage`) is resized appropriately.

 Parameters

 shape : `tuple`
 The new shape to resize to.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the resize is also returned.

 Returns

 resized_image : ``type(self)``
 A copy of this image, resized.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ValueError:
 If the number of dimensions of the new shape does not match
 the number of dimensions of the image.
 """
 shape = np.asarray(shape, dtype=np.float)
 if len(shape) != self.n_dims:
 raise ValueError(
 "Dimensions must match."
 "{} dimensions provided, {} were expected.".format(
 shape.shape, self.n_dims
)
)
 scales = shape / self.shape
 # Have to round the shape when scaling to deal with floating point
 # errors. For example, if we want (250, 250), we need to ensure that
 # we get (250, 250) even if the number we obtain is 250 to some
 # floating point inaccuracy.
 return self.rescale(
 scales,
 round="round",
 order=order,
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def zoom(self, scale, order=1, warp_landmarks=True, return_transform=False):
 r"""
 Return a copy of this image, zoomed about the centre point. ``scale``
 values greater than 1.0 denote zooming **in** to the image and values
 less than 1.0 denote zooming **out** of the image. The size of the
 image will not change, if you wish to scale an image, please see
 :meth:`rescale`.

 Parameters

 scale : `float`
 ``scale > 1.0`` denotes zooming in. Thus the image will appear
 larger and areas at the edge of the zoom will be 'cropped' out.
 ``scale < 1.0`` denotes zooming out. The image will be padded
 by the value of ``cval``.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the zooming is also returned.

 Returns

 zoomed_image : ``type(self)``
 A copy of this image, zoomed.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 t = scale_about_centre(self, 1.0 / scale)
 return self.warp_to_shape(
 self.shape,
 t,
 order=order,
 mode="nearest",
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def rotate_ccw_about_centre(
 self,
 theta,
 degrees=True,
 retain_shape=False,
 mode="constant",
 cval=0.0,
 round="round",
 order=1,
 warp_landmarks=True,
 return_transform=False,
):
 r"""
 Return a copy of this image, rotated counter-clockwise about its centre.

 Note that the `retain_shape` argument defines the shape of the rotated
 image. If ``retain_shape=True``, then the shape of the rotated image
 will be the same as the one of current image, so some regions will
 probably be cropped. If ``retain_shape=False``, then the returned image
 has the correct size so that the whole area of the current image is
 included.

 Parameters

 theta : `float`
 The angle of rotation about the centre.
 degrees : `bool`, optional
 If ``True``, `theta` is interpreted in degrees. If ``False``,
 ``theta`` is interpreted as radians.
 retain_shape : `bool`, optional
 If ``True``, then the shape of the rotated image will be the same as
 the one of current image, so some regions will probably be cropped.
 If ``False``, then the returned image has the correct size so that
 the whole area of the current image is included.
 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 The value to be set outside the rotated image boundaries.
 round : ``{'ceil', 'floor', 'round'}``, optional
 Rounding function to be applied to floating point shapes. This is
 only used in case ``retain_shape=True``.
 order : `int`, optional
 The order of interpolation. The order has to be in the range
 ``[0,5]``. This is only used in case ``retain_shape=True``.

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as ``self``, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the rotation is also returned.

 Returns

 rotated_image : ``type(self)``
 The rotated image.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ValueError
 Image rotation is presently only supported on 2D images
 """
 if self.n_dims != 2:
 raise ValueError(
 "Image rotation is presently only supported on " "2D images"
)

 rotation = Rotation.init_from_2d_ccw_angle(theta, degrees=degrees)
 return self.transform_about_centre(
 rotation,
 retain_shape=retain_shape,
 mode=mode,
 cval=cval,
 round=round,
 order=order,
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def transform_about_centre(
 self,
 transform,
 retain_shape=False,
 mode="constant",
 cval=0.0,
 round="round",
 order=1,
 warp_landmarks=True,
 return_transform=False,
):
 r"""
 Return a copy of this image, transformed about its centre.

 Note that the `retain_shape` argument defines the shape of the
 transformed image. If ``retain_shape=True``, then the shape of the
 transformed image will be the same as the one of current image, so some
 regions will probably be cropped. If ``retain_shape=False``, then the
 returned image has the correct size so that the whole area of the
 current image is included.

 .. note::

 This method will not work for transforms that result in a transform
 chain as :map:`TransformChain` is not invertible.

 .. note::

 Be careful when defining transforms for warping imgaes. All pixel
 locations must fall within a valid range as expected by the
 transform. Therefore, your transformation must accept 'negative'
 pixel locations as the pixel locations provided to your transform
 will have the object centre subtracted from them.

 Parameters

 transform : :map:`ComposableTransform` and :map:`VInvertible` type
 A composable transform. ``pseudoinverse`` will be invoked on the
 resulting transform so it must implement a valid inverse.
 retain_shape : `bool`, optional
 If ``True``, then the shape of the sheared image will be the same as
 the one of current image, so some regions will probably be cropped.
 If ``False``, then the returned image has the correct size so that
 the whole area of the current image is included.
 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 The value to be set outside the sheared image boundaries.
 round : ``{'ceil', 'floor', 'round'}``, optional
 Rounding function to be applied to floating point shapes. This is
 only used in case ``retain_shape=True``.
 order : `int`, optional
 The order of interpolation. The order has to be in the range
 ``[0,5]``. This is only used in case ``retain_shape=True``.

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as ``self``, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the shearing is also returned.

 Returns

 transformed_image : ``type(self)``
 The transformed image.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Examples

 This is an example for rotating an image about its center. Let's
 first load an image, create the rotation transform and then apply it ::

 import matplotlib.pyplot as plt
 import menpo.io as mio
 from menpo.transform import Rotation

 # Load image
 im = mio.import_builtin_asset.lenna_png()

 # Create shearing transform
 rot_tr = Rotation.init_from_2d_ccw_angle(45)

 # Render original image
 plt.subplot(131)
 im.view_landmarks()
 plt.title('Original')

 # Render rotated image
 plt.subplot(132)
 im.transform_about_centre(rot_tr).view_landmarks()
 plt.title('Rotated')

 # Render rotated image that has shape equal as original image
 plt.subplot(133)
 im.transform_about_centre(rot_tr, retain_shape=True).view_landmarks()
 plt.title('Rotated (Retain original shape)')

 Similarly, in order to apply a shear transform ::

 import matplotlib.pyplot as plt
 import menpo.io as mio
 from menpo.transform import Affine

 # Load image
 im = mio.import_builtin_asset.lenna_png()

 # Create shearing transform
 shear_tr = Affine.init_from_2d_shear(25, 10)

 # Render original image
 plt.subplot(131)
 im.view_landmarks()
 plt.title('Original')

 # Render sheared image
 plt.subplot(132)
 im.transform_about_centre(shear_tr).view_landmarks()
 plt.title('Sheared')

 # Render sheared image that has shape equal as original image
 plt.subplot(133)
 im.transform_about_centre(shear_tr,
 retain_shape=True).view_landmarks()
 plt.title('Sheared (Retain original shape)')
 """
 if retain_shape:
 shape = self.shape
 applied_transform = transform_about_centre(self, transform)
 else:
 # Get image's bounding box coordinates
 original_bbox = bounding_box((0, 0), np.array(self.shape) - 1)
 # Translate to origin and apply transform
 trans = Translation(-self.centre(), skip_checks=True).compose_before(
 transform
)
 transformed_bbox = trans.apply(original_bbox)

 # Create new translation so that min bbox values go to 0
 t = Translation(-transformed_bbox.bounds()[0])
 applied_transform = trans.compose_before(t)
 transformed_bbox = trans.apply(original_bbox)
 # Output image's shape is the range of the sheared bounding box
 # while respecting the users rounding preference.
 shape = round_image_shape(transformed_bbox.range() + 1, round)

 # Warp image
 return self.warp_to_shape(
 shape,
 applied_transform.pseudoinverse(),
 order=order,
 warp_landmarks=warp_landmarks,
 mode=mode,
 cval=cval,
 return_transform=return_transform,
)

[docs] def mirror(self, axis=1, order=1, warp_landmarks=True, return_transform=False):
 r"""
 Return a copy of this image, mirrored/flipped about a certain axis.

 Parameters

 axis : `int`, optional
 The axis about which to mirror the image.
 order : `int`, optional
 The order of interpolation. The order has to be in the range
 ``[0,5]``.

 ========= ====================
 Order Interpolation
 ========= ====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= ====================

 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the mirroring is also returned.

 Returns

 mirrored_image : ``type(self)``
 The mirrored image.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ValueError
 axis cannot be negative
 ValueError
 axis={} but the image has {} dimensions
 """
 # Check axis argument
 if axis < 0:
 raise ValueError("axis cannot be negative")
 elif axis >= self.n_dims:
 raise ValueError(
 "axis={} but the image has {} " "dimensions".format(axis, self.n_dims)
)

 # Create transform that includes ...
 # ... flipping about the selected axis ...
 rot_matrix = np.eye(self.n_dims)
 rot_matrix[axis, axis] = -1
 # ... and translating back to the image's bbox
 tr_matrix = np.zeros(self.n_dims)
 tr_matrix[axis] = self.shape[axis] - 1

 # Create transform object
 trans = Rotation(rot_matrix, skip_checks=True).compose_before(
 Translation(tr_matrix, skip_checks=True)
)

 # Warp image
 return self.warp_to_shape(
 self.shape,
 trans.pseudoinverse(),
 mode="nearest",
 order=order,
 warp_landmarks=warp_landmarks,
 return_transform=return_transform,
)

[docs] def pyramid(self, n_levels=3, downscale=2):
 r"""
 Return a rescaled pyramid of this image. The first image of the
 pyramid will be a copy of the original, unmodified, image, and counts
 as level 1.

 Parameters

 n_levels : `int`, optional
 Total number of levels in the pyramid, including the original
 unmodified image
 downscale : `float`, optional
 Downscale factor.

 Yields

 image_pyramid: `generator`
 Generator yielding pyramid layers as :map:`Image` objects.
 """
 image = self.copy()
 yield image
 for _ in range(n_levels - 1):
 image = image.rescale(1.0 / downscale)
 yield image

[docs] def gaussian_pyramid(self, n_levels=3, downscale=2, sigma=None):
 r"""
 Return the gaussian pyramid of this image. The first image of the
 pyramid will be a copy of the original, unmodified, image, and counts
 as level 1.

 Parameters

 n_levels : `int`, optional
 Total number of levels in the pyramid, including the original
 unmodified image
 downscale : `float`, optional
 Downscale factor.
 sigma : `float`, optional
 Sigma for gaussian filter. Default is ``downscale / 3.`` which
 corresponds to a filter mask twice the size of the scale factor
 that covers more than 99% of the gaussian distribution.

 Yields

 image_pyramid: `generator`
 Generator yielding pyramid layers as :map:`Image` objects.
 """
 from menpo.feature import gaussian_filter

 if sigma is None:
 sigma = downscale / 3.0
 image = self.copy()
 yield image
 for level in range(n_levels - 1):
 image = gaussian_filter(image, sigma).rescale(1.0 / downscale)
 yield image

[docs] def as_greyscale(self, mode="luminosity", channel=None):
 r"""
 Returns a greyscale version of the image. If the image does *not*
 represent a 2D RGB image, then the ``luminosity`` mode will fail.

 Parameters

 mode : ``{average, luminosity, channel}``, optional
 ============== ===
 mode Greyscale Algorithm
 ============== ===
 average Equal average of all channels
 luminosity Calculates the luminance using the CCIR 601 formula:
 | .. math:: Y' = 0.2989 R' + 0.5870 G' + 0.1140 B'
 channel A specific channel is chosen as the intensity value.
 ============== ===

 channel: `int`, optional
 The channel to be taken. Only used if mode is ``channel``.

 Returns

 greyscale_image : :map:`MaskedImage`
 A copy of this image in greyscale.
 """
 greyscale = self.copy()
 if mode == "luminosity":
 if self.n_dims != 2:
 raise ValueError(
 "The 'luminosity' mode only works on 2D RGB"
 "images. {} dimensions found, "
 "2 expected.".format(self.n_dims)
)
 elif self.n_channels != 3:
 raise ValueError(
 "The 'luminosity' mode only works on RGB"
 "images. {} channels found, "
 "3 expected.".format(self.n_channels)
)
 # Only compute the coefficients once.
 global _greyscale_luminosity_coef
 if _greyscale_luminosity_coef is None:
 _greyscale_luminosity_coef = np.linalg.inv(
 np.array(
 [
 [1.0, 0.956, 0.621],
 [1.0, -0.272, -0.647],
 [1.0, -1.106, 1.703],
]
)
)[0, :]
 # Compute greyscale via dot product
 pixels = np.dot(_greyscale_luminosity_coef, greyscale.pixels.reshape(3, -1))
 # Reshape image back to original shape (with 1 channel)
 pixels = pixels.reshape(greyscale.shape)
 elif mode == "average":
 pixels = np.mean(greyscale.pixels, axis=0)
 elif mode == "channel":
 if channel is None:
 raise ValueError(
 "For the 'channel' mode you have to provide" " a channel index"
)
 pixels = greyscale.pixels[channel]
 else:
 raise ValueError(
 "Unknown mode {} - expected 'luminosity', "
 "'average' or 'channel'.".format(mode)
)

 # Set new pixels - ensure channel axis and maintain
 greyscale.pixels = pixels[None, ...].astype(greyscale.pixels.dtype, copy=False)
 return greyscale

[docs] def as_PILImage(self, out_dtype=np.uint8):
 r"""
 Return a PIL copy of the image scaled and cast to the correct
 values for the provided ``out_dtype``.

 Image must only have 1 or 3 channels and be 2 dimensional.
 Non `uint8` floating point images must be in the range ``[0, 1]`` to be
 converted.

 Parameters

 out_dtype : `np.dtype`, optional
 The dtype the output array should be.

 Returns

 pil_image : `PILImage`
 PIL copy of image

 Raises

 ValueError
 If image is not 2D and has 1 channel or 3 channels.
 ValueError
 If pixels data type is `float32` or `float64` and the pixel
 range is outside of ``[0, 1]``
 ValueError
 If the output dtype is unsupported. Currently uint8 is supported.
 """
 if self.n_dims != 2 or (self.n_channels != 1 and self.n_channels != 3):
 raise ValueError(
 "Can only convert greyscale or RGB 2D images. "
 "Received a {} channel {}D image.".format(self.n_channels, self.n_dims)
)

 # Slice off the channel for greyscale images
 if self.n_channels == 1:
 pixels = self.pixels[0]
 else:
 pixels = channels_to_back(self.pixels)
 pixels = denormalize_pixels_range(pixels, out_dtype)
 return PILImage.fromarray(pixels)

[docs] def as_imageio(self, out_dtype=np.uint8):
 r"""
 Return an Imageio copy of the image scaled and cast to the correct
 values for the provided ``out_dtype``.

 Image must only have 1 or 3 channels and be 2 dimensional.
 Non `uint8` floating point images must be in the range ``[0, 1]`` to be
 converted.

 Parameters

 out_dtype : `np.dtype`, optional
 The dtype the output array should be.

 Returns

 imageio_image : `ndarray`
 Imageio image (which is just a numpy ndarray with the channels
 as the last axis).

 Raises

 ValueError
 If image is not 2D and has 1 channel or 3 channels.
 ValueError
 If pixels data type is `float32` or `float64` and the pixel
 range is outside of ``[0, 1]``
 ValueError
 If the output dtype is unsupported. Currently uint8 and uint16
 are supported.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .pixels_with_channels_at_back instead.",
 MenpoDeprecationWarning,
)

 if self.n_dims != 2 or (self.n_channels != 1 and self.n_channels != 3):
 raise ValueError(
 "Can only convert greyscale or RGB 2D images. "
 "Received a {} channel {}D image.".format(self.n_channels, self.n_dims)
)

 # Slice off the channel for greyscale images
 if self.n_channels == 1:
 pixels = self.pixels[0]
 else:
 pixels = channels_to_back(self.pixels)
 return denormalize_pixels_range(pixels, out_dtype)

[docs] def pixels_range(self):
 r"""
 The range of the pixel values (min and max pixel values).

 Returns

 min_max : ``(dtype, dtype)``
 The minimum and maximum value of the pixels array.
 """
 return self.pixels.min(), self.pixels.max()

[docs] def rolled_channels(self):
 r"""
 Deprecated - please use the equivalent ``pixels_with_channels_at_back`` method.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .pixels_with_channels_at_back() instead.",
 MenpoDeprecationWarning,
)
 return self.pixels_with_channels_at_back()

[docs] def pixels_with_channels_at_back(self, out_dtype=None):
 r"""
 Returns the pixels matrix, with the channels rolled to the back axis.
 This may be required for interacting with external code bases that
 require images to have channels as the last axis, rather than the
 Menpo convention of channels as the first axis.

 If this image is single channel, the final axis is dropped.

 Parameters

 out_dtype : `np.dtype`, optional
 The dtype the output array should be.

 Returns

 rolled_channels : `ndarray`
 Pixels with channels as the back (last) axis. If single channel,
 the last axis will be dropped.
 """
 p = channels_to_back(self.pixels)
 if out_dtype is not None:
 p = denormalize_pixels_range(p, out_dtype=out_dtype)
 return np.squeeze(p)

 def __str__(self):
 return "{} {}D Image with {} channel{}".format(
 self._str_shape(), self.n_dims, self.n_channels, "s" * (self.n_channels > 1)
)

[docs] def has_landmarks_outside_bounds(self):
 """
 Indicates whether there are landmarks located outside the image bounds.

 :type: `bool`
 """
 if self.has_landmarks:
 for l_group in self.landmarks:
 pc = self.landmarks[l_group].points
 if np.any(np.logical_or(self.shape - pc < 1, pc < 0)):
 return True
 return False

[docs] def constrain_landmarks_to_bounds(self):
 r"""
 Deprecated - please use the equivalent ``constrain_to_bounds`` method
 now on PointCloud, in conjunction with the new Image ``bounds()``
 method. For example:

 >>> im.constrain_landmarks_to_bounds() # Equivalent to below
 >>> im.landmarks['test'] = im.landmarks['test'].constrain_to_bounds(im.bounds())
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .constrain_to_bounds() instead (on PointCloud).",
 MenpoDeprecationWarning,
)

 for l_group in self.landmarks:
 l = self.landmarks[l_group]
 for k in range(l.points.shape[1]):
 tmp = l.points[:, k]
 tmp[tmp < 0] = 0
 tmp[tmp > self.shape[k] - 1] = self.shape[k] - 1
 l.points[:, k] = tmp
 self.landmarks[l_group] = l

[docs] def normalize_std(self, mode="all", **kwargs):
 r"""
 Returns a copy of this image normalized such that its
 pixel values have zero mean and unit variance.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.

 Returns

 image : ``type(self)``
 A copy of this image, normalized.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .normalize_std() instead (features package).",
 MenpoDeprecationWarning,
)
 return self._normalize(np.std, mode=mode)

[docs] def normalize_norm(self, mode="all", **kwargs):
 r"""
 Returns a copy of this image normalized such that its pixel values
 have zero mean and its norm equals 1.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 unit norm.

 Returns

 image : ``type(self)``
 A copy of this image, normalized.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .normalize_norm() instead (features package).",
 MenpoDeprecationWarning,
)

 def scale_func(pixels, axis=None):
 return np.linalg.norm(pixels, axis=axis, **kwargs)

 return self._normalize(scale_func, mode=mode)

 def _normalize(self, scale_func, mode="all"):
 from menpo.feature import normalize

 return normalize(self, scale_func=scale_func, mode=mode)

[docs] def rescale_pixels(self, minimum, maximum, per_channel=True):
 r"""A copy of this image with pixels linearly rescaled to fit a range.

 Note that the only pixels that will be considered and rescaled are those
 that feature in the vectorized form of this image. If you want to use
 this routine on all the pixels in a :map:`MaskedImage`, consider
 using `as_unmasked()` prior to this call.

 Parameters

 minimum: `float`
 The minimal value of the rescaled pixels
 maximum: `float`
 The maximal value of the rescaled pixels
 per_channel: `boolean`, optional
 If ``True``, each channel will be rescaled independently. If
 ``False``, the scaling will be over all channels.

 Returns

 rescaled_image: ``type(self)``
 A copy of this image with pixels linearly rescaled to fit in the
 range provided.
 """
 v = self.as_vector(keep_channels=True).T
 if per_channel:
 min_, max_ = v.min(axis=0), v.max(axis=0)
 else:
 min_, max_ = v.min(), v.max()
 sf = ((maximum - minimum) * 1.0) / (max_ - min_)
 v_new = ((v - min_) * sf) + minimum
 return self.from_vector(v_new.T.ravel())

[docs] def clip_pixels(self, minimum=None, maximum=None):
 r"""A copy of this image with pixels linearly clipped to fit a range.

 Parameters

 minimum: `float`, optional
 The minimal value of the clipped pixels. If None is provided, the
 default value will be 0.
 maximum: `float`, optional
 The maximal value of the clipped pixels. If None is provided, the
 default value will depend on the dtype.

 Returns

 rescaled_image: ``type(self)``
 A copy of this image with pixels linearly rescaled to fit in the
 range provided.
 """
 if minimum is None:
 minimum = 0
 if maximum is None:
 dtype = self.pixels.dtype
 if dtype == np.uint8:
 maximum = 255
 elif dtype == np.uint16:
 maximum = 65535
 elif dtype in [np.float32, np.float64]:
 maximum = 1.0
 else:
 m1 = "Could not recognise the dtype ({}) to set the maximum."
 raise ValueError(m1.format(dtype))

 copy = self.copy()
 copy.pixels = copy.pixels.clip(min=minimum, max=maximum)
 return copy

[docs] def rasterize_landmarks(
 self,
 group=None,
 render_lines=True,
 line_style="-",
 line_colour="b",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=1,
 marker_face_colour="b",
 marker_edge_colour="b",
 marker_edge_width=1,
 backend="matplotlib",
):
 r"""
 This method provides the ability to rasterize 2D landmarks onto the
 image. The returned image has the specified landmark groups rasterized
 onto the image - which is useful for things like creating result
 examples or rendering videos with annotations.

 Since multiple landmark groups can be specified, all arguments can take
 lists of parameters that map to the provided groups list. Therefore, the
 parameters must be lists of the correct length or a single parameter to
 apply to every landmark group.

 Multiple backends are provided, all with different strengths. The
 'pillow' backend is very fast, but not very flexible. The `matplotlib`
 backend should be feature compatible with other Menpo rendering methods,
 but is much slower due to the overhead of creating a figure to render
 into.

 Parameters

 group : `str` or `list` of `str`, optional
 The landmark group key, or a list of keys.
 render_lines : `bool`, optional
 If ``True``, and the provided landmark group is a
 :map:`PointDirectedGraph`, the edges are rendered.
 line_style : `str`, optional
 The style of the edge line. Not all backends support this argument.
 line_colour : `str` or `tuple`, optional
 A Matplotlib style colour or a backend dependant colour.
 line_width : `int`, optional
 The width of the line to rasterize.
 render_markers : `bool`, optional
 If ``True``, render markers at the coordinates of each landmark.
 marker_style : `str`, optional
 A Matplotlib marker style. Not all backends support all marker
 styles.
 marker_size : `int`, optional
 The size of the marker - different backends use different scale
 spaces so consistent output may by difficult.
 marker_face_colour : `str`, optional
 A Matplotlib style colour or a backend dependant colour.
 marker_edge_colour : `str`, optional
 A Matplotlib style colour or a backend dependant colour.
 marker_edge_width : `int`, optional
 The width of the marker edge. Not all backends support this.
 backend : {'matplotlib', 'pillow'}, optional
 The backend to use.

 Returns

 rasterized_image : :map:`Image`
 The image with the landmarks rasterized directly into the pixels.

 Raises

 ValueError
 Only 2D images are supported.
 ValueError
 Only RGB (3-channel) or Greyscale (1-channel) images are supported.
 """
 from .rasterize import rasterize_landmarks_2d

 return rasterize_landmarks_2d(
 self,
 group=group,
 render_lines=render_lines,
 line_style=line_style,
 line_colour=line_colour,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 backend=backend,
)

def round_image_shape(shape, round):
 if round not in ["ceil", "round", "floor"]:
 raise ValueError("round must be either ceil, round or floor")
 # Ensure that the '+' operator means concatenate tuples
 return tuple(getattr(np, round)(shape).astype(np.int))

def _convert_patches_list_to_single_array(patches_list, n_center):
 r"""
 Converts patches from a `list` of :map:`Image` objects to a single `ndarray`
 with shape ``(n_center, n_offset, self.n_channels, patch_shape)``.

 Note that these two are the formats returned by the `extract_patches()`
 and `extract_patches_around_landmarks()` methods of :map:`Image` class.

 Parameters

 patches_list : `list` of `n_center * n_offset` :map:`Image` objects
 A `list` that contains all the patches as :map:`Image` objects.
 n_center : `int`
 The number of centers from which the patches are extracted.

 Returns

 patches_array : `ndarray` ``(n_center, n_offset, n_channels, patch_shape)``
 The numpy array that contains all the patches.
 """
 n_offsets = np.int(len(patches_list) / n_center)
 n_channels = patches_list[0].n_channels
 height = patches_list[0].height
 width = patches_list[0].width
 patches_array = np.empty(
 (n_center, n_offsets, n_channels, height, width),
 dtype=patches_list[0].pixels.dtype,
)
 total_index = 0
 for p in range(n_center):
 for o in range(n_offsets):
 patches_array[p, o, ...] = patches_list[total_index].pixels
 total_index += 1
 return patches_array

def _create_patches_image(
 patches, patch_centers, patches_indices=None, offset_index=None, background="black"
):
 r"""
 Creates an :map:`Image` object in which the patches are located on the
 correct regions based on the centers. Thus, the image is a block-sparse
 matrix. It has also attached a `patch_Centers` :map:`PointCloud`
 object with the centers that correspond to the patches that the user
 selected to set.

 The patches argument can have any of the two formats that are returned
 from the `extract_patches()` and `extract_patches_around_landmarks()`
 methods of the :map:`Image` class. Specifically it can be:

 1. ``(n_center, n_offset, self.n_channels, patch_shape)`` `ndarray`
 2. `list` of ``n_center * n_offset`` :map:`Image` objects

 Parameters

 patches : `ndarray` or `list`
 The values of the patches. It can have any of the two formats that are
 returned from the `extract_patches()` and
 `extract_patches_around_landmarks()` methods. Specifically, it can
 either be an ``(n_center, n_offset, self.n_channels, patch_shape)``
 `ndarray` or a `list` of ``n_center * n_offset`` :map:`Image` objects.
 patch_centers : :map:`PointCloud`
 The centers to set the patches around.
 patches_indices : `int` or `list` of `int` or ``None``, optional
 Defines the patches that will be set (copied) to the image. If ``None``,
 then all the patches are copied.
 offset_index : `int` or ``None``, optional
 The offset index within the provided `patches` argument, thus the index
 of the second dimension from which to sample. If ``None``, then ``0`` is
 used.
 background : ``{'black', 'white'}``, optional
 If ``'black'``, then the background is set equal to the minimum value
 of `patches`. If ``'white'``, then the background is set equal to the
 maximum value of `patches`.

 Returns

 patches_image : :map:`Image`
 The output patches image object.

 Raises

 ValueError
 Background must be either ''black'' or ''white''.
 """
 # If patches is a list, convert it to array
 if isinstance(patches, list):
 patches = _convert_patches_list_to_single_array(patches, patch_centers.n_points)

 # Parse inputs
 if offset_index is None:
 offset_index = 0
 if patches_indices is None:
 patches_indices = np.arange(patches.shape[0])
 elif not isinstance(patches_indices, Iterable):
 patches_indices = [patches_indices]

 # Compute patches image's shape
 n_channels = patches.shape[2]
 patch_shape0 = patches.shape[3]
 patch_shape1 = patches.shape[4]
 top, left = np.min(patch_centers.points, 0)
 bottom, right = np.max(patch_centers.points, 0)
 min_0 = np.floor(top - patch_shape0)
 min_1 = np.floor(left - patch_shape1)
 max_0 = np.ceil(bottom + patch_shape0)
 max_1 = np.ceil(right + patch_shape1)
 height = max_0 - min_0 + 1
 width = max_1 - min_1 + 1

 # Translate the patch centers to fit in the new image
 new_patch_centers = patch_centers.copy()
 new_patch_centers.points = patch_centers.points - np.array([[min_0, min_1]])

 # Create new image with the correct background values
 if background == "black":
 patches_image = Image.init_blank(
 (height, width),
 n_channels,
 fill=np.min(patches[patches_indices]),
 dtype=patches.dtype,
)
 elif background == "white":
 patches_image = Image.init_blank(
 (height, width),
 n_channels,
 fill=np.max(patches[patches_indices]),
 dtype=patches.dtype,
)
 else:
 raise ValueError("Background must be either " "black" " or " "white" ".")

 # If there was no slicing on the patches, then attach the original patch
 # centers. Otherwise, attach the sliced ones.
 if set(patches_indices) == set(range(patches.shape[0])):
 patches_image.landmarks["patch_centers"] = new_patch_centers
 else:
 tmp_centers = PointCloud(new_patch_centers.points[patches_indices])
 patches_image.landmarks["patch_centers"] = tmp_centers

 # Set the patches
 return patches_image.set_patches_around_landmarks(
 patches[patches_indices], group="patch_centers", offset_index=offset_index
)

 menpo.image.boolean

 Source code for menpo.image.boolean

from functools import partial
from warnings import warn

import numpy as np

from menpo.transform import Translation
from .base import Image

def pwa_point_in_pointcloud(pcloud, indices, batch_size=None):
 """
 Make sure that the decision of whether a point is inside or outside
 the PointCloud is exactly the same as how PWA calculates triangle
 containment. Then, we use the trick of setting the mask to all the
 points that were NOT outside the triangulation. Otherwise, all points
 were inside and we just return those as ``True``. In general, points
 on the boundary are counted as inside the polygon.

 Parameters

 pcloud : :map:`PointCloud`
 The pointcloud to use for the containment test.
 indices : (d, n_dims) `ndarray`
 The list of pixel indices to test.
 batch_size : `int` or ``None``, optional
 See constrain_to_pointcloud for more information about the batch_size
 parameter.

 Returns

 mask : (d,) `bool ndarray`
 Whether each pixel index was in inside the convex hull of the
 pointcloud or not.
 """
 from menpo.transform.piecewiseaffine import PiecewiseAffine
 from menpo.transform.piecewiseaffine import TriangleContainmentError

 try:
 pwa = PiecewiseAffine(pcloud, pcloud)
 pwa.apply(indices, batch_size=batch_size)
 return np.ones(indices.shape[0], dtype=np.bool)
 except TriangleContainmentError as e:
 return ~e.points_outside_source_domain

def convex_hull_point_in_pointcloud(pcloud, indices):
 """
 Uses the matplotlib ``contains_points`` method, which in turn uses:

 "Crossings Multiply algorithm of InsideTest"
 By Eric Haines, 3D/Eye Inc, erich@eye.com
 http://erich.realtimerendering.com/ptinpoly/

 This algorithm uses a per-pixel test and thus tends to produce smoother
 edges. We also guarantee that all points inside PointCloud will be
 included by calculating the **convex hull** of the pointcloud before
 doing the point inside test.

 Points on the boundary are counted as **outside** the polygon.

 Parameters

 pcloud : :map:`PointCloud`
 The pointcloud to use for the containment test.
 indices : (d, n_dims) `ndarray`
 The list of pixel indices to test.

 Returns

 mask : (d,) `bool ndarray`
 Whether each pixel index was in inside the convex hull of the
 pointcloud or not.
 """
 from scipy.spatial import ConvexHull
 from matplotlib.path import Path

 c_hull = ConvexHull(pcloud.points)
 polygon = pcloud.points[c_hull.vertices, :]

 return Path(polygon).contains_points(indices)

[docs]class BooleanImage(Image):
 r"""
 A mask image made from binary pixels. The region of the image that is
 left exposed by the mask is referred to as the 'masked region'. The
 set of 'masked' pixels is those pixels corresponding to a ``True`` value in
 the mask.

 Parameters

 mask_data : ``(M, N, ..., L)`` `ndarray`
 The binary mask data. Note that there is no channel axis - a 2D Mask
 Image is built from just a 2D numpy array of mask_data.
 Automatically coerced in to boolean values.
 copy: `bool`, optional
 If ``False``, the image_data will not be copied on assignment. Note that
 if the array you provide is not boolean, there **will still be copy**.
 In general this should only be used if you know what you are doing.
 """

 def __init__(self, mask_data, copy=True):
 # Add a channel dimension. We do this little reshape trick to add
 # the axis because this maintains C-contiguous'ness
 mask_data = mask_data.reshape((1,) + mask_data.shape)
 # If we are trying not to copy, but the data we have isn't boolean,
 # then unfortunately, we forced to copy anyway!
 if mask_data.dtype != np.bool:
 mask_data = np.array(mask_data, dtype=np.bool, copy=True, order="C")
 if not copy:
 warn(
 "The copy flag was NOT honoured. A copy HAS been made. "
 "Please ensure the data you pass is C-contiguous."
)
 super(BooleanImage, self).__init__(mask_data, copy=copy)

[docs] @classmethod
 def init_blank(cls, shape, fill=True, round="ceil", **kwargs):
 r"""
 Returns a blank :map:`BooleanImage` of the requested shape

 Parameters

 shape : `tuple` or `list`
 The shape of the image. Any floating point values are rounded
 according to the ``round`` kwarg.
 fill : `bool`, optional
 The mask value to be set everywhere.
 round: ``{ceil, floor, round}``, optional
 Rounding function to be applied to floating point shapes.

 Returns

 blank_image : :map:`BooleanImage`
 A blank mask of the requested size

 """
 from .base import round_image_shape

 shape = round_image_shape(shape, round)
 if fill:
 mask = np.ones(shape, dtype=np.bool)
 else:
 mask = np.zeros(shape, dtype=np.bool)
 return cls(mask, copy=False)

[docs] @classmethod
 def init_from_channels_at_back(cls, pixels):
 r"""
 This method is not required for ``BooleanImage`` types as boolean images
 do not expect a channel axis for construction.

 Parameters

 pixels : ``(M, N ..., Q)`` `ndarray`
 Array representing the image pixels, with NO channel axis.

 Returns

 image : :map:`BooleanImage`
 A new image from the given boolean pixels.
 """
 return cls(pixels)

[docs] @classmethod
 def init_from_pointcloud(
 cls, pointcloud, group=None, boundary=0, constrain=True, fill=True
):
 r"""
 Create an Image that is big enough to contain the given pointcloud.
 The pointcloud will be translated to the origin and then translated
 according to its bounds in order to fit inside the new image.
 An optional boundary can be provided in order to increase the space
 around the boundary of the pointcloud. The boundary will be added
 to *all sides of the image* and so a boundary of 5 provides 10 pixels
 of boundary total for each dimension.

 By default, the mask will be constrained to the convex hull of the
 provided pointcloud.

 Parameters

 pointcloud : :map:`PointCloud`
 Pointcloud to place inside the newly created image.
 group : `str`, optional
 If ``None``, the pointcloud will only be used to create the image.
 If a `str` then the pointcloud will be attached as a landmark
 group to the image, with the given string as key.
 boundary : `float`
 A optional padding distance that is added to the pointcloud bounds.
 Default is ``0``, meaning the max/min of tightest possible
 containing image is returned.
 fill : `int`, optional
 The value to fill all pixels with.
 constrain : `bool`, optional
 If ``True``, the ``True`` values will be image will be constrained
 to the convex hull of the provided pointcloud. If ``False``,
 the mask will be the value of ``fill``.

 Returns

 image : :map:`MaskedImage`
 A new image with the same size as the given pointcloud, optionally
 with the pointcloud attached as landmarks and the mask constrained
 to the convex hull of the pointcloud.
 """
 # Translate pointcloud to the origin
 minimum = pointcloud.bounds(boundary=boundary)[0]
 origin_pc = Translation(-minimum).apply(pointcloud)
 image_shape = origin_pc.range(boundary=boundary)
 new_image = cls.init_blank(image_shape, fill=fill)
 if constrain:
 new_image = new_image.constrain_to_pointcloud(origin_pc)
 if group is not None:
 new_image.landmarks[group] = origin_pc
 return new_image

[docs] def as_masked(self, mask=None, copy=True):
 r"""
 Impossible for a :map:`BooleanImage` to be transformed to a
 :map:`MaskedImage`.
 """
 raise NotImplementedError("as_masked cannot be invoked on a " "BooleanImage.")

 @property
 def mask(self):
 r"""
 Returns the pixels of the mask with no channel axis. This is what
 should be used to mask any k-dimensional image.

 :type: ``(M, N, ..., L)``, `bool ndarray`
 """
 return self.pixels[0, ...]

[docs] def n_true(self):
 r"""
 The number of ``True`` values in the mask.

 :type: `int`
 """
 return np.sum(self.pixels)

[docs] def n_false(self):
 r"""
 The number of ``False`` values in the mask.

 :type: `int`
 """
 return self.n_pixels - self.n_true()

[docs] def all_true(self):
 r"""
 ``True`` iff every element of the mask is ``True``.

 :type: `bool`
 """
 return np.all(self.pixels)

[docs] def proportion_true(self):
 r"""
 The proportion of the mask which is ``True``.

 :type: `float`
 """
 return (self.n_true() * 1.0) / self.n_pixels

[docs] def proportion_false(self):
 r"""
 The proportion of the mask which is ``False``

 :type: `float`
 """
 return (self.n_false() * 1.0) / self.n_pixels

[docs] def true_indices(self):
 r"""
 The indices of pixels that are ``True``.

 :type: ``(n_dims, n_true)`` `ndarray`
 """
 if self.all_true():
 return self.indices()
 else:
 # Ignore the channel axis
 return np.vstack(np.nonzero(self.pixels[0])).T

[docs] def false_indices(self):
 r"""
 The indices of pixels that are ``Flase``.

 :type: ``(n_dims, n_false)`` `ndarray`
 """
 # Ignore the channel axis
 return np.vstack(np.nonzero(~self.pixels[0])).T

 def __str__(self):
 return "{} {}D mask, {:.1%} " "of which is True".format(
 self._str_shape(), self.n_dims, self.proportion_true()
)

[docs] def from_vector(self, vector, copy=True):
 r"""
 Takes a flattened vector and returns a new :map:`BooleanImage` formed
 by reshaping the vector to the correct dimensions. Note that this is
 rebuilding a boolean image **itself** from boolean values. The mask
 is in no way interpreted in performing the operation, in contrast to
 :map:`MaskedImage`, where only the masked region is used in
 :meth:`from_vector` and :meth`as_vector`. Any image landmarks are
 transferred in the process.

 Parameters

 vector : ``(n_pixels,)`` `bool ndarray`
 A flattened vector of all the pixels of a :map:`BooleanImage`.
 copy : `bool`, optional
 If ``False``, no copy of the vector will be taken.

 Returns

 image : :map:`BooleanImage`
 New BooleanImage of same shape as this image

 Raises

 Warning
 If ``copy=False`` cannot be honored.
 """
 mask = BooleanImage(vector.reshape(self.shape), copy=copy)
 if self.has_landmarks:
 mask.landmarks = self.landmarks
 if hasattr(self, "path"):
 mask.path = self.path
 return mask

[docs] def invert(self):
 r"""
 Returns a copy of this boolean image, which is inverted.

 Returns

 inverted : :map:`BooleanImage`
 A copy of this boolean mask, where all ``True`` values are ``False``
 and all ``False`` values are ``True``.
 """
 inverse = self.copy()
 inverse.pixels = ~self.pixels
 return inverse

[docs] def bounds_true(self, boundary=0, constrain_to_bounds=True):
 r"""
 Returns the minimum to maximum indices along all dimensions that the
 mask includes which fully surround the ``True`` mask values. In the case
 of a 2D Image for instance, the min and max define two corners of a
 rectangle bounding the True pixel values.

 Parameters

 boundary : `int`, optional
 A number of pixels that should be added to the extent. A
 negative value can be used to shrink the bounds in.
 constrain_to_bounds: `bool`, optional
 If ``True``, the bounding extent is snapped to not go beyond
 the edge of the image. If ``False``, the bounds are left unchanged.

 Returns

 min_b : ``(D,)`` `ndarray`
 The minimum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 max_b : ``(D,)`` `ndarray`
 The maximum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 """
 mpi = self.true_indices()
 maxes = np.max(mpi, axis=0) + boundary
 mins = np.min(mpi, axis=0) - boundary
 if constrain_to_bounds:
 maxes = self.constrain_points_to_bounds(maxes)
 mins = self.constrain_points_to_bounds(mins)
 return mins, maxes

[docs] def bounds_false(self, boundary=0, constrain_to_bounds=True):
 r"""
 Returns the minimum to maximum indices along all dimensions that the
 mask includes which fully surround the False mask values. In the case
 of a 2D Image for instance, the min and max define two corners of a
 rectangle bounding the False pixel values.

 Parameters

 boundary : `int` >= 0, optional
 A number of pixels that should be added to the extent. A
 negative value can be used to shrink the bounds in.
 constrain_to_bounds: `bool`, optional
 If ``True``, the bounding extent is snapped to not go beyond
 the edge of the image. If ``False``, the bounds are left unchanged.

 Returns

 min_b : ``(D,)`` `ndarray`
 The minimum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 max_b : ``(D,)`` `ndarray`
 The maximum extent of the ``True`` mask region with the boundary
 along each dimension. If ``constrain_to_bounds=True``,
 is clipped to legal image bounds.
 """
 return self.invert().bounds_true(
 boundary=boundary, constrain_to_bounds=constrain_to_bounds
)

 # noinspection PyMethodOverriding
[docs] def sample(self, points_to_sample, mode="constant", cval=False, **kwargs):
 r"""
 Sample this image at the given sub-pixel accurate points. The input
 PointCloud should have the same number of dimensions as the image e.g.
 a 2D PointCloud for a 2D multi-channel image. A numpy array will be
 returned the has the values for every given point across each channel
 of the image.

 Parameters

 points_to_sample : :map:`PointCloud`
 Array of points to sample from the image. Should be
 `(n_points, n_dims)`
 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.

 Returns

 sampled_pixels : (`n_points`, `n_channels`) `bool ndarray`
 The interpolated values taken across every channel of the image.
 """
 # enforce the order as 0, as this is boolean data, then call super
 return Image.sample(self, points_to_sample, order=0, mode=mode, cval=cval)

 # noinspection PyMethodOverriding
[docs] def warp_to_mask(
 self,
 template_mask,
 transform,
 warp_landmarks=True,
 mode="constant",
 cval=False,
 batch_size=None,
 return_transform=False,
):
 r"""
 Return a copy of this :map:`BooleanImage` warped into a different
 reference space.

 Note that warping into a mask is slower than warping into a full image.
 If you don't need a non-linear mask, consider warp_to_shape instead.

 Parameters

 template_mask : :map:`BooleanImage`
 Defines the shape of the result, and what pixels should be
 sampled.
 transform : :map:`Transform`
 Transform **from the template space back to this image**.
 Defines, for each pixel location on the template, which pixel
 location should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 mode : ``{constant, nearest, reflect or wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this
 value can cause warping to become much slower, particular for
 cached warps such as Piecewise Affine. This size indicates
 how many points in the image should be warped at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are warped at once.
 return_transform : `bool`, optional
 This argument is for internal use only. If ``True``, then the
 :map:`Transform` object is also returned.

 Returns

 warped_image : :map:`BooleanImage`
 A copy of this image, warped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 # enforce the order as 0, as this is boolean data, then call super
 return Image.warp_to_mask(
 self,
 template_mask,
 transform,
 warp_landmarks=warp_landmarks,
 order=0,
 mode=mode,
 cval=cval,
 batch_size=batch_size,
 return_transform=return_transform,
)

 # noinspection PyMethodOverriding
[docs] def warp_to_shape(
 self,
 template_shape,
 transform,
 warp_landmarks=True,
 mode="constant",
 cval=False,
 order=None,
 batch_size=None,
 return_transform=False,
):
 """
 Return a copy of this :map:`BooleanImage` warped into a different
 reference space.

 Note that the order keyword argument is in fact ignored, as any order
 other than 0 makes no sense on a binary image. The keyword argument is
 present only for compatibility with the :map:`Image` warp_to_shape API.

 Parameters

 template_shape : ``(n_dims,)`` `tuple` or `ndarray`
 Defines the shape of the result, and what pixel indices should be
 sampled (all of them).
 transform : :map:`Transform`
 Transform **from the template_shape space back to this image**.
 Defines, for each index on template_shape, which pixel location
 should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 mode : ``{constant, nearest, reflect or wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this
 value can cause warping to become much slower, particular for
 cached warps such as Piecewise Affine. This size indicates
 how many points in the image should be warped at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are warped at once.
 return_transform : `bool`, optional
 This argument is for internal use only. If ``True``, then the
 :map:`Transform` object is also returned.

 Returns

 warped_image : :map:`BooleanImage`
 A copy of this image, warped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 # call the super variant and get ourselves an Image back
 # note that we force the use of order=0 for BooleanImages.
 warped = Image.warp_to_shape(
 self,
 template_shape,
 transform,
 warp_landmarks=warp_landmarks,
 order=0,
 mode=mode,
 cval=cval,
 batch_size=batch_size,
)
 # unfortunately we can't escape copying here, let BooleanImage
 # convert us to np.bool
 boolean_image = BooleanImage(warped.pixels.reshape(template_shape))
 if warped.has_landmarks:
 boolean_image.landmarks = warped.landmarks
 if hasattr(warped, "path"):
 boolean_image.path = warped.path
 # optionally return the transform
 if return_transform:
 return boolean_image, transform
 else:
 return boolean_image

 def _build_warp_to_mask(self, template_mask, sampled_pixel_values, **kwargs):
 r"""
 Builds the warped image from the template mask and sampled pixel values.
 """
 # start from a copy of the template_mask
 warped_img = template_mask.copy()
 if warped_img.all_true():
 # great, just reshape the sampled_pixel_values
 warped_img.pixels = sampled_pixel_values.reshape((1,) + warped_img.shape)
 else:
 # we have to fill out mask with the sampled mask..
 warped_img.pixels[:, warped_img.mask] = sampled_pixel_values
 return warped_img

[docs] def constrain_to_landmarks(self, group=None, batch_size=None):
 r"""
 Returns a copy of this image whereby the ``True`` values in the image
 are restricted to be equal to the convex hull around the landmarks
 chosen. This is not a per-pixel convex hull, but instead relies on a
 triangulated approximation. If the landmarks in question are an instance
 of :map:`TriMesh`, the triangulation of the landmarks will be used in
 the convex hull calculation. If the landmarks are an instance of
 :map:`PointCloud`, Delaunay triangulation will be used to create a
 triangulation.

 Parameters

 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this value
 will cause constraining to become much slower. This size indicates
 how many points in the image should be checked at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are checked at once.

 Returns

 constrained : :map:`BooleanImage`
 The new boolean image, constrained by the given landmark group.
 """
 return self.constrain_to_pointcloud(
 self.landmarks[group], batch_size=batch_size
)

[docs] def constrain_to_pointcloud(
 self, pointcloud, batch_size=None, point_in_pointcloud="pwa"
):
 r"""
 Returns a copy of this image whereby the ``True`` values in the image
 are restricted to be equal to the convex hull around a pointcloud. The
 choice of whether a pixel is inside or outside of the pointcloud is
 determined by the ``point_in_pointcloud`` parameter. By default a
 Piecewise Affine transform is used to test for containment, which is
 useful when aligning images by their landmarks. Triangluation will be
 decided by Delauny - if you wish to customise it, a :map:`TriMesh`
 instance can be passed for the ``pointcloud`` argument. In this case,
 the triangulation of the Trimesh will be used to define the retained
 region.

 For large images, a faster and pixel-accurate method can be used (
 'convex_hull'). Here, there is no specialization for
 :map:`TriMesh` instances. Alternatively, a callable can be provided to
 override the test. By default, the provided implementations are only
 valid for 2D images.

 Parameters

 pointcloud : :map:`PointCloud` or :map:`TriMesh`
 The pointcloud of points that should be constrained to. See
 `point_in_pointcloud` for how in some cases a :map:`TriMesh` may be
 used to control triangulation.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this value
 will cause constraining to become much slower. This size indicates
 how many points in the image should be checked at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are checked at once. By default, this is only used for
 the 'pwa' point_in_pointcloud choice.
 point_in_pointcloud : {'pwa', 'convex_hull'} or `callable`
 The method used to check if pixels in the image fall inside the
 ``pointcloud`` or not. If 'pwa', Menpo's :map:`PiecewiseAffine`
 transform will be used to test for containment. In this case
 ``pointcloud`` should be a :map:`TriMesh`. If it isn't, Delauny
 triangulation will be used to first triangulate ``pointcloud`` into
 a :map:`TriMesh` before testing for containment.
 If a callable is passed, it should take two parameters,
 the :map:`PointCloud` to constrain with and the pixel locations
 ((d, n_dims) ndarray) to test and should return a (d, 1) boolean
 ndarray of whether the pixels were inside (True) or outside (False)
 of the :map:`PointCloud`.

 Returns

 constrained : :map:`BooleanImage`
 The new boolean image, constrained by the given pointcloud.

 Raises

 ValueError
 If the image is not 2D and a default implementation is chosen.
 ValueError
 If the chosen ``point_in_pointcloud`` is unknown.
 """
 copy = self.copy()
 if point_in_pointcloud in {"pwa", "convex_hull"} and self.n_dims != 2:
 raise ValueError(
 "Can only constrain mask on 2D images with the "
 "default point_in_pointcloud implementations."
 "Please provide a custom callable for calculating "
 "the new mask in this "
 "{}D image".format(self.n_dims)
)

 if point_in_pointcloud == "pwa":
 point_in_pointcloud = partial(
 pwa_point_in_pointcloud, batch_size=batch_size
)
 elif point_in_pointcloud == "convex_hull":
 point_in_pointcloud = convex_hull_point_in_pointcloud
 elif not callable(point_in_pointcloud):
 # Not a function, or a string, so we have an error!
 raise ValueError(
 "point_in_pointcloud must be a callable that "
 "take two arguments: the Menpo PointCloud as a "
 "boundary and the ndarray of pixel indices "
 "to test. {} is an unknown option.".format(point_in_pointcloud)
)

 # Only consider indices inside the bounding box of the PointCloud
 bounds = pointcloud.bounds()
 # Convert to integer to try and reduce boundary fp rounding errors.
 bounds = [b.astype(np.int) for b in bounds]
 indices = copy.indices()

 # This loop is to ensure the code is multi-dimensional
 for k in range(self.n_dims):
 indices = indices[indices[:, k] >= bounds[0][k], :]
 indices = indices[indices[:, k] <= bounds[1][k], :]
 # Due to only testing bounding box indices, make sure the mask starts
 # off as all False
 copy.pixels[:] = False

 # slice(0, 1) because we know we only have 1 channel
 # Slice all the channels, only inside the bounding box (for setting
 # the new mask values).
 all_channels = [slice(0, 1)]
 slices = tuple(
 all_channels
 + [slice(bounds[0][k], bounds[1][k] + 1) for k in range(self.n_dims)]
)
 copy.pixels[slices].flat = point_in_pointcloud(pointcloud, indices)
 return copy

 menpo.image.masked

 Source code for menpo.image.masked

from warnings import warn

import numpy as np

from menpo.base import MenpoDeprecationWarning, copy_landmarks_and_path
from menpo.transform import Translation
from menpo.visualize.base import ImageViewer
from .base import Image
from .boolean import BooleanImage

[docs]class OutOfMaskSampleError(ValueError):
 r"""
 Exception that is thrown when an attempt is made to sample an MaskedImage
 in an area that is masked out (where the mask is ``False``).

 Parameters

 sampled_mask : `bool ndarray`
 The sampled mask, ``True`` where the image's mask was ``True`` and
 ``False`` otherwise. Useful for masking out the sampling array.
 sampled_values : `ndarray`
 The sampled values, no attempt at masking is made.
 """

 def __init__(self, sampled_mask, sampled_values):
 super(OutOfMaskSampleError, self).__init__()
 self.sampled_mask = sampled_mask
 self.sampled_values = sampled_values

[docs]class MaskedImage(Image):
 r"""
 Represents an `n`-dimensional `k`-channel image, which has a mask.
 Images can be masked in order to identify a region of interest. All
 images implicitly have a mask that is defined as the the entire image.
 The mask is an instance of :map:`BooleanImage`.

 Parameters

 image_data : ``(C, M, N ..., Q)`` `ndarray`
 The pixel data for the image, where the first axis represents the
 number of channels.
 mask : ``(M, N)`` `bool ndarray` or :map:`BooleanImage`, optional
 A binary array representing the mask. Must be the same
 shape as the image. Only one mask is supported for an image (so the
 mask is applied to every channel equally).
 copy: `bool`, optional
 If ``False``, the ``image_data`` will not be copied on assignment. If a
 mask is provided, this also won't be copied. In general this should only
 be used if you know what you are doing.

 Raises

 ValueError
 Mask is not the same shape as the image
 """

 def __init__(self, image_data, mask=None, copy=True):
 super(MaskedImage, self).__init__(image_data, copy=copy)
 if mask is not None:
 # Check if we need to create a BooleanImage or not
 if not isinstance(mask, BooleanImage):
 # So it's a numpy array.
 mask_image = BooleanImage(mask, copy=copy)
 else:
 # It's a BooleanImage object.
 if copy:
 mask = mask.copy()
 mask_image = mask
 if mask_image.shape == self.shape:
 self.mask = mask_image
 else:
 raise ValueError(
 "Trying to construct a Masked Image of "
 "shape {} with a Mask of differing "
 "shape {}".format(self.shape, mask.shape)
)
 else:
 # no mask provided - make the default.
 self.mask = BooleanImage.init_blank(self.shape, fill=True)

[docs] @classmethod
 def init_blank(cls, shape, n_channels=1, fill=0, dtype=np.float, mask=None):
 r"""Generate a blank masked image

 Parameters

 shape : `tuple` or `list`
 The shape of the image. Any floating point values are rounded up
 to the nearest integer.
 n_channels: `int`, optional
 The number of channels to create the image with.
 fill : `int`, optional
 The value to fill all pixels with.
 dtype: `numpy datatype`, optional
 The datatype of the image.
 mask: ``(M, N)`` `bool ndarray` or :map:`BooleanImage`
 An optional mask that can be applied to the image. Has to have a
 shape equal to that of the image.

 Notes

 Subclasses of :map:`MaskedImage` need to overwrite this method and
 explicitly call this superclass method

 ::

 super(SubClass, cls).init_blank(shape,**kwargs)

 in order to appropriately propagate the subclass type to ``cls``.

 Returns

 blank_image : :map:`MaskedImage`
 A new masked image of the requested size.
 """
 # Ensure that the '+' operator means concatenate tuples
 shape = tuple(np.ceil(shape).astype(np.int))
 if fill == 0:
 pixels = np.zeros((n_channels,) + shape, dtype=dtype)
 else:
 pixels = np.ones((n_channels,) + shape, dtype=dtype) * fill
 return cls(pixels, copy=False, mask=mask)

[docs] @classmethod
 def init_from_channels_at_back(cls, pixels, mask=None):
 r"""
 Create an Image from a set of pixels where the channels axis is on
 the last axis (the back). This is common in other frameworks, and
 therefore this method provides a convenient means of creating a menpo
 Image from such data. Note that a copy is always created due to the
 need to rearrange the data.

 Parameters

 pixels : ``(M, N ..., Q, C)`` `ndarray`
 Array representing the image pixels, with the last axis being
 channels.
 mask : ``(M, N)`` `bool ndarray` or :map:`BooleanImage`, optional
 A binary array representing the mask. Must be the same
 shape as the image. Only one mask is supported for an image (so the
 mask is applied to every channel equally).

 Returns

 image : :map:`Image`
 A new image from the given pixels, with the FIRST axis as the
 channels.
 """
 im = Image.init_from_channels_at_back(pixels)
 if mask is not None:
 mask = mask.copy()
 return MaskedImage(im.pixels, mask=mask, copy=False)

[docs] @classmethod
 def init_from_pointcloud(
 cls,
 pointcloud,
 group=None,
 boundary=0,
 constrain_mask=True,
 n_channels=1,
 fill=0,
 dtype=np.float,
):
 r"""
 Create an Image that is big enough to contain the given pointcloud.
 The pointcloud will be translated to the origin and then translated
 according to its bounds in order to fit inside the new image.
 An optional boundary can be provided in order to increase the space
 around the boundary of the pointcloud. The boundary will be added
 to *all sides of the image* and so a boundary of 5 provides 10 pixels
 of boundary total for each dimension.

 By default, the mask will be constrained to the convex hull of the
 provided pointcloud.

 Parameters

 pointcloud : :map:`PointCloud`
 Pointcloud to place inside the newly created image.
 group : `str`, optional
 If ``None``, the pointcloud will only be used to create the image.
 If a `str` then the pointcloud will be attached as a landmark
 group to the image, with the given string as key.
 boundary : `float`
 A optional padding distance that is added to the pointcloud bounds.
 Default is ``0``, meaning the max/min of tightest possible
 containing image is returned.
 n_channels : `int`, optional
 The number of channels to create the image with.
 fill : `int`, optional
 The value to fill all pixels with.
 dtype : numpy data type, optional
 The data type of the image.
 constrain_mask : `bool`, optional
 If ``True``, the mask will be constrained to the convex hull
 of the provided pointcloud. If ``False``, the mask will be all
 ``True``.

 Returns

 image : :map:`MaskedImage`
 A new image with the same size as the given pointcloud, optionally
 with the pointcloud attached as landmarks and the mask constrained
 to the convex hull of the pointcloud.
 """
 # Translate pointcloud to the origin
 minimum = pointcloud.bounds(boundary=boundary)[0]
 origin_pc = Translation(-minimum).apply(pointcloud)
 image_shape = origin_pc.range(boundary=boundary)
 if constrain_mask:
 new_mask = BooleanImage.init_from_pointcloud(
 origin_pc, group=None, boundary=boundary, constrain=True, fill=False
)
 else:
 new_mask = None

 new_image = cls.init_blank(
 image_shape, n_channels=n_channels, fill=fill, dtype=dtype, mask=new_mask
)
 if group is not None:
 new_image.landmarks[group] = origin_pc
 return new_image

[docs] def as_unmasked(self, copy=True, fill=None):
 r"""
 Return a copy of this image without the masking behavior.

 By default the mask is simply discarded. However, there is an optional
 kwarg, ``fill``, that can be set which will fill the **non-masked**
 areas with the given value.

 Parameters

 copy : `bool`, optional
 If ``False``, the produced :map:`Image` will share pixels with
 ``self``. Only suggested to be used for performance.
 fill : `float` or ``(n_channels,)`` iterable or ``None``, optional
 If ``None`` the mask is simply discarded. If a scalar or iterable,
 the *unmasked* regions are filled with the given value.

 Returns

 image : :map:`Image`
 An image with the same pixels and landmarks as this one, but with
 no mask.
 """
 img = Image(self.pixels, copy=copy)
 if fill is not None:
 if not np.isscalar(fill):
 fill = np.array(fill).reshape(self.n_channels, -1)
 img.pixels[..., ~self.mask.mask] = fill
 return copy_landmarks_and_path(self, img)

[docs] def n_true_pixels(self):
 r"""
 The number of ``True`` values in the mask.

 :type: `int`
 """
 return self.mask.n_true()

[docs] def n_false_pixels(self):
 r"""
 The number of ``False`` values in the mask.

 :type: `int`
 """
 return self.mask.n_false()

[docs] def n_true_elements(self):
 r"""
 The number of ``True`` elements of the image over all the channels.

 :type: `int`
 """
 return self.n_true_pixels() * self.n_channels

[docs] def n_false_elements(self):
 r"""
 The number of ``False`` elements of the image over all the channels.

 :type: `int`
 """
 return self.n_false_pixels() * self.n_channels

[docs] def indices(self):
 r"""
 Return the indices of all true pixels in this image.

 :type: ``(n_dims, n_true_pixels)`` `ndarray`
 """
 return self.mask.true_indices()

[docs] def masked_pixels(self):
 r"""
 Get the pixels covered by the `True` values in the mask.

 :type: ``(n_channels, mask.n_true)`` `ndarray`
 """
 if self.mask.all_true():
 return self.pixels
 return self.pixels[..., self.mask.mask]

[docs] def set_masked_pixels(self, pixels, copy=True):
 r"""
 Deprecated - please use the equivalent ``from_vector``
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .from_vector() instead.",
 MenpoDeprecationWarning,
)
 self._set_masked_pixels(pixels, copy=copy)

 # TODO: Replace _from_vector_inplace with this.
 def _set_masked_pixels(self, pixels, copy=True):
 r"""
 Update the masked pixels only to new values.

 Parameters

 pixels: `ndarray`
 The new pixels to set.
 copy: `bool`, optional
 If ``False`` a copy will be avoided in assignment. This can only
 happen if the mask is all ``True`` - in all other cases it will
 raise a warning.

 Raises

 Warning
 If the ``copy=False`` flag cannot be honored.
 """
 if self.mask.all_true():
 # reshape the vector into the image again
 pixels = pixels.reshape((self.n_channels,) + self.shape)
 if not copy:
 if not pixels.flags.c_contiguous:
 warn(
 "The copy flag was NOT honoured. A copy HAS been "
 "made. Copy can only be avoided if MaskedImage has "
 "an all_true mask and the pixels provided are "
 "C-contiguous."
)
 pixels = pixels.copy()
 else:
 pixels = pixels.copy()
 self.pixels = pixels
 else:
 self.pixels[..., self.mask.mask] = pixels
 # oh dear, couldn't avoid a copy. Did the user try to?
 if not copy:
 warn(
 "The copy flag was NOT honoured. A copy HAS been made. "
 "copy can only be avoided if MaskedImage has an all_true "
 "mask."
)

 def __str__(self):
 return (
 "{} {}D MaskedImage with {} channels. "
 "Attached mask {:.1%} true".format(
 self._str_shape(),
 self.n_dims,
 self.n_channels,
 self.mask.proportion_true(),
)
)

 def _as_vector(self, keep_channels=False):
 r"""
 Convert image to a vectorized form. Note that the only pixels
 returned here are from the masked region on the image.

 Parameters

 keep_channels : `bool`, optional

 ========== =================================
 Value Return shape
 ========== =================================
 ``True`` ``(mask.n_true, n_channels)``
 ``False`` ``(mask.n_true * n_channels,)``
 ========== =================================

 Returns

 vectorized_image : (shape given by ``keep_channels``) `ndarray`
 Vectorized image
 """
 if keep_channels:
 return self.masked_pixels().reshape([self.n_channels, -1])
 else:
 return self.masked_pixels().ravel()

[docs] def from_vector(self, vector, n_channels=None):
 r"""
 Takes a flattened vector and returns a new image formed by reshaping
 the vector to the correct pixels and channels. Note that the only
 region of the image that will be filled is the masked region.

 On masked images, the vector is always copied.

 The ``n_channels`` argument is useful for when we want to add an extra
 channel to an image but maintain the shape. For example, when
 calculating the gradient.

 Note that landmarks are transferred in the process.

 Parameters

 vector : ``(n_pixels,)``
 A flattened vector of all pixels and channels of an image.
 n_channels : `int`, optional
 If given, will assume that vector is the same shape as this image,
 but with a possibly different number of channels.

 Returns

 image : :class:`MaskedImage`
 New image of same shape as this image and the number of
 specified channels.
 """
 # This is useful for when we want to add an extra channel to an image
 # but maintain the shape. For example, when calculating the gradient
 n_channels = self.n_channels if n_channels is None else n_channels
 # Creates zeros of size (n_channels x M x N x ...)
 if self.mask.all_true():
 # we can just reshape the array!
 image_data = vector.reshape(((n_channels,) + self.shape))
 else:
 image_data = np.zeros((n_channels,) + self.shape, dtype=vector.dtype)
 pixels_per_channel = vector.reshape((n_channels, -1))
 image_data[..., self.mask.mask] = pixels_per_channel
 new_image = MaskedImage(image_data, mask=self.mask)
 return copy_landmarks_and_path(self, new_image)

 def _from_vector_inplace(self, vector, copy=True):
 r"""
 Takes a flattened vector and updates this image by reshaping
 the vector to the correct pixels and channels. Note that the only
 region of the image that will be filled is the masked region.

 Parameters

 vector : ``(n_parameters,)``
 A flattened vector of all pixels and channels of an image.
 copy : `bool`, optional
 If ``False``, the vector will be set as the pixels with no copy
 made.
 If ``True`` a copy of the vector is taken.

 Raises

 Warning
 If ``copy=False`` cannot be honored.
 """
 self._set_masked_pixels(vector.reshape((self.n_channels, -1)), copy=copy)

[docs] def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 channels=None,
 masked=True,
 interpolation="bilinear",
 cmap_name=None,
 alpha=1.0,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 r"""
 View the image using the default image viewer. This method will appear
 on the Image as ``view`` if the Image is 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 masked : `bool`, optional
 If ``True``, only the masked pixels will be rendered.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated.
 Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36,
 hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
 bessel, mitchell, sinc, lanczos}

 cmap_name: `str`, optional,
 If ``None``, single channel and three channel images default
 to greyscale and rgb colormaps respectively.
 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the Image as a percentage of the Image's width. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the Image as a percentage of the Image's height. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.

 Raises

 ValueError
 If Image is not 2D
 """
 mask = self.mask.mask if masked else None
 return ImageViewer(
 figure_id,
 new_figure,
 self.n_dims,
 self.pixels,
 channels=channels,
 mask=mask,
).render(
 interpolation=interpolation,
 cmap_name=cmap_name,
 alpha=alpha,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

[docs] def _view_landmarks_2d(
 self,
 channels=None,
 masked=True,
 group=None,
 with_labels=None,
 without_labels=None,
 figure_id=None,
 new_figure=False,
 interpolation="bilinear",
 cmap_name=None,
 alpha=1.0,
 render_lines=True,
 line_colour=None,
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour=None,
 marker_edge_colour=None,
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=False,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 """
 Visualize the landmarks. This method will appear on the Image as
 ``view_landmarks`` if the Image is 2D.

 Parameters

 channels : `int` or `list` of `int` or ``all`` or ``None``
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 masked : `bool`, optional
 If ``True``, only the masked pixels will be rendered.
 group : `str` or``None`` optionals
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated. Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

 cmap_name: `str`, optional,
 If ``None``, single channel and three channel images default
 to greyscale and rgb colormaps respectively.
 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the Image as a percentage of the Image's width. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the Image as a percentage of the Image's height. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then
 the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 from menpo.visualize import view_image_landmarks

 return view_image_landmarks(
 self,
 channels,
 masked,
 group,
 with_labels,
 without_labels,
 figure_id,
 new_figure,
 interpolation,
 cmap_name,
 alpha,
 render_lines,
 line_colour,
 line_style,
 line_width,
 render_markers,
 marker_style,
 marker_size,
 marker_face_colour,
 marker_edge_colour,
 marker_edge_width,
 render_numbering,
 numbers_horizontal_align,
 numbers_vertical_align,
 numbers_font_name,
 numbers_font_size,
 numbers_font_style,
 numbers_font_weight,
 numbers_font_colour,
 render_legend,
 legend_title,
 legend_font_name,
 legend_font_style,
 legend_font_size,
 legend_font_weight,
 legend_marker_scale,
 legend_location,
 legend_bbox_to_anchor,
 legend_border_axes_pad,
 legend_n_columns,
 legend_horizontal_spacing,
 legend_vertical_spacing,
 legend_border,
 legend_border_padding,
 legend_shadow,
 legend_rounded_corners,
 render_axes,
 axes_font_name,
 axes_font_size,
 axes_font_style,
 axes_font_weight,
 axes_x_limits,
 axes_y_limits,
 axes_x_ticks,
 axes_y_ticks,
 figure_size,
)

[docs] def crop_to_true_mask(
 self, boundary=0, constrain_to_boundary=True, return_transform=False
):
 r"""
 Crop this image to be bounded just the `True` values of it's mask.

 Parameters

 boundary : `int`, optional
 An extra padding to be added all around the true mask region.
 constrain_to_boundary : `bool`, optional
 If ``True`` the crop will be snapped to not go beyond this images
 boundary. If ``False``, an :map:`ImageBoundaryError` will be raised
 if an attempt is made to go beyond the edge of the image. Note that
 is only possible if ``boundary != 0``.
 return_transform : `bool`, optional
 If ``True``, then the :map:`Transform` object that was used to
 perform the cropping is also returned.

 Returns

 cropped_image : ``type(self)``
 A copy of this image, cropped to the true mask.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.

 Raises

 ImageBoundaryError
 Raised if 11constrain_to_boundary=False`1, and an attempt is
 made to crop the image in a way that violates the image bounds.
 """
 min_indices, max_indices = self.mask.bounds_true(
 boundary=boundary, constrain_to_bounds=False
)
 # no point doing the bounds check twice - let the crop do it only.
 return self.crop(
 min_indices,
 max_indices,
 constrain_to_boundary=constrain_to_boundary,
 return_transform=return_transform,
)

[docs] def sample(
 self, points_to_sample, order=1, mode="constant", cval=0.0, verify_mask=False
):
 r"""
 Sample this image at the given sub-pixel accurate points. The input
 PointCloud should have the same number of dimensions as the image e.g.
 a 2D PointCloud for a 2D multi-channel image. A numpy array will be
 returned the has the values for every given point across each channel
 of the image.

 If verify_mask is True and the points to sample are *outside* of the
 mask (fall on a ``False`` value in the mask), an exception is raised.
 This exception contains the information of which points were outside
 of the mask (``False``) and *also* returns the sampled points. Note this
 is more expensive and thus may be disabled by setting verify_mask
 to False.

 Parameters

 points_to_sample : :map:`PointCloud`
 Array of points to sample from the image. Should be
 `(n_points, n_dims)`
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5].
 See warp_to_shape for more information.
 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 verify_mask : `bool`, optional
 If True, also sample the mask at the given points and check the
 mask is valid at all points. Note that sampling masks with higher
 order splines may cause interpolated mask values that are rounded
 to zero and thus cause false positives.

 Returns

 sampled_pixels : (`n_points`, `n_channels`) `ndarray`
 The interpolated values taken across every channel of the image.

 Raises

 OutOfMaskSampleError
 One of the points to sample was outside of the valid area of the
 mask (``False`` in the mask). This exception contains both the
 mask of valid sample points, **as well as** the sampled points
 themselves, in case you want to ignore the error. Only raised
 if verify_mask is True.
 """
 sampled_values = Image.sample(
 self, points_to_sample, order=order, mode=mode, cval=cval
)
 if verify_mask:
 sampled_mask = self.mask.sample(points_to_sample, mode=mode, cval=cval)
 if not np.all(sampled_mask):
 raise OutOfMaskSampleError(sampled_mask, sampled_values)
 return sampled_values

 # noinspection PyMethodOverriding
[docs] def warp_to_mask(
 self,
 template_mask,
 transform,
 warp_landmarks=False,
 order=1,
 mode="constant",
 cval=0.0,
 batch_size=None,
 return_transform=False,
):
 r"""
 Warps this image into a different reference space.

 Parameters

 template_mask : :map:`BooleanImage`
 Defines the shape of the result, and what pixels should be sampled.
 transform : :map:`Transform`
 Transform **from the template space back to this image**.
 Defines, for each pixel location on the template, which pixel
 location should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as ``self``, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this
 value can cause warping to become much slower, particular for
 cached warps such as Piecewise Affine. This size indicates
 how many points in the image should be warped at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are warped at once.
 return_transform : `bool`, optional
 This argument is for internal use only. If ``True``, then the
 :map:`Transform` object is also returned.

 Returns

 warped_image : ``type(self)``
 A copy of this image, warped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 # call the super variant and get ourselves a MaskedImage back
 # with a blank mask
 warped_image = Image.warp_to_mask(
 self,
 template_mask,
 transform,
 warp_landmarks=warp_landmarks,
 order=order,
 mode=mode,
 cval=cval,
 batch_size=batch_size,
)
 # Set the template mask as our mask
 warped_image.mask = template_mask
 # optionally return the transform
 if return_transform:
 return warped_image, transform
 else:
 return warped_image

 # noinspection PyMethodOverriding
[docs] def warp_to_shape(
 self,
 template_shape,
 transform,
 warp_landmarks=False,
 order=1,
 mode="constant",
 cval=0.0,
 batch_size=None,
 return_transform=False,
):
 """
 Return a copy of this :map:`MaskedImage` warped into a different
 reference space.

 Parameters

 template_shape : `tuple` or `ndarray`
 Defines the shape of the result, and what pixel indices should be
 sampled (all of them).
 transform : :map:`Transform`
 Transform **from the template_shape space back to this image**.
 Defines, for each index on template_shape, which pixel location
 should be sampled from on this image.
 warp_landmarks : `bool`, optional
 If ``True``, result will have the same landmark dictionary
 as self, but with each landmark updated to the warped position.
 order : `int`, optional
 The order of interpolation. The order has to be in the range [0,5]

 ========= =====================
 Order Interpolation
 ========= =====================
 0 Nearest-neighbor
 1 Bi-linear *(default)*
 2 Bi-quadratic
 3 Bi-cubic
 4 Bi-quartic
 5 Bi-quintic
 ========= =====================

 mode : ``{constant, nearest, reflect, wrap}``, optional
 Points outside the boundaries of the input are filled according
 to the given mode.
 cval : `float`, optional
 Used in conjunction with mode ``constant``, the value outside
 the image boundaries.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this
 value can cause warping to become much slower, particular for
 cached warps such as Piecewise Affine. This size indicates
 how many points in the image should be warped at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are warped at once.
 return_transform : `bool`, optional
 This argument is for internal use only. If ``True``, then the
 :map:`Transform` object is also returned.

 Returns

 warped_image : :map:`MaskedImage`
 A copy of this image, warped.
 transform : :map:`Transform`
 The transform that was used. It only applies if
 `return_transform` is ``True``.
 """
 # call the super variant and get ourselves an Image back
 warped_image = Image.warp_to_shape(
 self,
 template_shape,
 transform,
 warp_landmarks=warp_landmarks,
 order=order,
 mode=mode,
 cval=cval,
 batch_size=batch_size,
)
 # Warp the mask separately and reattach
 mask = self.mask.warp_to_shape(
 template_shape,
 transform,
 warp_landmarks=warp_landmarks,
 mode=mode,
 cval=cval,
)
 # efficiently turn the Image into a MaskedImage, attaching the
 # landmarks
 masked_warped_image = warped_image.as_masked(mask=mask, copy=False)
 if hasattr(warped_image, "path"):
 masked_warped_image.path = warped_image.path
 # optionally return the transform
 if return_transform:
 return masked_warped_image, transform
 else:
 return masked_warped_image

[docs] def normalize_std(self, mode="all", limit_to_mask=True):
 r"""
 Returns a copy of this image normalized such that it's pixel values
 have zero mean and unit variance.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 limit_to_mask : `bool`, optional
 If ``True``, the normalization is only performed wrt the masked
 pixels.
 If ``False``, the normalization is wrt all pixels, regardless of
 their masking value.

 Returns

 image : ``type(self)``
 A copy of this image, normalized.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .normalize_std() instead (features package).",
 MenpoDeprecationWarning,
)

 return self._normalize(np.std, mode=mode, limit_to_mask=limit_to_mask)

[docs] def normalize_norm(self, mode="all", limit_to_mask=True, **kwargs):
 r"""
 Returns a copy of this image normalized such that it's pixel values
 have zero mean and its norm equals 1.

 Parameters

 mode : ``{all, per_channel}``, optional
 If ``all``, the normalization is over all channels. If
 ``per_channel``, each channel individually is mean centred and
 normalized in variance.
 limit_to_mask : `bool`, optional
 If ``True``, the normalization is only performed wrt the masked
 pixels.
 If ``False``, the normalization is wrt all pixels, regardless of
 their masking value.

 Returns

 image : ``type(self)``
 A copy of this image, normalized.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .normalize_norm() instead (features package).",
 MenpoDeprecationWarning,
)

 def scale_func(pixels, axis=None):
 return np.linalg.norm(pixels, axis=axis, **kwargs)

 return self._normalize(scale_func, mode=mode, limit_to_mask=limit_to_mask)

 def _normalize(self, scale_func, mode="all", limit_to_mask=True):
 from menpo.feature import normalize

 if limit_to_mask:
 pixels = self
 else:
 pixels = self.as_unmasked(copy=False)

 new_img = normalize(pixels, scale_func=scale_func, mode=mode)

 if limit_to_mask:
 return new_img
 else:
 return new_img.as_masked(copy=False, mask=self.mask.copy())

[docs] def constrain_mask_to_landmarks(
 self, group=None, batch_size=None, point_in_pointcloud="pwa"
):
 r"""
 Returns a copy of this image whereby the mask is restricted to be equal
 to the convex hull around the chosen landmarks.

 The choice of whether a pixel is inside or outside of the pointcloud
 is determined by the ``point_in_pointcloud`` parameter. By default
 a Piecewise Affine transform is used to test for containment, which
 is useful when building efficiently aligning images. For large images,
 a faster and pixel-accurate method can be used ('convex_hull').
 Alternatively, a callable can be provided to override the test. By
 default, the provided implementations are only valid for 2D images.

 Parameters

 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.
 If the landmarks in question are an instance of :map:`TriMesh`,
 the triangulation of the landmarks will be used in the convex
 hull calculation. If the landmarks are an instance of
 :map:`PointCloud`, Delaunay triangulation will be used to
 create a triangulation.
 batch_size : `int` or ``None``, optional
 This should only be considered for large images. Setting this value
 will cause constraining to become much slower. This size indicates
 how many points in the image should be checked at a time, which
 keeps memory usage low. If ``None``, no batching is used and all
 points are checked at once. By default, this is only used for
 the 'pwa' point_in_pointcloud choice.
 point_in_pointcloud : {'pwa', 'convex_hull'} or `callable`
 The method used to check if pixels in the image fall inside the
 pointcloud or not. Can be accurate to a Piecewise Affine transform,
 a pixel accurate convex hull or any arbitrary callable.
 If a callable is passed, it should take two parameters,
 the :map:`PointCloud` to constrain with and the pixel locations
 ((d, n_dims) ndarray) to test and should return a (d, 1) boolean
 ndarray of whether the pixels were inside (True) or outside (False)
 of the :map:`PointCloud`.

 Returns

 constrained : :map:`MaskedImage`
 A new image where the mask is constrained by the provided
 landmarks.
 """
 copy = self.copy()
 copy.mask = copy.mask.constrain_to_pointcloud(
 copy.landmarks[group],
 batch_size=batch_size,
 point_in_pointcloud=point_in_pointcloud,
)
 return copy

[docs] def build_mask_around_landmarks(self, patch_shape, group=None):
 r"""
 Deprecated - please use the equivalent
 `constrain_mask_to_patches_around_landmarks` method.
 """
 warn(
 "This method is no longer supported and will be removed in a "
 "future version of Menpo. "
 "Use .constrain_mask_to_patches_around_landmarks() instead.",
 MenpoDeprecationWarning,
)
 return self.constrain_mask_to_patches_around_landmarks(
 patch_shape=patch_shape, group=group
)

[docs] def constrain_mask_to_patches_around_landmarks(self, patch_shape, group=None):
 r"""
 Returns a copy of this image whereby the mask is restricted to be
 patches around each landmark in the chosen landmark group. The
 patch will be centred on the nearest pixel for each point in
 the chosen landmark group.

 Parameters

 patch_shape : `tuple`
 The size of the patch.
 group : `str`, optional
 The key of the landmark set that should be used. If ``None``,
 and if there is only one set of landmarks, this set will be used.

 Returns

 constrained : :map:`MaskedImage`
 A new image where the mask is constrained as patches centred on each
 point in the provided landmarks.
 """
 copy = self.copy()
 # get the selected pointcloud
 pc = copy.landmarks[group]
 # temporarily set all mask values to False
 copy.mask.pixels[:] = False
 # create a patches array of the correct size, full of True values
 patches = np.ones(
 (pc.n_points, 1, 1, int(patch_shape[0]), int(patch_shape[1])), dtype=np.bool
)
 # set True patches around pointcloud centers
 copy.mask = copy.mask.set_patches(patches, pc)
 return copy

[docs] def set_boundary_pixels(self, value=0.0, n_pixels=1):
 r"""
 Returns a copy of this :map:`MaskedImage` for which n pixels along
 the its mask boundary have been set to a particular value. This is
 useful in situations where there is absent data in the image which
 can cause, for example, erroneous computations of gradient or features.

 Parameters

 value : `float` or (n_channels, 1) ndarray
 n_pixels : `int`, optional
 The number of pixels along the mask boundary that will be set to 0.

 Returns

 new_image : :map:`MaskedImage`
 The copy of the image for which the ``n`` pixels along its mask
 boundary have been set to a particular value.
 """
 from scipy.ndimage import binary_erosion # expensive

 copy = self.copy()
 # Erode the edge of the mask in by one pixel
 eroded_mask = binary_erosion(copy.mask.mask, iterations=n_pixels)

 # replace the eroded mask with the diff between the two
 # masks. This is only true in the region we want to nullify.
 np.logical_and(~eroded_mask, copy.mask.mask, out=eroded_mask)
 # set all the boundary pixels to a particular value
 copy.pixels[..., eroded_mask] = value
 return copy

[docs] def erode(self, n_pixels=1):
 r"""
 Returns a copy of this :map:`MaskedImage` in which the mask has been
 shrunk by n pixels along its boundary.

 Parameters

 n_pixels : `int`, optional
 The number of pixels by which we want to shrink the mask along
 its own boundary.

 Returns

 eroded_image : :map:`MaskedImage`
 The copy of the masked image in which the mask has been shrunk
 by n pixels along its boundary.
 """
 from scipy.ndimage import binary_erosion # expensive

 # Erode the edge of the mask in by one pixel
 eroded_mask = binary_erosion(self.mask.mask, iterations=n_pixels)

 image = self.copy()
 image.mask = BooleanImage(eroded_mask)
 return image

[docs] def dilate(self, n_pixels=1):
 r"""
 Returns a copy of this :map:`MaskedImage` in which its mask has
 been expanded by n pixels along its boundary.

 Parameters

 n_pixels : `int`, optional
 The number of pixels by which we want to expand the mask along
 its own boundary.

 Returns

 dilated_image : :map:`MaskedImage`
 The copy of the masked image in which the mask has been expanded
 by n pixels along its boundary.
 """
 from scipy.ndimage import binary_dilation # expensive

 # Erode the edge of the mask in by one pixel
 dilated_mask = binary_dilation(self.mask.mask, iterations=n_pixels)

 image = self.copy()
 image.mask = BooleanImage(dilated_mask)
 return image

[docs] def rasterize_landmarks(
 self,
 group=None,
 render_lines=True,
 line_style="-",
 line_colour="b",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=1,
 marker_face_colour="b",
 marker_edge_colour="b",
 marker_edge_width=1,
 backend="matplotlib",
):
 r"""
 This method provides the ability to rasterize 2D landmarks onto the
 image. The returned image has the specified landmark groups rasterized
 onto the image - which is useful for things like creating result
 examples or rendering videos with annotations.

 Since multiple landmark groups can be specified, all arguments can take
 lists of parameters that map to the provided groups list. Therefore, the
 parameters must be lists of the correct length or a single parameter to
 apply to every landmark group.

 Multiple backends are provided, all with different strengths. The
 'pillow' backend is very fast, but not very flexible. The `matplotlib`
 backend should be feature compatible with other Menpo rendering methods,
 but is much slower due to the overhead of creating a figure to render
 into.

 Images will always be rendered masked with a black background.
 If an unmasked image is required, please use :meth:`as_unmasked`.

 Parameters

 group : `str` or `list` of `str`, optional
 The landmark group key, or a list of keys.
 render_lines : `bool`, optional
 If ``True``, and the provided landmark group is a
 :map:`PointDirectedGraph`, the edges are rendered.
 line_style : `str`, optional
 The style of the edge line. Not all backends support this argument.
 line_colour : `str` or `tuple`, optional
 A Matplotlib style colour or a backend dependant colour.
 line_width : `int`, optional
 The width of the line to rasterize.
 render_markers : `bool`, optional
 If ``True``, render markers at the coordinates of each landmark.
 marker_style : `str`, optional
 A Matplotlib marker style. Not all backends support all marker
 styles.
 marker_size : `int`, optional
 The size of the marker - different backends use different scale
 spaces so consistent output may by difficult.
 marker_face_colour : `str`, optional
 A Matplotlib style colour or a backend dependant colour.
 marker_edge_colour : `str`, optional
 A Matplotlib style colour or a backend dependant colour.
 marker_edge_width : `int`, optional
 The width of the marker edge. Not all backends support this.
 backend : {'matplotlib', 'pillow'}, optional
 The backend to use.

 Returns

 rasterized_image : :map:`Image`
 The image with the landmarks rasterized directly into the pixels.

 Raises

 ValueError
 Only 2D images are supported.
 ValueError
 Only RGB (3-channel) or Greyscale (1-channel) images are supported.
 """
 from .rasterize import rasterize_landmarks_2d

 # Ensure that the image is ALWAYS masked - to make it consistent
 # between backends - the background will be black. as_unmasked should be
 # used to fiddle with the background colour.
 im = self.as_unmasked(copy=True, fill=0)
 return rasterize_landmarks_2d(
 im,
 group=group,
 render_lines=render_lines,
 line_style=line_style,
 line_colour=line_colour,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 backend=backend,
)

 menpo.io.input.base

 Source code for menpo.io.input.base

import collections.abc as collections_abc
import os
import random
import warnings
from collections import OrderedDict
from functools import partial
from pathlib import Path
from typing import Any

from menpo.base import (
 LazyList,
 MenpoDeprecationWarning,
 menpo_src_dir_path,
 partial_doc,
)
from menpo.visualize import print_progress
from .extensions import (
 ffmpeg_video_types,
 image_landmark_types,
 image_types,
 pickle_types,
)
from ..utils import _norm_path, _normalize_extension, _possible_extensions_from_filepath

TODO: Remove once deprecated
def _parse_deprecated_normalise(normalise, normalize):
 if normalise is not None and normalize is not None:
 raise ValueError(
 "normalise is now deprecated, do not set both " "normalize and normalise."
)
 elif normalise is not None:
 warnings.warn(
 "normalise is no longer supported and will be removed in "
 "a future version of Menpo. Use normalize instead.",
 MenpoDeprecationWarning,
)
 normalize = normalise
 elif normalize is None:
 normalize = True
 return normalize

def _data_dir_path(base_path):
 r"""A path to the built in ./data folder on this machine.

 Returns

 path : ``pathlib.Path``
 The path to the local ./data folder
 """
 return base_path() / "data"

def _data_path_to(data_dir_path, builtin_assets, asset_filename):
 r"""
 The path to a builtin asset in the ./data folder on this machine.

 Parameters

 asset_filename : `str`
 The filename (with extension) of a file builtin to Menpo. The full
 set of allowed names is given by :func:`ls_builtin_assets()`

 Returns

 data_path : `pathlib.Path`
 The path to a given asset in the ./data folder

 Raises

 ValueError
 If the asset_filename doesn't exist in the `data` folder.
 """
 asset_path = data_dir_path() / asset_filename
 if not asset_path.is_file():
 raise ValueError(
 "{} is not a builtin asset: {}".format(asset_filename, builtin_assets())
)
 return asset_path

def _import_builtin_asset(
 data_path_to, object_types, landmark_types, asset_name, **kwargs
):
 r"""Single builtin asset (landmark or image) importer.

 Imports the relevant builtin asset from the ``./data`` directory that
 ships with the project.

 Parameters

 asset_name : `str`
 The filename of a builtin asset (see :map:`ls_builtin_assets`
 for allowed values)

 Returns

 asset :
 An instantiated :map:`Image`, :map:`PointCloud` or
 :map:`PointCloud` asset.
 """
 if kwargs != {}:
 normalize = _parse_deprecated_normalise(
 kwargs.get("normalise"), kwargs.get("normalize")
)
 kwargs["normalize"] = normalize
 if "normalise" in kwargs:
 del kwargs["normalise"]

 asset_path = data_path_to(asset_name)
 # Import could be either an image or a set of landmarks, so we try
 # importing them both separately.
 try:
 return _import(
 asset_path,
 object_types,
 landmark_ext_map=landmark_types,
 landmark_attach_func=_import_object_attach_landmarks,
 importer_kwargs=kwargs,
)
 except ValueError:
 return _import(asset_path, landmark_types, importer_kwargs=kwargs)

def _ls_builtin_assets(data_dir_path):
 r"""List all the builtin asset examples provided.

 Returns

 file_paths : list of `str`
 Filenames of all assets in the data directory shipped with the
 project.
 """
 return [p.name for p in data_dir_path().glob("*") if not p.is_dir()]

def _register_importer(ext_map, extension, callable):
 r"""
 Register a new importer for the given extension.

 Parameters

 ext_map : `{'str' -> 'callable'}` dict
 Extensions map to callable.
 extension : `str`
 File extension to support. May be multi-part e.g. '.tar.gz'
 callable : `callable`
 The callable to invoke if a file with the provided extension is
 discovered during importing. Should take a single argument (the
 filepath) and any number of kwargs.
 """
 if not isinstance(extension, str):
 raise ValueError("Only string type keys are supported.")
 if extension in ext_map:
 warnings.warn(
 "Replacing an existing importer for the '{}' "
 "extension.".format(extension)
)
 ext_map[_normalize_extension(extension)] = callable

register_image_importer = partial_doc(_register_importer, image_types)

register_video_importer = partial_doc(_register_importer, ffmpeg_video_types)

register_landmark_importer = partial_doc(_register_importer, image_landmark_types)

register_pickle_importer = partial_doc(_register_importer, pickle_types)

menpo_data_dir_path = partial_doc(_data_dir_path, menpo_src_dir_path)

menpo_ls_builtin_assets = partial_doc(_ls_builtin_assets, menpo_data_dir_path)

menpo_data_path_to = partial_doc(
 _data_path_to, menpo_data_dir_path, menpo_ls_builtin_assets
)

_menpo_import_builtin_asset = partial_doc(
 _import_builtin_asset, menpo_data_path_to, image_types, image_landmark_types
)

[docs]def image_paths(pattern):
 r"""
 Return image filepaths that Menpo can import that match the glob pattern.
 """
 return glob_with_suffix(pattern, image_types)

[docs]def video_paths(pattern):
 r"""
 Return video filepaths that Menpo can import that match the glob pattern.
 """
 return glob_with_suffix(pattern, ffmpeg_video_types)

[docs]def landmark_file_paths(pattern):
 r"""
 Return landmark file filepaths that Menpo can import that match the glob
 pattern.
 """
 return glob_with_suffix(pattern, image_landmark_types)

[docs]def pickle_paths(pattern):
 r"""
 Return pickle filepaths that Menpo can import that match the glob
 pattern.
 """
 return glob_with_suffix(pattern, pickle_types)

def merge_all_dicts(dicts):
 """
 Use dict.update to build a single dictionary from a list of dictionaries.
 If any keys will be overwritten as the dictionary is built then a warning
 is emitted.

 Parameters

 dicts : `list` of `dict`
 The list of dictionaries to merge

 Returns

 new_dict : `dict`
 New single dictionary formed from merging the list of dictionaries
 """
 new_dict = OrderedDict()
 for d in dicts:
 intersection = set(d.keys()) & set(new_dict.keys())
 # Are there any overlapping keys?
 if intersection:
 warnings.warn(
 "Found a keys that will be " "overwritten - {}".format(intersection)
)
 new_dict.update(d)
 return new_dict

def same_name(path, paths_callable=landmark_file_paths):
 r"""
 Default image landmark resolver. Returns all landmarks found to have
 the same stem as the asset.
 """
 # pattern finding all landmarks with the same stem
 pattern = path.with_suffix(".*")
 # find all the assets we can with this name
 lmarks = [import_landmark_file(p) for p in paths_callable(pattern)]
 # now we have to merge all the dictionaries into a single dictionary
 return merge_all_dicts(lmarks)

def same_name_video(path, frame_number, paths_callable=landmark_file_paths):
 r"""
 Default video landmark resolver. Returns all landmarks found to have
 the same stem as the asset.
 """
 # pattern finding all landmarks with the same stem
 pattern = path.with_name("{}_{}.*".format(path.stem, frame_number))
 # find all the assets we can with this name
 lmarks = [import_landmark_file(p) for p in paths_callable(pattern)]
 # now we have to merge all the dictionaries into a single dictionary
 return merge_all_dicts(lmarks)

def resolve_from_paths(names_to_path):
 r"""Landmark Resolver

 Helper function for landmark resolvers which functions similarly to the
 landmark resolving in menpo before 0.9. Given a dictionary of keys
 (landmark group names) to paths - import each landmark at the given path.
 Since landmark importing may return more than one group the recovered
 groups are merged into a single dictionary and any clashing keys are
 reported.

 Since landmark importing now returns a dictionary, to maintain the previous
 functionality single key dictionaries have their key replaced by the key
 provided by the user. In the case of a multi-key result, the key given
 by the user is *prepended* to the key returned by the importer.

 Parameters

 names_to_path : `dict` {`str`: `Path`}
 Old-style landmark resolver output - a dictionary mapping landmark
 group names to paths to import from.

 Returns

 landmarks_dict : `dict` {`str`: :map:`PointCloud`}
 Dictionary mapping landmark group names to :map:`PointCloud` instances
 or their subclasses

 Examples

 ::

 def landmark_resolver(path):
 expected = {'new_key': path.with_name(path.stem + '_new.ljson')}
 return menpo.io.input.resolve_from_paths(expected)

 image = menpo.io.import_image('/some/image.png',
 landmark_resolver=landmark_resolver)
 print(image.landmarks.keys()) # Expect one key -> "new_key"
 """
 dicts_to_merge = []
 for k, path in names_to_path.items():
 new_dict = import_landmark_file(path)
 if len(new_dict) == 1:
 new_dict = OrderedDict([(k, list(new_dict.values())[0])])
 else:
 new_dict = OrderedDict(
 ("{}_{}".format(k, new_k), v) for new_k, v in new_dict.items()
)
 dicts_to_merge.append(new_dict)
 return merge_all_dicts(dicts_to_merge)

[docs]def import_image(filepath, landmark_resolver=same_name, normalize=None, normalise=None):
 r"""Single image (and associated landmarks) importer.

 If an image file is found at `filepath`, returns an :map:`Image` or
 subclass representing it. By default, landmark files sharing the same
 filename stem will be imported and attached with a group name based on the
 extension of the landmark file, although this behavior can be customised
 (see `landmark_resolver`). If the image defines a mask, this mask will be
 imported.

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to an image file.
 landmark_resolver : `function` or `None`, optional
 This function will be used to find landmarks for the
 image. The function should take one argument (the path to the image) and
 return a dictionary of the form ``{'group_name': 'landmark_filepath'}``
 Default finds landmarks with the same name as the image file.
 If ``None``, landmark importing will be skipped.
 normalize : `bool`, optional
 If ``True``, normalize the image pixels between 0 and 1 and convert
 to floating point. If false, the native datatype of the image will be
 maintained (commonly `uint8`). Note that in general Menpo assumes
 :map:`Image` instances contain floating point data - if you disable
 this flag you will have to manually convert the images you import to
 floating point before doing most Menpo operations. This however can be
 useful to save on memory usage if you only wish to view or crop images.
 normalise: `bool`, optional
 Deprecated version of normalize. Please use the normalize arg.

 Returns

 images : :map:`Image` or list of
 An instantiated :map:`Image` or subclass thereof or a list of images.
 """
 normalize = _parse_deprecated_normalise(normalise, normalize)
 kwargs = {"normalize": normalize}
 return _import(
 filepath,
 image_types,
 landmark_ext_map=image_landmark_types,
 landmark_resolver=landmark_resolver,
 landmark_attach_func=_import_object_attach_landmarks,
 importer_kwargs=kwargs,
)

[docs]def import_video(
 filepath,
 landmark_resolver=same_name_video,
 normalize=None,
 normalise=None,
 importer_method="ffmpeg",
 exact_frame_count=True,
):
 r"""Single video (and associated landmarks) importer.

 If a video file is found at `filepath`, returns an :map:`LazyList` wrapping
 all the frames of the video. By default, landmark files sharing the same
 filename stem will be imported and attached with a group name based on the
 extension of the landmark file appended with the frame number, although this
 behavior can be customised (see `landmark_resolver`).

 .. warning::

 This method currently uses ffmpeg to perform the importing. In order
 to recover accurate frame counts from videos it is necessary to use
 ffprobe to count the frames. This involves reading the entire
 video in to memory which may cause a delay in loading despite the lazy
 nature of the video loading within Menpo.
 If ffprobe cannot be found, and `exact_frame_count` is ``False``,
 Menpo falls back to ffmpeg itself which is not accurate and the user
 should proceed at their own risk.

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to a video file.
 landmark_resolver : `function` or `None`, optional
 This function will be used to find landmarks for the
 video. The function should take two arguments (the path to the video and
 the frame number) and return a dictionary of the form ``{'group_name':
 'landmark_filepath'}`` Default finds landmarks with the same name as the
 video file, appended with '_{frame_number}'.
 If ``None``, landmark importing will be skipped.
 normalize : `bool`, optional
 If ``True``, normalize the frame pixels between 0 and 1 and convert
 to floating point. If ``False``, the native datatype of the image will
 be maintained (commonly `uint8`). Note that in general Menpo assumes
 :map:`Image` instances contain floating point data - if you disable this
 flag you will have to manually convert the farmes you import to floating
 point before doing most Menpo operations. This however can be useful to
 save on memory usage if you only wish to view or crop the frames.
 normalise : `bool`, optional
 Deprecated version of normalize. Please use the normalize arg.
 importer_method : {'ffmpeg'}, optional
 A string representing the type of importer to use, by default ffmpeg
 is used.
 exact_frame_count: `bool`, optional
 If ``True``, the import fails if ffprobe is not available
 (reading from ffmpeg's output returns inexact frame count)

 Returns

 frames : :map:`LazyList`
 An lazy list of :map:`Image` or subclass thereof which wraps the frames
 of the video. This list can be treated as a normal list, but the frame
 is only read when the video is indexed or iterated.

 Examples

 >>> video = menpo.io.import_video('video.avi')
 >>> # Lazily load the 100th frame without reading the entire video
 >>> frame100 = video[100]
 """
 normalize = _parse_deprecated_normalise(normalise, normalize)

 kwargs = {"normalize": normalize, "exact_frame_count": exact_frame_count}

 video_importer_methods = {"ffmpeg": ffmpeg_video_types}
 if importer_method not in video_importer_methods:
 raise ValueError(
 "Unsupported importer method requested. Valid values "
 "are: {}".format(video_importer_methods.keys())
)

 return _import(
 filepath,
 video_importer_methods[importer_method],
 landmark_ext_map=image_landmark_types,
 landmark_resolver=landmark_resolver,
 landmark_attach_func=_import_lazylist_attach_landmarks,
 importer_kwargs=kwargs,
)

[docs]def import_landmark_file(filepath, group=None, asset=None):
 r"""Single landmark file importer.

 If a landmark file is found at ``filepath``, returns a dictionary
 of landmarks where keys are the group names and the values are
 :map:`PointCloud` or subclasses. If the optional ``group`` argument is
 supplied then a single group with the given name is returned rather than
 a dictionary

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to an landmark file.
 group : `str`, optional
 The name of the landmark group to return from the landmark dictionary.
 If None, then a dictionary is returned where keys are the group names
 and the values are :map:`PointCloud` or subclasses.
 asset : `object`, optional
 The object the landmark belongs to (useful for things like rescaling)

 Returns

 landmarks : `dict` {`str`: :map:`PointCloud`} or :map:`PointCloud`
 Dictionary mapping landmark groups to :map:`PointCloud` or subclasses
 OR
 :map:`PointCloud` or subclass if ``group == None``
 """
 lmark_dict = _import(filepath, image_landmark_types, asset=asset)
 if group:
 return lmark_dict[group]
 else:
 return lmark_dict

[docs]def import_pickle(filepath, **kwargs):
 r"""Import a pickle file of arbitrary Python objects.

 Menpo unambiguously uses ``.pkl`` as it's choice of extension for Pickle
 files. Menpo also supports automatic importing and exporting of gzip
 compressed pickle files - just choose a ``filepath`` ending ``pkl.gz`` and
 gzip compression will automatically be applied. Compression can massively
 reduce the filesize of a pickle file at the cost of longer import and
 export times.

 Parameters

 filepath : `pathlib.Path` or `str`
 A relative or absolute filepath to a ``.pkl`` or ``.pkl.gz`` file.

 Returns

 object : `object`
 Whatever Python objects are present in the Pickle file
 """
 return _import(filepath, pickle_types, importer_kwargs=kwargs)

[docs]def import_pickles(
 pattern,
 max_pickles=None,
 shuffle=False,
 as_generator=False,
 verbose=False,
 **kwargs,
):
 r"""Multiple pickle importer.

 Menpo unambiguously uses ``.pkl`` as it's choice of extension for Pickle
 files. Menpo also supports automatic importing and exporting of gzip
 compressed pickle files - just choose a ``filepath`` ending ``pkl.gz`` and
 gzip compression will automatically be applied. Compression can massively
 reduce the filesize of a pickle file at the cost of longer import and
 export times.

 Note that this is a function returns a :map:`LazyList`. Therefore, the
 function will return immediately and indexing into the returned list
 will load a pickle at run time. If all pickles should be loaded, then simply
 wrap the returned :map:`LazyList` in a Python `list`.

 Parameters

 pattern : `str`
 A glob path pattern to search for pickles. Every pickle found to match
 the glob will be imported one by one. See :map:`pickle_paths` for more
 details of what pickles will be found.
 max_pickles : positive `int`, optional
 If not ``None``, only import the first ``max_pickles`` found. Else,
 import all.
 shuffle : `bool`, optional
 If ``True``, the order of the returned pickles will be randomised. If
 ``False``, the order of the returned pickles will be alphanumerically
 ordered.
 as_generator : `bool`, optional
 If ``True``, the function returns a generator and assets will be yielded
 one after another when the generator is iterated over.
 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported with
 a progress bar.

 Returns

 lazy_list : :map:`LazyList` or generator of Python objects
 A :map:`LazyList` or generator yielding whatever Python objects are
 present in the Pickle file instances that match the glob pattern
 provided.

 Raises

 ValueError
 If no pickles are found at the provided glob.
 """
 return _import_glob_lazy_list(
 pattern,
 pickle_types,
 max_assets=max_pickles,
 shuffle=shuffle,
 as_generator=as_generator,
 verbose=verbose,
 importer_kwargs=kwargs,
)

[docs]def import_images(
 pattern,
 max_images=None,
 shuffle=False,
 landmark_resolver=same_name,
 normalize=None,
 normalise=None,
 as_generator=False,
 verbose=False,
):
 r"""Multiple image (and associated landmarks) importer.

 For each image found creates an importer than returns a :map:`Image` or
 subclass representing it. By default, landmark files sharing the same
 filename stem will be imported and attached with a group name based on the
 extension of the landmark file, although this behavior can be customised
 (see `landmark_resolver`). If the image defines a mask, this mask will be
 imported.

 Note that this is a function returns a :map:`LazyList`. Therefore, the
 function will return immediately and indexing into the returned list
 will load an image at run time. If all images should be loaded, then simply
 wrap the returned :map:`LazyList` in a Python `list`.

 Parameters

 pattern : `str`
 A glob path pattern to search for images. Every image found to match
 the glob will be imported one by one. See :map:`image_paths` for more
 details of what images will be found.
 max_images : positive `int`, optional
 If not ``None``, only import the first ``max_images`` found. Else,
 import all.
 shuffle : `bool`, optional
 If ``True``, the order of the returned images will be randomised. If
 ``False``, the order of the returned images will be alphanumerically
 ordered.
 landmark_resolver : `function` or `None`, optional
 This function will be used to find landmarks for the
 image. The function should take one argument (the image itself) and
 return a dictionary of the form ``{'group_name': 'landmark_filepath'}``
 Default finds landmarks with the same name as the image file.
 If ``None``, landmark importing will be skipped.
 normalize : `bool`, optional
 If ``True``, normalize the image pixels between 0 and 1 and convert
 to floating point. If false, the native datatype of the image will be
 maintained (commonly `uint8`). Note that in general Menpo assumes
 :map:`Image` instances contain floating point data - if you disable
 this flag you will have to manually convert the images you import to
 floating point before doing most Menpo operations. This however can be
 useful to save on memory usage if you only wish to view or crop images.
 normalise : `bool`, optional
 Deprecated version of normalize. Please use the normalize arg.
 as_generator : `bool`, optional
 If ``True``, the function returns a generator and assets will be yielded
 one after another when the generator is iterated over.
 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported with
 a progress bar.

 Returns

 lazy_list : :map:`LazyList` or generator of :map:`Image`
 A :map:`LazyList` or generator yielding :map:`Image` instances found
 to match the glob pattern provided.

 Raises

 ValueError
 If no images are found at the provided glob.

 Examples

 Import images at 20% scale from a huge collection:

 >>> rescale_20p = lambda x: x.rescale(0.2)
 >>> images = menpo.io.import_images('./massive_image_db/*') # Returns immediately
 >>> images = images.map(rescale_20p) # Returns immediately
 >>> images[0] # Get the first image, resize, lazily loaded
 """
 normalize = _parse_deprecated_normalise(normalise, normalize)

 kwargs = {"normalize": normalize}
 return _import_glob_lazy_list(
 pattern,
 image_types,
 max_assets=max_images,
 shuffle=shuffle,
 landmark_resolver=landmark_resolver,
 landmark_ext_map=image_landmark_types,
 landmark_attach_func=_import_object_attach_landmarks,
 as_generator=as_generator,
 verbose=verbose,
 importer_kwargs=kwargs,
)

[docs]def import_videos(
 pattern,
 max_videos=None,
 shuffle=False,
 landmark_resolver=same_name_video,
 normalize=None,
 normalise=None,
 importer_method="ffmpeg",
 exact_frame_count=True,
 as_generator=False,
 verbose=False,
):
 r"""Multiple video (and associated landmarks) importer.

 For each video found yields a :map:`LazyList`. By default, landmark files
 sharing the same filename stem will be imported and attached with a group
 name based on the extension of the landmark file appended with the frame
 number, although this behavior can be customised (see `landmark_resolver`).

 Note that this is a function returns a :map:`LazyList`. Therefore, the
 function will return immediately and indexing into the returned list
 will load an image at run time. If all images should be loaded, then simply
 wrap the returned :map:`LazyList` in a Python `list`.

 .. warning::

 This method currently uses ffmpeg to perform the importing. In order
 to recover accurate frame counts from videos it is necessary to use
 ffprobe to count the frames. This involves reading the entire
 video in to memory which may cause a delay in loading despite the lazy
 nature of the video loading within Menpo.
 If ffprobe cannot be found, and `exact_frame_count` is ``False``,
 Menpo falls back to ffmpeg itself which is not accurate and the user
 should proceed at their own risk.

 Parameters

 pattern : `str`
 A glob path pattern to search for videos. Every video found to match
 the glob will be imported one by one. See :map:`video_paths` for more
 details of what videos will be found.
 max_videos : positive `int`, optional
 If not ``None``, only import the first ``max_videos`` found. Else,
 import all.
 shuffle : `bool`, optional
 If ``True``, the order of the returned videos will be randomised. If
 ``False``, the order of the returned videos will be alphanumerically
 ordered.
 landmark_resolver : `function` or `None`, optional
 This function will be used to find landmarks for the
 video. The function should take two arguments (the path to the video and
 the frame number) and return a dictionary of the form ``{'group_name':
 'landmark_filepath'}`` Default finds landmarks with the same name as the
 video file, appended with '_{frame_number}'.
 If ``None``, landmark importing will be skipped.
 normalize : `bool`, optional
 If ``True``, normalize the frame pixels between 0 and 1 and convert
 to floating point. If ``False``, the native datatype of the image will
 be maintained (commonly `uint8`). Note that in general Menpo assumes
 :map:`Image` instances contain floating point data - if you disable this
 flag you will have to manually convert the frames you import to floating
 point before doing most Menpo operations. This however can be useful to
 save on memory usage if you only wish to view or crop the frames.
 normalise : `bool`, optional
 Deprecated version of normalize. Please use the normalize arg.
 importer_method : {'ffmpeg'}, optional
 A string representing the type of importer to use, by default ffmpeg
 is used.
 as_generator : `bool`, optional
 If ``True``, the function returns a generator and assets will be yielded
 one after another when the generator is iterated over.
 exact_frame_count: `bool`, optional
 If True, the import fails if ffmprobe is not available
 (reading from ffmpeg's output returns inexact frame count)
 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported with
 a progress bar.

 Returns

 lazy_list : :map:`LazyList` or generator of :map:`LazyList`
 A :map:`LazyList` or generator yielding :map:`LazyList` instances that
 wrap the video object.

 Raises

 ValueError
 If no videos are found at the provided glob.

 Examples

 Import videos at and rescale every frame of each video:

 >>> videos = []
 >>> for video in menpo.io.import_videos('./set_of_videos/*'):
 >>> frames = []
 >>> for frame in video:
 >>> # rescale to a sensible size as we go
 >>> frames.append(frame.rescale(0.2))
 >>> videos.append(frames)
 """
 normalize = _parse_deprecated_normalise(normalise, normalize)

 kwargs = {"normalize": normalize, "exact_frame_count": exact_frame_count}
 video_importer_methods = {"ffmpeg": ffmpeg_video_types}
 if importer_method not in video_importer_methods:
 raise ValueError(
 "Unsupported importer method requested. Valid values "
 "are: {}".format(video_importer_methods.keys())
)

 return _import_glob_lazy_list(
 pattern,
 video_importer_methods[importer_method],
 max_assets=max_videos,
 shuffle=shuffle,
 landmark_resolver=landmark_resolver,
 landmark_ext_map=image_landmark_types,
 landmark_attach_func=_import_lazylist_attach_landmarks,
 as_generator=as_generator,
 verbose=verbose,
 importer_kwargs=kwargs,
)

[docs]def import_landmark_files(
 pattern, max_landmarks=None, shuffle=False, as_generator=False, verbose=False
):
 r"""Import Multiple landmark files.

 For each landmark file found returns an importer then
 returns a :map:`LabelledPointUndirectedGraph` or a :map:`PointCloud`.

 Note that this is a function returns a :map:`LazyList`. Therefore, the
 function will return immediately and indexing into the returned list
 will load the landmarks at run time. If all landmarks should be loaded, then
 simply wrap the returned :map:`LazyList` in a Python `list`.

 Parameters

 pattern : `str`
 A glob path pattern to search for landmark files. Every
 landmark file found to match the glob will be imported one by one.
 See :map:`landmark_file_paths` for more details of what landmark files
 will be found.
 max_landmarks : positive `int`, optional
 If not ``None``, only import the first ``max_landmark_files`` found.
 Else, import all.
 shuffle : `bool`, optional
 If ``True``, the order of the returned landmark files will be
 randomised. If ``False``, the order of the returned landmark files will
 be alphanumerically ordered.
 as_generator : `bool`, optional
 If ``True``, the function returns a generator and assets will be yielded
 one after another when the generator is iterated over.
 verbose : `bool`, optional
 If ``True`` progress of the importing will be dynamically reported.

 Returns

 lazy_list : :map:`LazyList` or generator
 A :map:`LazyList` or generator yielding :map:`PointCloud` or
 :map:`LabelledPointUndirectedGraph` instances found to match the glob
 pattern provided.

 Raises

 ValueError
 If no landmarks are found at the provided glob.
 """
 return _import_glob_lazy_list(
 pattern,
 image_landmark_types,
 max_assets=max_landmarks,
 shuffle=shuffle,
 as_generator=as_generator,
 verbose=verbose,
)

def _import_glob_lazy_list(
 pattern,
 extension_map,
 max_assets=None,
 landmark_resolver=same_name,
 shuffle=False,
 as_generator=False,
 landmark_ext_map=None,
 landmark_attach_func=None,
 importer_kwargs=None,
 verbose=False,
):
 filepaths = list(glob_with_suffix(pattern, extension_map, sort=(not shuffle)))
 if shuffle:
 random.shuffle(filepaths)
 if (max_assets is not None) and max_assets <= 0:
 raise ValueError(
 "Max elements should be positive" " ({} provided)".format(max_assets)
)
 elif max_assets:
 filepaths = filepaths[:max_assets]

 n_files = len(filepaths)
 if n_files == 0:
 raise ValueError("The glob {} yields no assets".format(pattern))

 lazy_list = LazyList(
 [
 partial(
 _import,
 f,
 extension_map,
 landmark_resolver=landmark_resolver,
 landmark_ext_map=landmark_ext_map,
 landmark_attach_func=landmark_attach_func,
 importer_kwargs=importer_kwargs,
)
 for f in filepaths
]
)

 if verbose and as_generator:
 # wrap the generator with the progress reporter
 lazy_list = print_progress(
 lazy_list, prefix="Importing assets", n_items=n_files
)
 elif verbose:
 print("Found {} assets, index the returned LazyList to import.".format(n_files))

 if as_generator:
 return (a for a in lazy_list)
 else:
 return lazy_list

def _import_object_attach_landmarks(
 built_objects, landmark_resolver, landmark_ext_map=None
):
 # handle landmarks
 if landmark_ext_map is not None and landmark_resolver is not None:
 for x in built_objects:
 lm_dict = landmark_resolver(x.path)
 if lm_dict is None:
 continue
 for group_name, lm_obj in lm_dict.items():
 if x.n_dims == lm_obj.n_dims:
 x.landmarks[group_name] = lm_obj

def _import_lazylist_attach_landmarks(
 built_objects, landmark_resolver, landmark_ext_map=None
):
 # handle landmarks
 if landmark_ext_map is not None and landmark_resolver is not None:
 for k, x in enumerate(built_objects):
 # Use the users function to find landmarks - builds a list
 # of functions that we will map against the frames in order to
 # attach a landmark per frame.
 lm_resolvers = [
 partial(landmark_resolver, x.path, i) for i in range(len(x))
]

 def wrap_landmarks(lm_resolver, obj):
 lm_dict = lm_resolver()
 if lm_dict is not None:
 for group_name, lm_obj in lm_dict.items():
 if obj.n_dims == lm_obj.n_dims:
 obj.landmarks[group_name] = lm_obj
 return obj

 # Provide the lm_resolver for each wrap_landmarks function and then
 # lazily map against the underlying importers.
 new_ll = x.map([partial(wrap_landmarks, lmr) for lmr in lm_resolvers])
 built_objects[k] = new_ll

def _import(
 filepath,
 extensions_map,
 landmark_resolver=same_name,
 landmark_ext_map=None,
 landmark_attach_func=None,
 asset=None,
 importer_kwargs=None,
):
 r"""
 Finds an importer for the filepath passed in and then calls it with the
 filepath and optionally an asset, returning either a list of assets or a
 single asset, depending on the file type.

 The type of assets returned are specified by the `extensions_map`.

 Parameters

 filepath : `Path` or `str`
 The filepath to import.
 extensions_map : `dict` (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 non-instantiated classes. The extensions are expected to
 contain the leading period eg. `.obj`.
 landmark_ext_map : `dict` (str, :map:`Importer`), optional
 If not None an attempt will be made to import annotations with
 extensions defined in this mapping. If None, no attempt will be
 made to import annotations.
 landmark_resolver : `function` or `None`, optional
 If not ``None``, this function will be used to find landmarks for each
 asset. The function should take one argument (the asset itself) and
 return a dictionary of the form {'group_name': 'landmark_filepath'}.
 If ``None``, landmark importing will be skipped.
 asset : `object`, optional
 Passed through to the importer callable.
 importer_kwargs : `dict`, optional
 kwargs that will be supplied to the importer if not None

 Returns

 assets : asset or list of assets
 The loaded asset or list of assets.
 """
 path = _norm_path(filepath)
 if not path.is_file():
 raise ValueError("{} is not a file".format(path))

 # below could raise ValueError as well...
 importer_callable = importer_for_filepath(path, extensions_map)
 if importer_kwargs is None:
 importer_kwargs = {}
 built_objects = importer_callable(path, asset=asset, **importer_kwargs)

 # landmarks are iterable so check for list precisely
 if not isinstance(built_objects, list):
 built_objects = [built_objects]

 # attach path if there is no x.path already.
 def attach_path(obj):
 if not hasattr(obj, "path"):
 try:
 obj.path = path
 except AttributeError:
 pass # that's fine! Probably a dict/list from PickleImporter.

 for x in built_objects:
 # Handle lazy lists differently
 if isinstance(x, collections_abc.Sequence) and not isinstance(x, LazyList):
 for subx in x:
 attach_path(subx)
 elif isinstance(x, collections_abc.Mapping):
 for subx in x.values():
 attach_path(subx)
 else:
 attach_path(x)

 if landmark_attach_func is not None and landmark_resolver is not None:
 landmark_attach_func(
 built_objects, landmark_resolver, landmark_ext_map=landmark_ext_map
)

 if len(built_objects) == 1:
 built_objects = built_objects[0]

 return built_objects

def _pathlib_glob_for_pattern(pattern, sort=True):
 r"""Generator for glob matching a string path pattern

 Splits the provided ``pattern`` into a root path for pathlib and a
 subsequent glob pattern to be applied.

 Parameters

 pattern : `str`
 Path including glob patterns. If no glob patterns are present and the
 pattern is a dir, a '**/*' pattern will be automatically added.
 sort : `bool`, optional
 If True, the returned paths will be sorted. If False, no guarantees are
 made about the ordering of the results.

 Yields

 Path : A path to a file matching the provided pattern.

 Raises

 ValueError
 If the pattern doesn't contain a '*' wildcard and is not a directory
 """
 pattern = _norm_path(pattern)
 pattern_str = str(pattern)
 gsplit = pattern_str.split("*", 1)
 if len(gsplit) == 1:
 # no glob provided. Is the provided pattern a dir?
 if Path(pattern).is_dir():
 preglob = pattern_str
 pattern = "*"
 else:
 raise ValueError("{} is an invalid glob and " "not a dir".format(pattern))
 else:
 preglob = gsplit[0]
 pattern = "*" + gsplit[1]
 if not os.path.isdir(preglob):
 # the glob pattern is in the middle of a path segment. pair back
 # to the nearest dir and add the reminder to the pattern
 preglob, pattern_prefix = os.path.split(preglob)
 pattern = pattern_prefix + pattern
 p = Path(preglob)
 paths = p.glob(str(pattern))
 if sort:
 paths = sorted(paths)
 return paths

def glob_with_suffix(pattern, extensions_map, sort=True):
 r"""
 Filters the results from the glob pattern passed in to only those files
 that have an importer given in `extensions_map`.

 Parameters

 pattern : string
 A UNIX style glob pattern to match against.
 extensions_map : dictionary (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 non-instantiated classes. The extensions are expected to
 contain the leading period eg. `.obj`.
 sort : `bool`, optional
 If True, the returned paths will be sorted. If False, no guarantees are
 made about the ordering of the results.

 Yields

 filepaths : list of string
 The list of filepaths that have valid extensions.
 """
 for path in _pathlib_glob_for_pattern(pattern, sort=sort):
 possible_exts = _possible_extensions_from_filepath(path)
 if any([ext in extensions_map for ext in possible_exts]):
 yield path

def importer_for_filepath(filepath, extensions_map):
 r"""
 Given a filepath, return the appropriate importer as mapped by the
 extension map.

 Parameters

 filepath : `pathlib.Path`
 The filepath to get importers for.
 extensions_map : dictionary (String, :class:`menpo.io.base.Importer`)
 A map from extensions to importers. The importers are expected to be
 a subclass of :class:`Importer`. The extensions are expected to
 contain the leading period eg. `.obj`.

 Returns

 importer: :class:`menpo.io.base.Importer` instance
 Importer as found in the `extensions_map` instantiated for the
 filepath provided.
 """
 possible_exts = _possible_extensions_from_filepath(filepath)

 # we couldn't find an importer for all the suffixes (e.g .foo.bar)
 # maybe the file stem has '.' in it? -> try again but this time just use the
 # final suffix (.bar). (Note we first try '.foo.bar' as we want to catch
 # cases like '.pkl.gz')
 importer_callable = None
 while importer_callable is None and possible_exts:
 importer_callable = extensions_map.get(possible_exts.pop(0))

 if importer_callable is None:
 raise ValueError(
 "{} does not have a " "suitable importer.".format(filepath.name)
)
 return importer_callable

Create special callable that can both be called with a builtin asset name
and has dynamic methods attached that list the available builtin assets
class BuiltinAssets(object):
 def __init__(self, import_builtin_callable):
 self.import_builtin_asset = import_builtin_callable
 self._builtin_files = {
 asset.replace(".", "_"): partial(_menpo_import_builtin_asset, asset)
 for asset in menpo_ls_builtin_assets()
 }

 def __call__(self, asset_name, **kwargs):
 return self.import_builtin_asset(asset_name, **kwargs)

 def __getattr__(self, file_name) -> Any:
 return self._builtin_files[file_name]

import_builtin_asset = BuiltinAssets(_menpo_import_builtin_asset)

 menpo.io.output.base

 Source code for menpo.io.output.base

import gzip
import warnings
from functools import partial
from pathlib import Path

from .extensions import landmark_types, image_types, pickle_types, video_types
from ..exceptions import OverwriteError
from ..utils import _norm_path, _possible_extensions_from_filepath, _normalize_extension

an open file handle that uses a small fast level of compression
gzip_open = partial(gzip.open, compresslevel=3)

[docs]def export_landmark_file(landmarks_object, fp, extension=None, overwrite=False):
 r"""
 Exports a given shape. The ``fp`` argument can be either or a `str` or
 any Python type that acts like a file. If a file is provided, the
 ``extension`` kwarg **must** be provided. If no ``extension`` is provided
 and a `str` filepath is provided, then the export type is calculated
 based on the filepath extension.

 Due to the mix in string and file types, an explicit overwrite argument is
 used which is ``False`` by default.

 Parameters

 landmarks_object : dict or :map:`LandmarkManager` or
 :map:`PointCloud` or subclass of :map:`PointCloud`
 The landmarks to export. The type of :map:`PointCloud` or
 subclass of it are supported by all exporters, while the
 rest are available only for the LJSON format.
 fp : `Path` or `file`-like object
 The Path or file-like object to save the object at/into.
 extension : `str` or None, optional
 The extension to use, this must match the file path if the file
 path is a string. Determines the type of exporter that is used.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.

 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 ``fp`` is a `str` and the ``extension`` is not ``None``
 and the two extensions do not match
 ValueError
 ``fp`` is a `file`-like object and ``extension`` is
 ``None``
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 ValueError
 The provided type for landmarks_object is not supported.
 """
 extension = _normalize_extension(extension)

 try:
 landmarks_object.n_points
 except AttributeError:
 # unless this is LJSON, this is not correct.
 fp_is_path = isinstance(fp, (str, Path))
 if (extension is not None and extension != ".ljson") or (
 fp_is_path and Path(fp).suffix != ".ljson"
):
 m1 = (
 "Only the LJSON format supports multiple "
 "keys for exporting. \nIn any other "
 "case your input should be a PointCloud or "
 "subclass."
)
 raise ValueError(m1)
 _export(landmarks_object, fp, landmark_types, extension, overwrite)

[docs]def export_image(image, fp, extension=None, overwrite=False):
 r"""
 Exports a given image. The ``fp`` argument can be either
 a `Path` or any Python type that acts like a file. If a file is provided,
 the ``extension`` kwarg **must** be provided. If no
 ``extension`` is provided and a `str` filepath is provided, then
 the export type is calculated based on the filepath extension.

 Due to the mix of string and file types, an explicit overwrite argument is
 used which is ``False`` by default.

 Parameters

 image : :map:`Image`
 The image to export.
 fp : `Path` or `file`-like object
 The Path or file-like object to save the object at/into.
 extension : `str` or None, optional
 The extension to use, this must match the file path if the file
 path is a string. Determines the type of exporter that is used.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.

 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 ``fp`` is a `str` and the ``extension`` is not ``None``
 and the two extensions do not match
 ValueError
 ``fp`` is a `file`-like object and ``extension`` is
 ``None``
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 """
 _export(image, fp, image_types, extension, overwrite)

[docs]def export_video(images, file_path, overwrite=False, fps=30, **kwargs):
 r"""
 Exports a given list of images as a video. Ensure that all the images
 have the same shape, otherwise you might get unexpected results from
 the ffmpeg writer. The ``file_path`` argument is a `Path` representing
 the path to save the video to. At this time, it is not possible
 to export videos directly to a file buffer.

 Due to the mix of string and file types, an explicit overwrite argument is
 used which is ``False`` by default.

 Note that exporting of GIF images is also supported.

 Parameters

 images : list of :map:`Image`
 The images to export as a video.
 file_path : `Path`
 The Path to save the video at. File buffers are not supported, unlike
 other exporting formats.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.
 fps : `int`, optional
 The number of frames per second.
 **kwargs : `dict`, optional
 Extra parameters that are passed through directly to the exporter.
 Please see the documentation in the ``menpo.io.output.video`` package
 for information about the supported arguments.

 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 The input is a buffer and not a valid `Path`
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 """
 exporter_kwargs = {"fps": fps}
 exporter_kwargs.update(kwargs)

 file_path = _enforce_only_paths_supported(file_path, "FFMPEG")
 _export_paths_only(
 images, file_path, video_types, None, overwrite, exporter_kwargs=exporter_kwargs
)

[docs]def export_pickle(obj, fp, overwrite=False, protocol=2):
 r"""
 Exports a given collection of Python objects with Pickle.

 The ``fp`` argument can be either a `Path` or any Python type that acts like
 a file.
 If ``fp`` is a path, it must have the suffix `.pkl` or `.pkl.gz`. If
 `.pkl`, the object will be pickled using the selected Pickle protocol.
 If `.pkl.gz` the object will be pickled using the selected Pickle
 protocol with gzip compression (at a fixed compression level of 3).

 Note that a special exception is made for `pathlib.Path` objects - they
 are pickled down as a `pathlib.PurePath` so that pickles can be easily
 moved between different platforms.

 Parameters

 obj : ``object``
 The object to export.
 fp : `Path` or `file`-like object
 The string path or file-like object to save the object at/into.
 overwrite : `bool`, optional
 Whether or not to overwrite a file if it already exists.
 protocol : `int`, optional
 The Pickle protocol used to serialize the file.
 The protocols were introduced in different versions of python, thus
 it is recommended to save with the highest protocol version that
 your python distribution can support.
 The protocol refers to:

 ========= ===
 Protocol Functionality
 ========= ===
 0 Simplest protocol for text mode, backwards compatible.
 1 Protocol for binary mode, backwards compatible.
 2 Wider support for classes, compatible with python >= 2.3.
 3 Support for byte objects, compatible with python >= 3.0.
 4 Support for large objects, compatible with python >= 3.4.
 ========= ===
 Raises

 ValueError
 File already exists and ``overwrite`` != ``True``
 ValueError
 ``fp`` is a `file`-like object and ``extension`` is
 ``None``
 ValueError
 The provided extension does not match to an existing exporter type
 (the output type is not supported).
 """
 exporter_kwargs = {"protocol": protocol}
 if isinstance(fp, str):
 fp = Path(fp) # cheeky conversion to Path to reuse existing code
 if isinstance(fp, Path):
 # user provided a path - if it ended .gz we will compress
 path_filepath = _validate_filepath(fp, overwrite)
 extension = _parse_and_validate_extension(path_filepath, None, pickle_types)
 o = gzip_open if extension[-3:] == ".gz" else open
 with o(str(path_filepath), "wb") as f:
 # force overwrite as True we've already done the check above
 _export(
 obj, f, pickle_types, extension, True, exporter_kwargs=exporter_kwargs
)
 else:
 _export(
 obj, fp, pickle_types, ".pkl", overwrite, exporter_kwargs=exporter_kwargs
)

def _extension_to_export_function(extension, extensions_map):
 r"""
 Simple function that wraps the extensions map indexing and raises
 a user friendly ``ValueError``

 Parameters

 extension : `str`
 The string extension with period prefix e.g '.jpg'
 extensions_map : `dict` of `str` -> `callable`
 The extension map that maps extensions to export callables.

 Returns

 mapping_callable : `callable`
 The callable that performs exporting.

 Raises

 ValueError
 If ``extensions_map`` does not contain ``extension``. More friendly
 than the ``KeyError`` that would be raised.
 """
 # This just ensures that a sensible, user friendly Exception is raised.
 try:
 return extensions_map[extension]
 except KeyError:
 raise ValueError(
 "The output file extension ({}) provided is not "
 "currently supported.".format(extension)
)

def _validate_filepath(fp, overwrite):
 r"""
 Normalize a given file path and ensure that ``overwrite == True`` if the
 file path exists. Normalisation involves things like making the given
 path absolute and expanding environment variables and user variables.

 Parameters

 fp : `Path`
 The file path.
 overwrite : `bool`
 Whether the export method should override an existing file at the
 file path.

 Returns

 normalized_filepath : `Path`
 The normalized file path.

 Raises

 OverwriteError
 If ``overwrite == False`` and a file already exists at the file path.
 """
 path_filepath = _norm_path(fp)
 if path_filepath.exists() and not overwrite:
 raise OverwriteError(
 "File {} already exists. Please set the overwrite "
 "kwarg if you wish to overwrite "
 "the file.".format(path_filepath.name),
 path_filepath,
)
 return path_filepath

def _parse_and_validate_extension(filepath, extension, extensions_map):
 r"""
 If an extension is given, validate that the given file path matches
 the given extension.

 If not, parse the file path and return a correct extension. This function
 will handle cases such as file names with periods in.

 Parameters

 filepath : `Path`
 The file path (normalized).
 extension : `str`
 The extension provided by the user.
 extensions_map : `dict` of `str` -> `callable`
 A dictionary mapping extensions to export callables.

 Returns

 norm_extension : `str`
 The correct extension, with leading period.

 Raises

 ValueError
 Unknown extension.
 ValueError
 File path contains extension that does not EXACTLY match the users'
 provided extension.
 """
 # If an explicit extension is passed, it must match exactly. However, file
 # names may contain periods, and therefore we need to try and parse
 # a known extension from the given file path.
 possible_exts = _possible_extensions_from_filepath(filepath)

 known_extension = None
 while known_extension is None and possible_exts:
 possible_extension = possible_exts.pop(0)
 if possible_extension in extensions_map:
 known_extension = possible_extension

 if known_extension is None:
 raise ValueError(
 "Unknown file extension passed: {}".format("".join(filepath.suffixes))
)

 if extension is not None:
 extension = _normalize_extension(extension)
 if extension != known_extension:
 raise ValueError(
 "The file path extension must match the "
 "requested file extension: {} != {}".format(extension, known_extension)
)

 return known_extension

def _enforce_only_paths_supported(file_path, exporter_name):
 r"""
 If a given exporter only supports paths rather than open file handles
 or buffers then this function can be used to enforce that. If a file
 handle is passed then an attempt is made to write to the path of the file
 handle.

 Parameters

 file_path : `str` or `pathlib.Path` or file-like object
 The file path to write to.

 Returns

 file_path : `str`
 The path to open file handle or, if a path was passed, it is returned
 unchanged.

 Raises

 ValueError
 If given ``file_path`` is not a string, pathlib.Path or file handle.
 """
 if hasattr(file_path, "name") and not isinstance(file_path, Path):
 file_path = file_path.name
 warnings.warn(
 "The {} exporter only supports file paths and not "
 "buffers or open file handles - therefore the provided "
 "file handle will be ignored and the object will be "
 "exported to {}.".format(exporter_name, file_path)
)
 if isinstance(file_path, (str, Path)):
 return file_path
 else:
 raise ValueError("Cannot write to unnamed file handles or buffers.")

def _validate_and_get_export_func(
 file_path, extensions_map, extension, overwrite, return_extension=False
):
 r"""
 Given a ``file_path``, ensure that the options chosen are valid with respect
 to overwriting and any provided extensions. If this validation is
 successful then the exporter function is returned.

 Parameters

 file_path : `Path`
 The path to write to.
 extensions_map : `dict` of `str` -> `callable`
 The dictionary mapping extensions to export callables.
 extension : `str`
 User provided extension (required if a file-like ``fp`` is passed).
 overwrite : `bool`
 If ``True``, overwrite any existing files at the given path.
 return_extension : `bool`, optional
 If ``True``, return the correct extension as well as the export
 callable, as a tuple ``(callable, extension)``.

 Returns

 exporter_callable : `callable`
 The exporter callable.
 extension : `str`
 The correct extension for the exporter function, if
 ``return_extension==True``.
 """
 if isinstance(file_path, str):
 # cheeky conversion to Path to reuse existing code
 file_path = Path(file_path)

 file_path = _validate_filepath(file_path, overwrite)
 extension = _parse_and_validate_extension(file_path, extension, extensions_map)
 export_callable = _extension_to_export_function(extension, extensions_map)

 if return_extension:
 return export_callable, extension
 else:
 return export_callable

def _export_paths_only(
 obj, file_path, extensions_map, extension, overwrite, exporter_kwargs=None
):
 r"""
 A shared export function handling paths only. This handles the logic
 of ensuring that the given ``file_path`` is a ``pathlib.Path``. All exporter
 methods that are called from here are defined as receiving a
 ``pathlib.Path``.

 Parameters

 obj : `object`
 The Python object to export.
 file_path : `Path`
 The path to write to.
 extensions_map : `dict` of `str` -> `callable`
 The dictionary mapping extensions to export callables.
 extension : `str`
 User provided extension (required if a file-like ``fp`` is passed).
 overwrite : `bool`
 If ``True``, overwrite any existing files at the given path.
 exporter_kwargs : `int`, optional
 Any kwargs to be passed through to the exporter.
 """
 if exporter_kwargs is None:
 exporter_kwargs = {}
 export_function = _validate_and_get_export_func(
 file_path, extensions_map, extension, overwrite
)
 export_function(obj, file_path, **exporter_kwargs)

def _export(obj, fp, extensions_map, extension, overwrite, exporter_kwargs=None):
 r"""
 The shared export function. This handles the shared logic of ensuring
 that the given ``fp`` is either a ``pathlib.Path`` or a file like
 object. All exporter methods are defined as receiving a buffer object,
 regardless of if a path is provided. If a file-like object is provided
 then the extension mut not be ``None``.

 Parameters

 obj : `object`
 The Python object to export.
 fp : `Path` or file-like object
 The path or file buffer to write to.
 extensions_map : `dict` of `str` -> `callable`
 The dictionary mapping extensions to export callables.
 extension : `str`
 User provided extension (required if a file-like ``fp`` is passed).
 overwrite : `bool`
 If ``True``, overwrite any existing files at the given path.
 exporter_kwargs : `int`, optional
 Any kwargs to be passed through to the exporter.
 """
 if exporter_kwargs is None:
 exporter_kwargs = {}
 if isinstance(fp, str):
 fp = Path(fp) # cheeky conversion to Path to reuse existing code
 if isinstance(fp, Path):
 export_function, extension = _validate_and_get_export_func(
 fp, extensions_map, extension, overwrite, return_extension=True
)

 with fp.open("wb") as file_handle:
 export_function(obj, file_handle, extension=extension, **exporter_kwargs)
 else:
 # You MUST provide an extension if a file handle is given
 if extension is None:
 raise ValueError(
 "An export file extension must be provided if a "
 "file-like object is passed."
)
 else:
 extension = _normalize_extension(extension)

 # Apparently in Python 2.x there is no reliable way to detect something
 # that is 'file' like (file handle or a StringIO object or something
 # you can read and write to like a file). Therefore, we are going to
 # just be really Pythonic about it and just assume we were handed
 # a correctly behaving object.
 try:
 # Follow PIL like behaviour. Check the file handle extension
 # and check if matches the given extension
 export_function = _validate_and_get_export_func(
 Path(fp.name), extensions_map, extension, overwrite
)
 except AttributeError:
 # Just use the extension to get the export function
 export_function = _extension_to_export_function(extension, extensions_map)

 export_function(obj, fp, extension=extension, **exporter_kwargs)

 menpo.landmark.base

 Source code for menpo.landmark.base

try:
 from collections.abc import MutableMapping
except ImportError:
 from collections import MutableMapping
import fnmatch
from collections import OrderedDict

from menpo.base import Copyable
from menpo.transform.base import Transformable

[docs]class Landmarkable(Copyable):
 r"""
 Abstract interface for object that can have landmarks attached to them.
 Landmarkable objects have a public dictionary of landmarks which are
 managed by a :map:`LandmarkManager`. This means that
 different sets of landmarks can be attached to the same object.
 Landmarks can be N-dimensional and are expected to be some
 subclass of :map:`PointCloud` or :map:`LabelledPointUndirectedGraph`.
 """

 def __init__(self):
 self._landmarks = None

[docs] def n_dims(self):
 """
 The total number of dimensions.

 :type: `int`
 """
 raise NotImplementedError()

 @property
 def landmarks(self):
 """
 The landmarks object.

 :type: :map:`LandmarkManager`
 """
 if self._landmarks is None:
 self._landmarks = LandmarkManager()
 return self._landmarks

 @landmarks.setter
 def landmarks(self, value):
 """
 Landmarks setter.

 Parameters

 value : :map:`LandmarkManager`
 The landmarks to set.
 """
 # firstly, make sure the dim is correct. Note that the dim can be None
 lm_n_dims = value.n_dims
 if lm_n_dims is not None and lm_n_dims != self.n_dims:
 raise ValueError(
 "Trying to set {}D landmarks on a "
 "{}D object".format(value.n_dims, self.n_dims)
)
 self._landmarks = value.copy()

 @property
 def has_landmarks(self):
 """
 Whether the object has landmarks.

 :type: `bool`
 """
 return self._landmarks is not None and self.landmarks.n_groups != 0

 @property
 def n_landmark_groups(self):
 r"""
 The number of landmark groups on this object.

 :type: `int`
 """
 return self.landmarks.n_groups

[docs]class LandmarkManager(MutableMapping, Transformable):
 """Store for :map:`PointCloud` or ::map:`LabelledPointUndirectedGraph`
 instances associated with an object.

 Every :map:`Landmarkable` instance has an instance of this class available
 at the ``.landmarks`` property. It is through this class that all access
 to landmarks attached to instances is handled. In general the
 :map:`LandmarkManager` provides a dictionary-like interface for storing
 landmarks. The LandmarkManager will contain instances of :map:`PointCloud`
 or :map:`LabelledPointUndirectedGraph` or subclasses thereof.
 :map:`LabelledPointUndirectedGraph` is unique in it's ability to
 include labels that refer to subsets of the underlying points that represent
 interesting semantic *labels*. These :map:`PointCloud` or
 :map:`LabelledPointUndirectedGraph` (or subclasses) are stored under
 string keys - these keys are refereed to as the **group name**. A special
 case is where there is a single unambiguous group attached to a
 :map:`LandmarkManager` - in this case ``None`` can be used as a key to
 access this sole group.

 Note that all groups stored on a :map:`Landmarkable` in it's attached
 :map:`LandmarkManager` are automatically transformed and copied with their
 parent object.
 """

 def __init__(self):
 super(LandmarkManager, self).__init__()
 self._landmark_groups = OrderedDict()

 @property
 def n_dims(self):
 """
 The total number of dimensions.

 :type: `int`
 """
 if self.n_groups != 0:
 # Python version independent way of getting the first value
 for v in self._landmark_groups.values():
 return v.n_dims
 else:
 return None

[docs] def copy(self):
 r"""
 Generate an efficient copy of this :map:`LandmarkManager`.

 Returns

 ``type(self)``
 A copy of this object
 """
 # The dict will be shallow copied - rectify that here
 new = Copyable.copy(self)
 for k, v in new._landmark_groups.items():
 new._landmark_groups[k] = v.copy()
 return new

 def __iter__(self):
 """
 Iterate over the internal landmark group dictionary.
 """
 return iter(self._landmark_groups)

 def __setitem__(self, group, value):
 """
 Sets a new landmark group for the given label. This can be set using
 any :map`PointCloud` subclass. Existing landmark groups will be
 replaced.

 Parameters

 group : `string`
 Label of new group.
 value : :map:`PointCloud` or subclass
 The new landmark group to set.

 Raises

 DimensionalityError
 If the landmarks and the shape are not of the same dimensionality.
 """
 from menpo.shape import PointCloud

 if group is None:
 raise ValueError(
 "Cannot set using the key `None`. `None` has a "
 "reserved meaning for landmark groups."
)

 # firstly, make sure the dim is correct
 n_dims = self.n_dims
 if n_dims is not None and value.n_dims != n_dims:
 raise ValueError(
 "Trying to set {}D landmarks on a "
 "{}D LandmarkManager".format(value.n_dims, self.n_dims)
)
 if not isinstance(value, PointCloud):
 raise ValueError("Valid types are any subclass of PointCloud")

 # Copy the landmark group so that we now own it
 lmark_group = value.copy()
 self._landmark_groups[group] = lmark_group

 def __getitem__(self, group=None):
 """
 Returns the group for the provided label.

 Parameters

 group : `string`, optional
 The label of the group. If None is provided, and if there is only
 one group, the unambiguous group will be returned.

 Returns

 lmark_group : :map:`PointCloud` or :map:`LabelledPointUndirectedGraph`
 The matching landmarks.
 """
 if group is None:
 if self.n_groups == 1:
 group = self.group_labels[0]
 else:
 raise ValueError(
 "Cannot use None as a key as there are {} "
 "landmark groups".format(self.n_groups)
)
 return self._landmark_groups[group]

 def __delitem__(self, group):
 """
 Delete the group for the provided label.

 Parameters

 group : `string`
 The label of the group.
 """
 del self._landmark_groups[group]

 def __len__(self):
 return len(self._landmark_groups)

 def __setstate__(self, state):
 # consistency with older versions imported.
 if not isinstance(state["_landmark_groups"], OrderedDict):
 state["_landmark_groups"] = OrderedDict(state["_landmark_groups"])

 self.__dict__ = state

 def _ipython_key_completions_(self):
 # Opt in to IPython tab completion - see
 # https://github.com/ipython/ipython/blob/5.2.2/docs/source/config/integrating.rst
 return list(self)

 @property
 def n_groups(self):
 """
 Total number of labels.

 :type: `int`
 """
 return len(self._landmark_groups)

 @property
 def has_landmarks(self):
 """
 Whether the object has landmarks or not

 :type: `int`
 """
 return self.n_groups != 0

 @property
 def group_labels(self):
 """
 All the labels for the landmark set sorted by insertion order.

 :type: `list` of `str`
 """
 # Convert to list so that we can index immediately, as keys()
 # is a generator in Python 3
 return list(self._landmark_groups.keys())

[docs] def keys_matching(self, glob_pattern):
 r"""
 Yield only landmark group names (keys) matching a given glob.

 Parameters

 glob_pattern : `str`
 A glob pattern e.g. 'frontal_face_*'

 Yields

 keys: group labels that match the glob pattern
 """
 for key in fnmatch.filter(self.keys(), glob_pattern):
 yield key

[docs] def items_matching(self, glob_pattern):
 r"""
 Yield only items ``(group, PointCloud)`` where the key matches a
 given glob.

 Parameters

 glob_pattern : `str`
 A glob pattern e.g. 'frontal_face_*'

 Yields

 item : ``(group, PointCloud)``
 Tuple of (str, PointCloud) where the group matches the glob.
 """
 for k, v in self.items():
 if fnmatch.fnmatch(k, glob_pattern):
 yield k, v

 def _transform_inplace(self, transform):
 for group in self._landmark_groups.values():
 group._transform_inplace(transform)
 return self

 def __str__(self):
 out_string = "{}: n_groups: {}".format(type(self).__name__, self.n_groups)
 if self.has_landmarks:
 for label in self:
 out_string += "\n"
 out_string += "({}): {}".format(label, self[label].__str__())

 return out_string

TODO: Deprecate this - this handles importing old-style LandmarkGroup
class LandmarkGroup(object):
 def __new__(cls, *args, **kwargs):
 # This is a crazy hack that means when old style LandmarkGroup
 # objects are imported it is actually new-style
 # LabelledPointUndirectedGraph objects that are created.
 from menpo.shape import LabelledPointUndirectedGraph

 return LabelledPointUndirectedGraph.__new__(
 LabelledPointUndirectedGraph, *args, **kwargs
)

 menpo.landmark.exceptions

 Source code for menpo.landmark.exceptions

[docs]class LabellingError(Exception):
 """
 Raised when labelling a landmark manager and the set of landmarks does not
 match the expected semantic layout.
 """

 pass

 menpo.landmark.labels.base

 Source code for menpo.landmark.labels.base

from collections import OrderedDict
from functools import wraps
import numpy as np

from menpo.base import name_of_callable
from menpo.landmark.exceptions import LabellingError

def connectivity_from_array(array, close_loop=False):
 r"""
 Build the connectivity over a given array. For example, given ::

 array = [(0, 3, 1, 2)]

 Generate the connectivity of ::

 [(0, 3), (3, 1), (1, 2)]

 If ``close_loop`` is true, add an extra connection from the last point to
 the first.
 """
 # zip is a generator - need a list in this case
 conn = list(zip(array, array[1:]))
 if close_loop:
 conn.append((array[-1], array[0]))
 return np.asarray(conn)

def connectivity_from_range(range_tuple, close_loop=False):
 r"""
 Build the connectivity over a range. For example, given ::

 range_array = np.arange(3)

 Generate the connectivity of ::

 [(0, 1), (1, 2), (2, 3)]

 If ``close_loop`` is true, add an extra connection from the last point to
 the first.
 """
 return connectivity_from_array(np.arange(*range_tuple), close_loop=close_loop)

def validate_input(pcloud, n_expected_points):
 r"""
 Ensure that the input matches the number of expected points.

 Parameters

 pcloud : :map:`PointCloud`
 Input Pointcloud to validate
 n_expected_points : `int`
 Number of expected points

 Raises

 LabellingError
 If the number of expected points doesn't match the number of given
 points
 """
 n_actual_points = pcloud.n_points
 if n_actual_points != n_expected_points:
 msg = (
 "Label expects exactly {} "
 "points. However, the given pointcloud "
 "has {} points".format(n_expected_points, n_actual_points)
)
 raise LabellingError(msg)

def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
 """
 Label the given pointcloud according to the given ordered dictionary
 of labels to ranges. This assumes that you can semantically label the group
 by using ranges in to the existing points e.g ::

 labels_to_ranges = {'jaw': (0, 17, False)}

 The third element of the range tuple is whether the range is a closed loop
 or not. For example, for an eye landmark this would be ``True``, as you
 do want to create a closed loop for an eye.

 Parameters

 pointcloud : :map:`PointCloud`
 The pointcloud to apply semantic labels to.
 labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
 Ordered dictionary of string labels to range tuples.

 Returns

 new_pcloud : :map:`PointCloud`
 New pointcloud with specific connectivity information applied.
 mapping : `ordereddict` {`str` -> `int ndarray`}
 For each label, the indices in to the pointcloud that belong to the
 label.
 """
 from menpo.shape import LabelledPointUndirectedGraph

 mapping = OrderedDict()
 all_connectivity = []
 for label, tup in labels_to_ranges.items():
 range_tuple = tup[:-1]
 close_loop = tup[-1]

 connectivity = connectivity_from_range(range_tuple, close_loop=close_loop)
 all_connectivity.append(connectivity)
 mapping[label] = np.arange(*range_tuple)
 all_connectivity = np.vstack(all_connectivity)

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pointcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

_labeller_docs = r"""
 Parameters

 x : :map:`LabelledPointUndirectedGraph` or :map:`PointCloud` or `ndarray`
 The input labelled point graph, pointcloud, subclass of those or
 array to label. If a pointcloud is passed, then only the connectivity
 information is propagated to the pointcloud (a subclass of
 :map:`PointCloud` may be returned).
 return_mapping : `bool`, optional
 Only applicable if a :map:`PointCloud` or `ndarray` is passed. Returns
 the mapping dictionary which maps labels to indices into the resulting
 :map:`PointCloud` (which is then used to for building a
 :map:`LabelledPointUndirectedGraph`. This parameter is only provided
 for internal use so that other labellers can piggyback off one another.

 Returns

 x_labelled : :map:`LabelledPointUndirectedGraph` or :map:`PointCloud`
 If a :map:`LabelledPointUndirectedGraph` was passed, a
 :map:`LabelledPointUndirectedGraph` is returned. This labelled
 pointgraph will contain specific labels and these labels may refer to
 sub-pointclouds with specific connectivity information.

 If a :map:`PointCloud` was passed, a :map:`PointCloud` is returned. Only
 the connectivity information is propagated to the pointcloud
 (a subclass of :map:`PointCloud` may be returned).
 mapping_dict : `ordereddict` {`str` -> `int ndarray`}, optional
 Only returned if ``return_mapping==True``. Used for building
 :map:`LabelledPointUndirectedGraph`.

 Raises

 : :map:`LabellingError`
 If the given labelled point graph/pointcloud contains less than the
 expected number of points.
"""

def labeller_func(group_label=None):
 r"""
 Decorator for labelling functions. Labelling functions should return
 a template pointcloud and a mapping dictionary (from labels to indices).
 This decorator then takes that output and returns the correctly labelled
 object depending on if a landmark group, pointcloud or numpy array is
 passed. See the docstrings of the labelling methods where this
 has been made clear.

 Note that we duck type the group label (usually just the name of the
 labelling function) on to the function itself for the labeller method
 below.
 """

 def decorator(labelling_method):
 # Shadowing parent scope variables inside a nested function
 # kills the scope of the parent variable, so we need a unique alias
 # for the group name
 gl = (
 group_label
 if group_label is not None
 else name_of_callable(labelling_method)
)
 # Duck type group label onto method itself
 labelling_method.group_label = gl
 # Set up the global docs
 labelling_method.__doc__ += _labeller_docs

 @wraps(labelling_method)
 def wrapper(x, return_mapping=False):
 from menpo.shape import PointCloud

 # Accepts PointCloud subclass or ndarray
 if isinstance(x, np.ndarray):
 x = PointCloud(x, copy=False)

 new_pcloud, mapping = labelling_method(x)
 if return_mapping:
 return new_pcloud, mapping
 else:
 return new_pcloud

 return wrapper

 return decorator

[docs]def labeller(landmarkable, group, label_func):
 """
 Re-label an existing landmark group on a :map:`Landmarkable` object with a
 new label set.

 Parameters

 landmarkable: :map:`Landmarkable`
 :map:`Landmarkable` that will have it's :map:`LandmarkManager`
 augmented with a new :map:`LabelledPointUndirectedGraph` or
 :map:`PointCloud`
 group: `str`
 The group label of the existing pointcloud that should be re-labelled.
 A copy of this group will be attached to it's landmark manager with
 new labels. The group label of this new group and the labels it will
 have is determined by ``label_func``
 label_func: `func` -> `(str, LabelledPointUndirectedGraph)`
 A labelling function taken from this module. Takes as input a
 :map:`PointCloud` or :map:`LabelledPointUndirectedGraph` or subclass
 and returns a tuple of (new group label, new
 LabelledPointUndirectedGraph with semantic labels applied).

 Returns

 landmarkable : :map:`Landmarkable`
 Augmented ``landmarkable`` (this is just for convenience,
 the object will actually be modified in place)
 """
 new_group = label_func(landmarkable.landmarks[group])
 landmarkable.landmarks[label_func.group_label] = new_group
 return landmarkable

 menpo.landmark.labels.bounding_box

 Source code for menpo.landmark.labels.bounding_box

import numpy as np
from collections import OrderedDict

from .base import labeller_func

[docs]@labeller_func(group_label="bounding_box")
def bounding_box_to_bounding_box(bbox):
 r"""
 Apply a single 'all' label to a given bounding box. This bounding
 box must be as specified by the :map:`bounding_box` method.
 """
 from menpo.shape import bounding_box

 mapping = OrderedDict()
 mapping["all"] = np.arange(4)
 return bounding_box(bbox.points[0], bbox.points[2]), mapping

[docs]@labeller_func(group_label="bounding_box")
def bounding_box_mirrored_to_bounding_box(bbox):
 r"""
 Apply a single 'all' label to a given bounding box that has been
 mirrored around the vertical axis (flipped around the Y-axis). This bounding
 box must be as specified by the :map:`bounding_box` method (but mirrored).
 """
 from menpo.shape import bounding_box

 mapping = OrderedDict()
 mapping["all"] = np.arange(4)
 return bounding_box(bbox.points[3], bbox.points[1]), mapping

 menpo.landmark.labels.car

 Source code for menpo.landmark.labels.car

from collections import OrderedDict
import numpy as np

from .base import labeller_func, validate_input, connectivity_from_array

[docs]@labeller_func(group_label="car_streetscene_view_0_8")
def car_streetscene_20_to_car_streetscene_view_0_8(pcloud):
 r"""
 Apply the 8-point semantic labels of "view 0" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - front
 - bonnet
 - windshield

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 front_indices = np.array([0, 1, 3, 2])
 bonnet_indices = np.array([2, 3, 5, 4])
 windshield_indices = np.array([4, 5, 7, 6])

 front_connectivity = connectivity_from_array(front_indices, close_loop=True)
 bonnet_connectivity = connectivity_from_array(bonnet_indices, close_loop=True)
 windshield_connectivity = connectivity_from_array(
 windshield_indices, close_loop=True
)

 all_connectivity = np.vstack(
 [front_connectivity, bonnet_connectivity, windshield_connectivity]
)

 mapping = OrderedDict()
 mapping["front"] = front_indices
 mapping["bonnet"] = bonnet_indices
 mapping["windshield"] = windshield_indices

 ind = np.arange(8)
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_1_14")
def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
 """
 Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - front
 - bonnet
 - windshield
 - left_side

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 front_indices = np.array([0, 1, 3, 2])
 bonnet_indices = np.array([2, 3, 5, 4])
 windshield_indices = np.array([4, 5, 7, 6])
 left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

 front_connectivity = connectivity_from_array(front_indices, close_loop=True)
 bonnet_connectivity = connectivity_from_array(bonnet_indices, close_loop=True)
 windshield_connectivity = connectivity_from_array(
 windshield_indices, close_loop=True
)
 left_side_connectivity = connectivity_from_array(left_side_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 front_connectivity,
 bonnet_connectivity,
 windshield_connectivity,
 left_side_connectivity,
]
)

 mapping = OrderedDict()
 mapping["front"] = front_indices
 mapping["bonnet"] = bonnet_indices
 mapping["windshield"] = windshield_indices
 mapping["left_side"] = left_side_indices

 ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_2_10")
def car_streetscene_20_to_car_streetscene_view_2_10(pcloud):
 r"""
 Apply the 10-point semantic labels of "view 2" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - left_side

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 left_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

 left_side_connectivity = connectivity_from_array(left_side_indices, close_loop=True)

 all_connectivity = left_side_connectivity

 mapping = OrderedDict()
 mapping["left_side"] = left_side_indices

 ind = np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_3_14")
def car_streetscene_20_to_car_streetscene_view_3_14(pcloud):
 r"""
 Apply the 14-point semantic labels of "view 3" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - left_side
 - rear windshield
 - trunk
 - rear

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 left_side_indices = np.array([0, 1, 2, 3, 4, 6, 8, 10, 13, 12])
 rear_windshield_indices = np.array([4, 5, 7, 6])
 trunk_indices = np.array([6, 7, 9, 8])
 rear_indices = np.array([8, 9, 11, 10])

 left_side_connectivity = connectivity_from_array(left_side_indices, close_loop=True)
 rear_windshield_connectivity = connectivity_from_array(
 rear_windshield_indices, close_loop=True
)
 trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
 rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 left_side_connectivity,
 rear_windshield_connectivity,
 trunk_connectivity,
 rear_connectivity,
]
)

 mapping = OrderedDict()
 mapping["left_side"] = left_side_indices
 mapping["rear_windshield"] = rear_windshield_indices
 mapping["trunk"] = trunk_indices
 mapping["rear"] = rear_indices

 ind = np.array([0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18])
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_4_14")
def car_streetscene_20_to_car_streetscene_view_4_14(pcloud):
 r"""
 Apply the 14-point semantic labels of "view 4" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - front
 - bonnet
 - windshield
 - right_side

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 front_indices = np.array([0, 1, 3, 2])
 bonnet_indices = np.array([2, 3, 5, 4])
 windshield_indices = np.array([4, 5, 7, 6])
 right_side_indices = np.array([8, 9, 10, 11, 13, 12, 1, 3, 5, 7])

 front_connectivity = connectivity_from_array(front_indices, close_loop=True)
 bonnet_connectivity = connectivity_from_array(bonnet_indices, close_loop=True)
 windshield_connectivity = connectivity_from_array(
 windshield_indices, close_loop=True
)
 right_side_connectivity = connectivity_from_array(
 right_side_indices, close_loop=True
)

 all_connectivity = np.vstack(
 [
 front_connectivity,
 bonnet_connectivity,
 windshield_connectivity,
 right_side_connectivity,
]
)

 mapping = OrderedDict()
 mapping["front"] = front_indices
 mapping["bonnet"] = bonnet_indices
 mapping["windshield"] = windshield_indices
 mapping["right_side"] = right_side_indices

 ind = np.hstack([np.arange(8), np.array([9, 11, 13, 15, 17, 19])])
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_5_10")
def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
 r"""
 Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - right_side

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

 right_side_connectivity = connectivity_from_array(
 right_side_indices, close_loop=True
)

 all_connectivity = right_side_connectivity

 mapping = OrderedDict()
 mapping["right_side"] = right_side_indices

 ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_6_14")
def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
 r"""
 Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - right_side
 - rear_windshield
 - trunk
 - rear

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
 rear_windshield_indices = np.array([4, 5, 7, 6])
 trunk_indices = np.array([6, 7, 9, 8])
 rear_indices = np.array([8, 9, 11, 10])

 right_side_connectivity = connectivity_from_array(
 right_side_indices, close_loop=True
)
 rear_windshield_connectivity = connectivity_from_array(
 rear_windshield_indices, close_loop=True
)
 trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
 rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 right_side_connectivity,
 rear_windshield_connectivity,
 trunk_connectivity,
 rear_connectivity,
]
)

 mapping = OrderedDict()
 mapping["right_side"] = right_side_indices
 mapping["rear_windshield"] = rear_windshield_indices
 mapping["trunk"] = trunk_indices
 mapping["rear"] = rear_indices

 ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="car_streetscene_view_7_8")
def car_streetscene_20_to_car_streetscene_view_7_8(pcloud):
 r"""
 Apply the 8-point semantic labels of "view 7" from the MIT Street Scene
 Car dataset (originally a 20-point markup).

 The semantic labels applied are as follows:

 - rear_windshield
 - trunk
 - rear

 References

 .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 20
 validate_input(pcloud, n_expected_points)

 rear_windshield_indices = np.array([0, 1, 3, 2])
 trunk_indices = np.array([2, 3, 5, 4])
 rear_indices = np.array([4, 5, 7, 6])

 rear_windshield_connectivity = connectivity_from_array(
 rear_windshield_indices, close_loop=True
)
 trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
 rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

 all_connectivity = np.vstack(
 [rear_windshield_connectivity, trunk_connectivity, rear_connectivity]
)

 mapping = OrderedDict()
 mapping["rear_windshield"] = rear_windshield_indices
 mapping["trunk"] = trunk_indices
 mapping["rear"] = rear_indices

 ind = np.arange(8, 16)
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

 menpo.landmark.labels.human.face

 Source code for menpo.landmark.labels.human.face

from collections import OrderedDict
import numpy as np

from ..base import (
 validate_input,
 connectivity_from_array,
 pcloud_and_lgroup_from_ranges,
 connectivity_from_range,
 labeller_func,
)

[docs]@labeller_func(group_label="face_ibug_68")
def face_ibug_68_to_face_ibug_68(pcloud):
 r"""
 Apply the IBUG 68-point semantic labels.

 The semantic labels are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 68
 validate_input(pcloud, n_expected_points)

 jaw_indices = np.arange(0, 17)
 lbrow_indices = np.arange(17, 22)
 rbrow_indices = np.arange(22, 27)
 upper_nose_indices = np.arange(27, 31)
 lower_nose_indices = np.arange(31, 36)
 leye_indices = np.arange(36, 42)
 reye_indices = np.arange(42, 48)
 outer_mouth_indices = np.arange(48, 60)
 inner_mouth_indices = np.arange(60, 68)

 jaw_connectivity = connectivity_from_array(jaw_indices)
 lbrow_connectivity = connectivity_from_array(lbrow_indices)
 rbrow_connectivity = connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack(
 [
 connectivity_from_array(upper_nose_indices),
 connectivity_from_array(lower_nose_indices),
]
)
 leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack(
 [
 connectivity_from_array(outer_mouth_indices, close_loop=True),
 connectivity_from_array(inner_mouth_indices, close_loop=True),
]
)

 all_connectivity = np.vstack(
 [
 jaw_connectivity,
 lbrow_connectivity,
 rbrow_connectivity,
 nose_connectivity,
 leye_connectivity,
 reye_connectivity,
 mouth_connectivity,
]
)

 mapping = OrderedDict()
 mapping["jaw"] = jaw_indices
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["nose"] = np.hstack((upper_nose_indices, lower_nose_indices))
 mapping["left_eye"] = leye_indices
 mapping["right_eye"] = reye_indices
 mapping["mouth"] = np.hstack((outer_mouth_indices, inner_mouth_indices))

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_68")
def face_ibug_68_mirrored_to_face_ibug_68(pcloud):
 r"""
 Apply the IBUG 68-point semantic labels, on a pointcloud that has been
 mirrored around the vertical axis (flipped around the Y-axis). Thus, on
 the flipped image the jaw etc would be the wrong way around. This
 rectifies that and returns a new PointCloud whereby all the points
 are oriented correctly.

 The semantic labels applied are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 new_pcloud, old_map = face_ibug_68_to_face_ibug_68(pcloud, return_mapping=True)
 lms_map = np.hstack(
 [
 old_map["jaw"][::-1],
 old_map["right_eyebrow"][::-1],
 old_map["left_eyebrow"][::-1],
 old_map["nose"][:4],
 old_map["nose"][4:][::-1],
 np.roll(old_map["right_eye"][::-1], 4),
 np.roll(old_map["left_eye"][::-1], 4),
 np.roll(old_map["mouth"][:12][::-1], 7),
 np.roll(old_map["mouth"][12:][::-1], 5),
]
)
 return new_pcloud.from_vector(pcloud.points[lms_map]), old_map

[docs]@labeller_func(group_label="face_ibug_66")
def face_ibug_68_to_face_ibug_66(pcloud):
 r"""
 Apply the IBUG 66-point semantic labels, but ignoring the 2 points
 describing the inner mouth corners).

 The semantic labels applied are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 68
 validate_input(pcloud, n_expected_points)

 jaw_indices = np.arange(0, 17)
 lbrow_indices = np.arange(17, 22)
 rbrow_indices = np.arange(22, 27)
 upper_nose_indices = np.arange(27, 31)
 lower_nose_indices = np.arange(31, 36)
 leye_indices = np.arange(36, 42)
 reye_indices = np.arange(42, 48)
 outer_mouth_indices = np.arange(48, 60)
 inner_mouth_indices = np.hstack((48, np.arange(60, 63), 54, np.arange(63, 66)))

 jaw_connectivity = connectivity_from_array(jaw_indices)
 lbrow_connectivity = connectivity_from_array(lbrow_indices)
 rbrow_connectivity = connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack(
 [
 connectivity_from_array(upper_nose_indices),
 connectivity_from_array(lower_nose_indices),
]
)
 leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack(
 [
 connectivity_from_array(outer_mouth_indices, close_loop=True),
 connectivity_from_array(inner_mouth_indices, close_loop=True),
]
)

 all_connectivity = np.vstack(
 [
 jaw_connectivity,
 lbrow_connectivity,
 rbrow_connectivity,
 nose_connectivity,
 leye_connectivity,
 reye_connectivity,
 mouth_connectivity,
]
)

 mapping = OrderedDict()
 mapping["jaw"] = jaw_indices
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["nose"] = np.hstack([upper_nose_indices, lower_nose_indices])
 mapping["left_eye"] = leye_indices
 mapping["right_eye"] = reye_indices
 mapping["mouth"] = np.hstack([outer_mouth_indices, inner_mouth_indices])

 # Ignore the two inner mouth points
 ind = np.hstack((np.arange(60), np.arange(61, 64), np.arange(65, 68)))
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_51")
def face_ibug_68_to_face_ibug_51(pcloud):
 r"""
 Apply the IBUG 51-point semantic labels, but removing the annotations
 corresponding to the jaw region.

 The semantic labels applied are as follows:

 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 68
 validate_input(pcloud, n_expected_points)

 lbrow_indices = np.arange(0, 5)
 rbrow_indices = np.arange(5, 10)
 upper_nose_indices = np.arange(10, 14)
 lower_nose_indices = np.arange(14, 19)
 leye_indices = np.arange(19, 25)
 reye_indices = np.arange(25, 31)
 outer_mouth_indices = np.arange(31, 43)
 inner_mouth_indices = np.arange(43, 51)

 lbrow_connectivity = connectivity_from_array(lbrow_indices)
 rbrow_connectivity = connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack(
 [
 connectivity_from_array(upper_nose_indices),
 connectivity_from_array(lower_nose_indices),
]
)
 leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack(
 [
 connectivity_from_array(outer_mouth_indices, close_loop=True),
 connectivity_from_array(inner_mouth_indices, close_loop=True),
]
)

 all_connectivity = np.vstack(
 [
 lbrow_connectivity,
 rbrow_connectivity,
 nose_connectivity,
 leye_connectivity,
 reye_connectivity,
 mouth_connectivity,
]
)

 mapping = OrderedDict()
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["nose"] = np.hstack([upper_nose_indices, lower_nose_indices])
 mapping["left_eye"] = leye_indices
 mapping["right_eye"] = reye_indices
 mapping["mouth"] = np.hstack([outer_mouth_indices, inner_mouth_indices])

 # Ignore the two inner mouth points
 ind = np.arange(17, 68)
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_49")
def face_ibug_49_to_face_ibug_49(pcloud):
 r"""
 Apply the IBUG 49-point semantic labels.

 The semantic labels applied are as follows:

 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 49
 validate_input(pcloud, n_expected_points)

 lbrow_indices = np.arange(0, 5)
 rbrow_indices = np.arange(5, 10)
 upper_nose_indices = np.arange(10, 14)
 lower_nose_indices = np.arange(14, 19)
 leye_indices = np.arange(19, 25)
 reye_indices = np.arange(25, 31)
 outer_mouth_indices = np.arange(31, 43)
 inner_mouth_indices = np.hstack((31, np.arange(43, 46), 37, np.arange(46, 49)))

 lbrow_connectivity = connectivity_from_array(lbrow_indices)
 rbrow_connectivity = connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack(
 [
 connectivity_from_array(upper_nose_indices),
 connectivity_from_array(lower_nose_indices),
]
)
 leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack(
 [
 connectivity_from_array(outer_mouth_indices, close_loop=True),
 connectivity_from_array(inner_mouth_indices, close_loop=True),
]
)

 all_connectivity = np.vstack(
 [
 lbrow_connectivity,
 rbrow_connectivity,
 nose_connectivity,
 leye_connectivity,
 reye_connectivity,
 mouth_connectivity,
]
)

 mapping = OrderedDict()
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["nose"] = np.hstack([upper_nose_indices, lower_nose_indices])
 mapping["left_eye"] = leye_indices
 mapping["right_eye"] = reye_indices
 mapping["mouth"] = np.hstack([outer_mouth_indices, inner_mouth_indices])

 # Ignore the two inner mouth points
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_49")
def face_ibug_68_to_face_ibug_49(pcloud):
 r"""
 Apply the IBUG 49-point semantic labels, but removing the annotations
 corresponding to the jaw region and the 2 describing the inner mouth
 corners.

 The semantic labels applied are as follows:

 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 68
 validate_input(pcloud, n_expected_points)

 lbrow_indices = np.arange(0, 5)
 rbrow_indices = np.arange(5, 10)
 upper_nose_indices = np.arange(10, 14)
 lower_nose_indices = np.arange(14, 19)
 leye_indices = np.arange(19, 25)
 reye_indices = np.arange(25, 31)
 outer_mouth_indices = np.arange(31, 43)
 inner_mouth_indices = np.hstack((31, np.arange(43, 46), 37, np.arange(46, 49)))

 lbrow_connectivity = connectivity_from_array(lbrow_indices)
 rbrow_connectivity = connectivity_from_array(rbrow_indices)
 nose_connectivity = np.vstack(
 [
 connectivity_from_array(upper_nose_indices),
 connectivity_from_array(lower_nose_indices),
]
)
 leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
 reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
 mouth_connectivity = np.vstack(
 [
 connectivity_from_array(outer_mouth_indices, close_loop=True),
 connectivity_from_array(inner_mouth_indices, close_loop=True),
]
)

 all_connectivity = np.vstack(
 [
 lbrow_connectivity,
 rbrow_connectivity,
 nose_connectivity,
 leye_connectivity,
 reye_connectivity,
 mouth_connectivity,
]
)

 mapping = OrderedDict()
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["nose"] = np.hstack([upper_nose_indices, lower_nose_indices])
 mapping["left_eye"] = leye_indices
 mapping["right_eye"] = reye_indices
 mapping["mouth"] = np.hstack([outer_mouth_indices, inner_mouth_indices])

 # Ignore the two inner mouth points
 ind = np.hstack((np.arange(17, 60), np.arange(61, 64), np.arange(65, 68)))
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_68_trimesh")
def face_ibug_68_to_face_ibug_68_trimesh(pcloud):
 r"""
 Apply the IBUG 68-point semantic labels, with trimesh connectivity.

 The semantic labels applied are as follows:

 - tri

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import TriMesh

 n_expected_points = 68
 validate_input(pcloud, n_expected_points)

 tri_list = np.array(
 [
 [47, 29, 28],
 [44, 43, 23],
 [38, 20, 21],
 [47, 28, 42],
 [49, 61, 60],
 [40, 41, 37],
 [37, 19, 20],
 [28, 40, 39],
 [38, 21, 39],
 [36, 1, 0],
 [48, 59, 4],
 [49, 60, 48],
 [67, 59, 60],
 [13, 53, 14],
 [61, 51, 62],
 [57, 8, 7],
 [52, 51, 33],
 [61, 67, 60],
 [52, 63, 51],
 [66, 56, 57],
 [35, 30, 29],
 [53, 52, 35],
 [37, 36, 17],
 [18, 37, 17],
 [37, 38, 40],
 [38, 37, 20],
 [19, 37, 18],
 [38, 39, 40],
 [28, 29, 40],
 [41, 36, 37],
 [27, 39, 21],
 [41, 31, 1],
 [30, 32, 31],
 [33, 51, 50],
 [33, 30, 34],
 [31, 40, 29],
 [36, 0, 17],
 [31, 2, 1],
 [31, 41, 40],
 [1, 36, 41],
 [31, 49, 2],
 [2, 49, 3],
 [60, 59, 48],
 [3, 49, 48],
 [31, 32, 50],
 [48, 4, 3],
 [59, 5, 4],
 [58, 67, 66],
 [5, 59, 58],
 [58, 59, 67],
 [7, 6, 58],
 [66, 57, 58],
 [13, 54, 53],
 [7, 58, 57],
 [6, 5, 58],
 [50, 61, 49],
 [62, 67, 61],
 [31, 50, 49],
 [32, 33, 50],
 [30, 33, 32],
 [34, 52, 33],
 [35, 52, 34],
 [53, 63, 52],
 [62, 63, 65],
 [62, 51, 63],
 [66, 65, 56],
 [63, 53, 64],
 [62, 66, 67],
 [62, 65, 66],
 [57, 56, 9],
 [65, 63, 64],
 [8, 57, 9],
 [9, 56, 10],
 [10, 56, 11],
 [11, 56, 55],
 [11, 55, 12],
 [56, 65, 55],
 [55, 64, 54],
 [55, 65, 64],
 [55, 54, 12],
 [64, 53, 54],
 [12, 54, 13],
 [45, 46, 44],
 [35, 34, 30],
 [14, 53, 35],
 [15, 46, 45],
 [27, 28, 39],
 [27, 42, 28],
 [35, 29, 47],
 [30, 31, 29],
 [15, 35, 46],
 [15, 14, 35],
 [43, 22, 23],
 [27, 21, 22],
 [24, 44, 23],
 [44, 47, 43],
 [43, 47, 42],
 [46, 35, 47],
 [26, 45, 44],
 [46, 47, 44],
 [25, 44, 24],
 [25, 26, 44],
 [16, 15, 45],
 [16, 45, 26],
 [22, 42, 43],
 [50, 51, 61],
 [27, 22, 42],
]
)
 new_pcloud = TriMesh(pcloud.points, trilist=tri_list)

 mapping = OrderedDict()
 mapping["tri"] = np.arange(new_pcloud.n_points)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_66_trimesh")
def face_ibug_68_to_face_ibug_66_trimesh(pcloud):
 r"""
 Apply the IBUG 66-point semantic labels, with trimesh connectivity.

 The semantic labels applied are as follows:

 - tri

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import TriMesh

 # Apply face_ibug_68_to_face_ibug_66
 new_pcloud = face_ibug_68_to_face_ibug_66(pcloud)

 # This is in terms of the 66 points
 tri_list = np.array(
 [
 [47, 29, 28],
 [44, 43, 23],
 [38, 20, 21],
 [47, 28, 42],
 [40, 41, 37],
 [51, 62, 61],
 [37, 19, 20],
 [28, 40, 39],
 [38, 21, 39],
 [36, 1, 0],
 [48, 59, 4],
 [49, 60, 48],
 [13, 53, 14],
 [60, 51, 61],
 [51, 51, 62],
 [52, 51, 33],
 [49, 50, 60],
 [57, 7, 8],
 [64, 56, 57],
 [35, 30, 29],
 [52, 62, 53],
 [53, 52, 35],
 [37, 36, 17],
 [18, 37, 17],
 [37, 38, 40],
 [38, 37, 20],
 [19, 37, 18],
 [38, 39, 40],
 [28, 29, 40],
 [41, 36, 37],
 [27, 39, 21],
 [41, 31, 1],
 [30, 32, 31],
 [33, 51, 50],
 [33, 30, 34],
 [31, 40, 29],
 [36, 0, 17],
 [31, 2, 1],
 [31, 41, 40],
 [1, 36, 41],
 [31, 49, 2],
 [2, 49, 3],
 [3, 49, 48],
 [31, 32, 50],
 [62, 53, 54],
 [48, 4, 3],
 [59, 5, 4],
 [58, 65, 64],
 [5, 59, 58],
 [58, 59, 65],
 [7, 6, 58],
 [64, 57, 58],
 [13, 54, 53],
 [7, 58, 57],
 [6, 5, 58],
 [63, 55, 54],
 [65, 59, 48],
 [31, 50, 49],
 [32, 33, 50],
 [30, 33, 32],
 [34, 52, 33],
 [35, 52, 34],
 [48, 60, 65],
 [64, 63, 56],
 [60, 65, 61],
 [65, 64, 61],
 [57, 56, 9],
 [8, 57, 9],
 [64, 63, 61],
 [9, 56, 10],
 [10, 56, 11],
 [11, 56, 55],
 [11, 55, 12],
 [56, 63, 55],
 [51, 52, 62],
 [55, 54, 12],
 [63, 54, 62],
 [61, 62, 63],
 [12, 54, 13],
 [45, 46, 44],
 [35, 34, 30],
 [14, 53, 35],
 [15, 46, 45],
 [27, 28, 39],
 [27, 42, 28],
 [35, 29, 47],
 [30, 31, 29],
 [15, 35, 46],
 [15, 14, 35],
 [43, 22, 23],
 [27, 21, 22],
 [24, 44, 23],
 [44, 47, 43],
 [43, 47, 42],
 [46, 35, 47],
 [26, 45, 44],
 [46, 47, 44],
 [25, 44, 24],
 [25, 26, 44],
 [16, 15, 45],
 [16, 45, 26],
 [22, 42, 43],
 [50, 60, 51],
 [27, 22, 42],
]
)

 new_pcloud = TriMesh(new_pcloud.points, trilist=tri_list, copy=False)

 mapping = OrderedDict()
 mapping["tri"] = np.arange(new_pcloud.n_points)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_51_trimesh")
def face_ibug_68_to_face_ibug_51_trimesh(pcloud):
 r"""
 Apply the IBUG 51-point semantic labels, with trimesh connectivity..

 The semantic labels applied are as follows:

 - tri

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import TriMesh

 # Apply face_ibug_68_to_face_ibug_51
 new_pcloud = face_ibug_68_to_face_ibug_51(pcloud)

 # This is in terms of the 51 points
 tri_list = np.array(
 [
 [30, 12, 11],
 [27, 26, 6],
 [21, 3, 4],
 [30, 11, 25],
 [32, 44, 43],
 [23, 24, 20],
 [20, 2, 3],
 [11, 23, 22],
 [21, 4, 22],
 [32, 43, 31],
 [50, 42, 43],
 [44, 34, 45],
 [35, 34, 16],
 [44, 50, 43],
 [35, 46, 34],
 [49, 39, 40],
 [18, 13, 12],
 [36, 35, 18],
 [20, 19, 0],
 [1, 20, 0],
 [20, 21, 23],
 [21, 20, 3],
 [2, 20, 1],
 [21, 22, 23],
 [11, 12, 23],
 [24, 19, 20],
 [10, 22, 4],
 [13, 15, 14],
 [16, 34, 33],
 [16, 13, 17],
 [14, 23, 12],
 [14, 24, 23],
 [43, 42, 31],
 [14, 15, 33],
 [41, 50, 49],
 [41, 42, 50],
 [49, 40, 41],
 [33, 44, 32],
 [45, 50, 44],
 [14, 33, 32],
 [15, 16, 33],
 [13, 16, 15],
 [17, 35, 16],
 [18, 35, 17],
 [36, 46, 35],
 [45, 46, 48],
 [45, 34, 46],
 [49, 48, 39],
 [46, 36, 47],
 [45, 49, 50],
 [45, 48, 49],
 [48, 46, 47],
 [39, 48, 38],
 [38, 47, 37],
 [38, 48, 47],
 [47, 36, 37],
 [28, 29, 27],
 [18, 17, 13],
 [10, 11, 22],
 [10, 25, 11],
 [18, 12, 30],
 [13, 14, 12],
 [26, 5, 6],
 [10, 4, 5],
 [7, 27, 6],
 [27, 30, 26],
 [26, 30, 25],
 [29, 18, 30],
 [9, 28, 27],
 [29, 30, 27],
 [8, 27, 7],
 [8, 9, 27],
 [5, 25, 26],
 [33, 34, 44],
 [10, 5, 25],
]
)

 new_pcloud = TriMesh(new_pcloud.points, trilist=tri_list, copy=False)

 mapping = OrderedDict()
 mapping["tri"] = np.arange(new_pcloud.n_points)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_49_trimesh")
def face_ibug_68_to_face_ibug_49_trimesh(pcloud):
 r"""
 Apply the IBUG 49-point semantic labels, with trimesh connectivity.

 The semantic labels applied are as follows:

 - tri

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import TriMesh

 # Apply face_ibug_68_to_face_ibug_49
 new_pcloud = face_ibug_68_to_face_ibug_49(pcloud)

 # This is in terms of the 49 points
 tri_list = np.array(
 [
 [47, 29, 28],
 [44, 43, 23],
 [38, 20, 21],
 [47, 28, 42],
 [40, 41, 37],
 [51, 62, 61],
 [37, 19, 20],
 [28, 40, 39],
 [38, 21, 39],
 [36, 1, 0],
 [48, 59, 4],
 [49, 60, 48],
 [13, 53, 14],
 [60, 51, 61],
 [51, 51, 62],
 [52, 51, 33],
 [49, 50, 60],
 [57, 7, 8],
 [64, 56, 57],
 [35, 30, 29],
 [52, 62, 53],
 [53, 52, 35],
 [37, 36, 17],
 [18, 37, 17],
 [37, 38, 40],
 [38, 37, 20],
 [19, 37, 18],
 [38, 39, 40],
 [28, 29, 40],
 [41, 36, 37],
 [27, 39, 21],
 [41, 31, 1],
 [30, 32, 31],
 [33, 51, 50],
 [33, 30, 34],
 [31, 40, 29],
 [36, 0, 17],
 [31, 2, 1],
 [31, 41, 40],
 [1, 36, 41],
 [31, 49, 2],
 [2, 49, 3],
 [3, 49, 48],
 [31, 32, 50],
 [62, 53, 54],
 [48, 4, 3],
 [59, 5, 4],
 [58, 65, 64],
 [5, 59, 58],
 [58, 59, 65],
 [7, 6, 58],
 [64, 57, 58],
 [13, 54, 53],
 [7, 58, 57],
 [6, 5, 58],
 [63, 55, 54],
 [65, 59, 48],
 [31, 50, 49],
 [32, 33, 50],
 [30, 33, 32],
 [34, 52, 33],
 [35, 52, 34],
 [48, 60, 65],
 [64, 63, 56],
 [60, 65, 61],
 [65, 64, 61],
 [57, 56, 9],
 [8, 57, 9],
 [64, 63, 61],
 [9, 56, 10],
 [10, 56, 11],
 [11, 56, 55],
 [11, 55, 12],
 [56, 63, 55],
 [51, 52, 62],
 [55, 54, 12],
 [63, 54, 62],
 [61, 62, 63],
 [12, 54, 13],
 [45, 46, 44],
 [35, 34, 30],
 [14, 53, 35],
 [15, 46, 45],
 [27, 28, 39],
 [27, 42, 28],
 [35, 29, 47],
 [30, 31, 29],
 [15, 35, 46],
 [15, 14, 35],
 [43, 22, 23],
 [27, 21, 22],
 [24, 44, 23],
 [44, 47, 43],
 [43, 47, 42],
 [46, 35, 47],
 [26, 45, 44],
 [46, 47, 44],
 [25, 44, 24],
 [25, 26, 44],
 [16, 15, 45],
 [16, 45, 26],
 [22, 42, 43],
 [50, 60, 51],
 [27, 22, 42],
]
)

 new_pcloud = TriMesh(new_pcloud.points, trilist=tri_list, copy=False)

 mapping = OrderedDict()
 mapping["tri"] = np.arange(new_pcloud.n_points)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_ibug_65")
def face_ibug_68_to_face_ibug_65(pcloud):
 r"""
 Apply the IBUG 68 point semantic labels, but ignore the 3 points that are
 coincident for a closed mouth (bottom of the inner mouth).

 The semantic labels applied are as follows:

 - jaw
 - left_eyebrow
 - right_eyebrow
 - nose
 - left_eye
 - right_eye
 - mouth

 References

 .. [1] http://www.multipie.org/
 .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 # Apply face_ibug_68_to_face_ibug_68
 new_pcloud, mapping = face_ibug_68_to_face_ibug_68(pcloud, return_mapping=True)

 # The coincident points are considered the final 3 landmarks (bottom of
 # the inner mouth points). We remove all the edges for the inner mouth
 # which are the last 8.
 edges = new_pcloud.edges[:-8]
 # Re-add the inner mouth without the bottom 3 points
 edges = np.vstack([edges, connectivity_from_range((60, 65), close_loop=True)])

 # Luckily, OrderedDict maintains the original ordering despite updates
 outer_mouth_indices = np.arange(48, 60)
 inner_mouth_indices = np.arange(60, 65)
 mapping["mouth"] = np.hstack([outer_mouth_indices, inner_mouth_indices])

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 new_pcloud.points[:-3], edges, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="face_imm_58")
def face_imm_58_to_face_imm_58(pcloud):
 r"""
 Apply the 58-point semantic labels from the IMM dataset.

 The semantic labels applied are as follows:

 - jaw
 - left_eye
 - right_eye
 - left_eyebrow
 - right_eyebrow
 - mouth
 - nose

 References

 .. [1] http://www2.imm.dtu.dk/~aam/
 """
 n_expected_points = 58
 validate_input(pcloud, n_expected_points)

 labels = OrderedDict(
 [
 ("jaw", (0, 13, False)),
 ("left_eye", (13, 21, True)),
 ("right_eye", (21, 29, True)),
 ("left _eyebrow", (29, 34, False)),
 ("right_eyebrow", (34, 39, False)),
 ("mouth", (39, 47, True)),
 ("nose", (47, 58, False)),
]
)
 return pcloud_and_lgroup_from_ranges(pcloud, labels)

[docs]@labeller_func(group_label="face_lfpw_29")
def face_lfpw_29_to_face_lfpw_29(pcloud):
 r"""
 Apply the 29-point semantic labels from the original LFPW dataset.

 The semantic labels applied are as follows:

 - chin
 - left_eye
 - right_eye
 - left_eyebrow
 - right_eyebrow
 - mouth
 - nose

 References

 .. [1] http://homes.cs.washington.edu/~neeraj/databases/lfpw/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 29
 validate_input(pcloud, n_expected_points)

 chin_indices = np.array([28])
 outer_leye_indices = np.array([8, 12, 10, 13])
 pupil_leye_indices = np.array([16])
 outer_reye_indices = np.array([11, 14, 9, 15])
 pupil_reye_indices = np.array([17])
 lbrow_indices = np.array([0, 4, 2, 5])
 rbrow_indices = np.array([3, 6, 1, 7])
 outer_mouth_indices = np.array([22, 24, 23, 27])
 inner_mouth_indices = np.array([22, 25, 23, 26])
 nose_indices = np.array([18, 20, 19, 21])

 chin_connectivity = connectivity_from_array(chin_indices, close_loop=True)
 leye_connectivity = connectivity_from_array(outer_leye_indices, close_loop=True)
 reye_connectivity = connectivity_from_array(outer_reye_indices, close_loop=True)
 lbrow_connectivity = connectivity_from_array(lbrow_indices, close_loop=True)
 rbrow_connectivity = connectivity_from_array(rbrow_indices, close_loop=True)
 mouth_connectivity = np.vstack(
 [
 connectivity_from_array(outer_mouth_indices, close_loop=True),
 connectivity_from_array(inner_mouth_indices, close_loop=True),
]
)
 nose_connectivity = connectivity_from_array(nose_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 chin_connectivity,
 leye_connectivity,
 reye_connectivity,
 lbrow_connectivity,
 rbrow_connectivity,
 mouth_connectivity,
 nose_connectivity,
]
)

 mapping = OrderedDict()
 mapping["chin"] = chin_indices
 mapping["left_eye"] = np.hstack((outer_leye_indices, pupil_leye_indices))
 mapping["right_eye"] = np.hstack((outer_reye_indices, pupil_reye_indices))
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["mouth"] = np.hstack((outer_mouth_indices, inner_mouth_indices))
 mapping["nose"] = nose_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

def _build_upper_eyelid():
 top_indices = np.arange(0, 7)
 middle_indices = np.arange(12, 17)
 upper_eyelid_indices = np.hstack((top_indices, middle_indices))

 upper_eyelid_connectivity = list(zip(top_indices, top_indices[1:]))
 upper_eyelid_connectivity += [(0, 12)]
 upper_eyelid_connectivity += list(zip(middle_indices, middle_indices[1:]))
 upper_eyelid_connectivity += [(16, 6)]

 return upper_eyelid_indices, upper_eyelid_connectivity

[docs]@labeller_func(group_label="eye_ibug_open_38")
def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
 r"""
 Apply the IBUG 38-point open eye semantic labels.

 The semantic labels applied are as follows:

 - upper_eyelid
 - lower_eyelid
 - iris
 - pupil
 - sclera
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 38
 validate_input(pcloud, n_expected_points)

 upper_el_indices, upper_el_connectivity = _build_upper_eyelid()

 iris_range = (22, 30)
 pupil_range = (30, 38)
 sclera_top = np.arange(12, 17)
 sclera_bottom = np.arange(17, 22)
 sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
 lower_el_top = np.arange(17, 22)
 lower_el_bottom = np.arange(7, 12)
 lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))

 iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
 pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)

 sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
 sclera_connectivity += [(0, 21)]
 sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
 sclera_connectivity += [(6, 17)]

 lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
 lower_el_connectivity += [(6, 7)]
 lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
 lower_el_connectivity += [(11, 0)]

 all_connectivity = np.asarray(
 upper_el_connectivity
 + lower_el_connectivity
 + iris_connectivity.tolist()
 + pupil_connectivity.tolist()
 + sclera_connectivity
)

 mapping = OrderedDict()
 mapping["upper_eyelid"] = upper_el_indices
 mapping["lower_eyelid"] = lower_el_indices
 mapping["pupil"] = np.arange(*pupil_range)
 mapping["iris"] = np.arange(*iris_range)
 mapping["sclera"] = sclera_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="eye_ibug_close_17")
def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
 r"""
 Apply the IBUG 17-point close eye semantic labels.

 The semantic labels applied are as follows:

 - upper_eyelid
 - lower_eyelid
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 17
 validate_input(pcloud, n_expected_points)

 upper_indices, upper_connectivity = _build_upper_eyelid()

 middle_indices = np.arange(12, 17)
 bottom_indices = np.arange(6, 12)
 lower_indices = np.hstack((bottom_indices, 0, middle_indices))
 lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
 lower_connectivity += [(0, 12)]
 lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
 lower_connectivity += [(11, 0)]

 all_connectivity = np.asarray(upper_connectivity + lower_connectivity)

 mapping = OrderedDict()
 mapping["upper_eyelid"] = upper_indices
 mapping["lower_eyelid"] = lower_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="eye_ibug_open_38_trimesh")
def eye_ibug_open_38_to_eye_ibug_open_38_trimesh(pcloud):
 r"""
 Apply the IBUG 38-point open eye semantic labels, with trimesh connectivity.

 The semantic labels applied are as follows:

 - tri
 """
 from menpo.shape import TriMesh

 n_expected_points = 38
 validate_input(pcloud, n_expected_points)

 tri_list = np.array(
 [
 [29, 36, 28],
 [22, 13, 23],
 [12, 1, 2],
 [29, 30, 37],
 [13, 3, 14],
 [13, 12, 2],
 [19, 8, 9],
 [25, 33, 24],
 [36, 37, 33],
 [24, 32, 31],
 [33, 37, 31],
 [35, 34, 27],
 [35, 36, 33],
 [3, 13, 2],
 [14, 24, 23],
 [33, 32, 24],
 [15, 25, 14],
 [25, 26, 34],
 [22, 30, 29],
 [31, 37, 30],
 [24, 31, 23],
 [32, 33, 31],
 [22, 12, 13],
 [0, 1, 12],
 [14, 23, 13],
 [31, 30, 23],
 [28, 19, 20],
 [21, 11, 0],
 [12, 21, 0],
 [20, 11, 21],
 [20, 10, 11],
 [21, 29, 20],
 [21, 12, 22],
 [30, 22, 23],
 [29, 21, 22],
 [27, 19, 28],
 [29, 37, 36],
 [29, 28, 20],
 [36, 35, 28],
 [20, 19, 10],
 [10, 19, 9],
 [28, 35, 27],
 [19, 19, 8],
 [17, 16, 6],
 [18, 7, 8],
 [25, 34, 33],
 [18, 27, 17],
 [18, 19, 27],
 [18, 17, 7],
 [27, 26, 17],
 [17, 6, 7],
 [14, 25, 24],
 [34, 35, 33],
 [17, 26, 16],
 [27, 34, 26],
 [3, 15, 14],
 [15, 26, 25],
 [4, 15, 3],
 [16, 26, 15],
 [16, 4, 5],
 [16, 15, 4],
 [16, 5, 6],
 [8, 18, 19],
]
)

 new_pcloud = TriMesh(pcloud.points, trilist=tri_list, copy=False)

 mapping = OrderedDict()
 mapping["tri"] = np.arange(new_pcloud.n_points)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="eye_ibug_close_17_trimesh")
def eye_ibug_close_17_to_eye_ibug_close_17_trimesh(pcloud):
 r"""
 Apply the IBUG 17-point close eye semantic labels, with trimesh
 connectivity.

 The semantic labels applied are as follows:

 - tri
 """
 from menpo.shape import TriMesh

 n_expected_points = 17
 validate_input(pcloud, n_expected_points)

 tri_list = np.array(
 [
 [10, 11, 13],
 [3, 13, 2],
 [4, 14, 3],
 [15, 5, 16],
 [12, 11, 0],
 [13, 14, 10],
 [13, 12, 2],
 [14, 13, 3],
 [0, 1, 12],
 [2, 12, 1],
 [13, 11, 12],
 [9, 10, 14],
 [15, 9, 14],
 [7, 8, 15],
 [5, 6, 16],
 [15, 14, 4],
 [7, 15, 16],
 [8, 9, 15],
 [15, 4, 5],
 [16, 6, 7],
]
)

 new_pcloud = TriMesh(pcloud.points, trilist=tri_list, copy=False)

 mapping = OrderedDict()
 mapping["tri"] = np.arange(new_pcloud.n_points)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="tongue_ibug_19")
def tongue_ibug_19_to_tongue_ibug_19(pcloud):
 r"""
 Apply the IBUG 19-point tongue semantic labels.

 The semantic labels applied are as follows:

 - outline
 - bisector
 """
 n_expected_points = 19
 validate_input(pcloud, n_expected_points)

 labels = OrderedDict([("outline", (0, 13, False)), ("bisector", (13, 19, False))])
 return pcloud_and_lgroup_from_ranges(pcloud, labels)

 menpo.landmark.labels.human.face_3d

 Source code for menpo.landmark.labels.human.face_3d

from collections import OrderedDict
import numpy as np

from ..base import labeller_func, validate_input, connectivity_from_array

[docs]@labeller_func(group_label="face_bu3dfe_83")
def face_bu3dfe_83_to_face_bu3dfe_83(pcloud):
 r"""
 Apply the BU-3DFE (Binghamton University 3D Facial Expression)
 Database 83-point facial semantic labels.

 The semantic labels applied are as follows:

 - right_eye
 - left_eye
 - right_eyebrow
 - left_eyebrow
 - right_nose
 - left_nose
 - nostrils
 - outer_mouth
 - inner_mouth
 - jaw

 References

 .. [1] http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 83
 validate_input(pcloud, n_expected_points)

 reye_indices = np.arange(0, 8)
 leye_indices = np.arange(8, 16)
 rbrow_indices = np.arange(16, 26)
 lbrow_indices = np.arange(26, 36)
 rnose_indices = np.arange(36, 39)
 lnose_indices = np.arange(39, 42)
 nostril_indices = np.arange(42, 48)
 outermouth_indices = np.arange(48, 60)
 innermouth_indices = np.arange(60, 68)
 jaw_indices = np.arange(68, 83)

 reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
 leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
 rbrow_connectivity = connectivity_from_array(rbrow_indices, close_loop=True)
 lbrow_connectivity = connectivity_from_array(lbrow_indices, close_loop=True)
 rnose_connectivity = connectivity_from_array(rnose_indices)
 nostril_connectivity = connectivity_from_array(nostril_indices)
 lnose_connectivity = connectivity_from_array(lnose_indices)
 outermouth_connectivity = connectivity_from_array(
 outermouth_indices, close_loop=True
)
 innermouth_connectivity = connectivity_from_array(
 innermouth_indices, close_loop=True
)
 jaw_connectivity = connectivity_from_array(jaw_indices)

 all_connectivity = np.vstack(
 [
 reye_connectivity,
 leye_connectivity,
 rbrow_connectivity,
 lbrow_connectivity,
 rnose_connectivity,
 nostril_connectivity,
 lnose_connectivity,
 outermouth_connectivity,
 innermouth_connectivity,
 jaw_connectivity,
]
)

 mapping = OrderedDict()
 mapping["right_eye"] = reye_indices
 mapping["left_eye"] = leye_indices
 mapping["right_eyebrow"] = rbrow_indices
 mapping["left_eyebrow"] = lbrow_indices
 mapping["right_nose"] = rnose_indices
 mapping["left_nose"] = lnose_indices
 mapping["nostrils"] = nostril_indices
 mapping["outer_mouth"] = outermouth_indices
 mapping["inner_mouth"] = innermouth_indices
 mapping["jaw"] = jaw_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

 menpo.landmark.labels.human.hand

 Source code for menpo.landmark.labels.human.hand

from collections import OrderedDict
import numpy as np

from ..base import validate_input, connectivity_from_array, labeller_func

[docs]@labeller_func(group_label="hand_ibug_39")
def hand_ibug_39_to_hand_ibug_39(pcloud):
 r"""
 Apply the IBUG 39-point semantic labels.

 The semantic labels applied are as follows:

 - thumb
 - index
 - middle
 - ring
 - pinky
 - palm
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 39
 validate_input(pcloud, n_expected_points)

 thumb_indices = np.arange(0, 5)
 index_indices = np.arange(5, 12)
 middle_indices = np.arange(12, 19)
 ring_indices = np.arange(19, 26)
 pinky_indices = np.arange(26, 33)
 palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]), np.arange(35, 39)))

 thumb_connectivity = connectivity_from_array(thumb_indices, close_loop=False)
 index_connectivity = connectivity_from_array(index_indices, close_loop=False)
 middle_connectivity = connectivity_from_array(middle_indices, close_loop=False)
 ring_connectivity = connectivity_from_array(ring_indices, close_loop=False)
 pinky_connectivity = connectivity_from_array(pinky_indices, close_loop=False)
 palm_connectivity = connectivity_from_array(palm_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 thumb_connectivity,
 index_connectivity,
 middle_connectivity,
 ring_connectivity,
 pinky_connectivity,
 palm_connectivity,
]
)

 mapping = OrderedDict()
 mapping["thumb"] = thumb_indices
 mapping["index"] = index_indices
 mapping["middle"] = middle_indices
 mapping["ring"] = ring_indices
 mapping["pinky"] = pinky_indices
 mapping["palm"] = palm_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

 menpo.landmark.labels.human.pose

 Source code for menpo.landmark.labels.human.pose

from collections import OrderedDict
import numpy as np

from ..base import (
 labeller_func,
 validate_input,
 connectivity_from_array,
 pcloud_and_lgroup_from_ranges,
)

[docs]@labeller_func(group_label="pose_stickmen_12")
def pose_stickmen_12_to_pose_stickmen_12(pcloud):
 r"""
 Apply the 'stickmen' 12-point semantic labels.

 The semantic labels applied are as follows:

 - torso
 - right_upper_arm
 - left_upper_arm
 - right_lower_arm
 - left_lower_arm
 - head

 References

 .. [1] http://www.robots.ox.ac.uk/~vgg/data/stickmen/
 """
 n_expected_points = 12
 validate_input(pcloud, n_expected_points)

 labels = OrderedDict(
 [
 ("torso", (0, 2, False)),
 ("right_upper arm", (2, 4, False)),
 ("left_upper arm", (4, 6, False)),
 ("right_lower_arm", (6, 8, False)),
 ("left_lower_arm", (8, 10, False)),
 ("head", (10, 12, False)),
]
)
 return pcloud_and_lgroup_from_ranges(pcloud, labels)

[docs]@labeller_func(group_label="pose_lsp_14")
def pose_lsp_14_to_pose_lsp_14(pcloud):
 r"""
 Apply the lsp 14-point semantic labels.

 The semantic labels applied are as follows:

 - left_leg
 - right_leg
 - left_arm
 - right_arm
 - head

 References

 .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 14
 validate_input(pcloud, n_expected_points)

 left_leg_indices = np.arange(0, 3)
 right_leg_indices = np.arange(3, 6)
 left_arm_indices = np.arange(6, 9)
 right_arm_indices = np.arange(9, 12)
 head_indices = np.arange(12, 14)

 left_leg_connectivity = connectivity_from_array(left_leg_indices)
 right_leg_connectivity = connectivity_from_array(right_leg_indices)
 left_arm_connectivity = connectivity_from_array(left_arm_indices)
 right_arm_connectivity = connectivity_from_array(right_arm_indices)
 head_connectivity = connectivity_from_array(head_indices)

 all_connectivity = np.vstack(
 [
 left_leg_connectivity,
 right_leg_connectivity,
 left_arm_connectivity,
 right_arm_connectivity,
 head_connectivity,
]
)

 mapping = OrderedDict()
 mapping["left_leg"] = left_leg_indices
 mapping["right_leg"] = right_leg_indices
 mapping["left_arm"] = left_arm_indices
 mapping["right_arm"] = right_arm_indices
 mapping["head"] = head_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="pose_flic_11")
def pose_flic_11_to_pose_flic_11(pcloud):
 r"""
 Apply the flic 11-point semantic labels.

 The semantic labels applied are as follows:

 - left_arm
 - right_arm
 - hips
 - face

 References

 .. [1] http://vision.grasp.upenn.edu/cgi-bin/index.php?n=VideoLearning.FLIC
 """
 n_expected_points = 11
 validate_input(pcloud, n_expected_points)

 labels = OrderedDict(
 [
 ("left_arm", (0, 3, False)),
 ("right_arm", (3, 6, False)),
 ("hips", (6, 8, False)),
 ("face", (8, 11, True)),
]
)

 return pcloud_and_lgroup_from_ranges(pcloud, labels)

[docs]@labeller_func(group_label="pose_human36M_32")
def pose_human36M_32_to_pose_human36M_32(pcloud):
 r"""
 Apply the human3.6M 32-point semantic labels.

 The semantic labels applied are as follows:

 - pelvis
 - right_leg
 - left_leg
 - spine
 - head
 - left_arm
 - left_hand
 - right_arm
 - right_hand
 - torso

 References

 .. [1] http://vision.imar.ro/human3.6m/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 32
 validate_input(pcloud, n_expected_points)

 pelvis_indices = np.array([1, 0, 6])
 right_leg_indices = np.array(range(1, 6))
 left_leg_indices = np.array(range(6, 11))
 spine_indices = np.array([11, 12, 13])
 head_indices = np.array([13, 14, 15])
 left_arm_indices = np.array([16, 17, 18, 19, 23])
 left_hand_indices = np.array([20, 21, 22])
 right_arm_indices = np.array([24, 25, 26, 27, 29, 31])
 right_hand_indices = np.array([28, 29, 30])
 torso_indices = np.array([0, 1, 25, 13, 17, 6])

 pelvis_connectivity = connectivity_from_array(pelvis_indices)
 right_leg_connectivity = connectivity_from_array(right_leg_indices)
 left_leg_connectivity = connectivity_from_array(left_leg_indices)
 spine_connectivity = connectivity_from_array(spine_indices)
 head_connectivity = connectivity_from_array(head_indices)
 left_arm_connectivity = connectivity_from_array(left_arm_indices)
 left_hand_connectivity = connectivity_from_array(left_hand_indices)
 right_arm_connectivity = connectivity_from_array(right_arm_indices)
 right_hand_connectivity = connectivity_from_array(right_hand_indices)
 torso_connectivity = connectivity_from_array(torso_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 pelvis_connectivity,
 right_leg_connectivity,
 left_leg_connectivity,
 spine_connectivity,
 head_connectivity,
 left_arm_connectivity,
 left_hand_connectivity,
 right_arm_connectivity,
 right_hand_connectivity,
 torso_connectivity,
]
)

 mapping = OrderedDict()
 mapping["pelvis"] = pelvis_indices
 mapping["right_leg"] = right_leg_indices
 mapping["left_leg"] = left_leg_indices
 mapping["spine"] = spine_indices
 mapping["head"] = head_indices
 mapping["left_arm"] = left_arm_indices
 mapping["left_hand"] = left_hand_indices
 mapping["right_arm"] = right_arm_indices
 mapping["right_hand"] = right_hand_indices
 mapping["torso"] = torso_indices

 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points, all_connectivity, mapping
)

 return new_pcloud, mapping

[docs]@labeller_func(group_label="pose_human36M_17")
def pose_human36M_32_to_pose_human36M_17(pcloud):
 r"""
 Apply the human3.6M 17-point semantic labels (based on the
 original semantic labels of Human3.6 but removing the annotations
 corresponding to duplicate points, soles and palms), originally 32-points.

 The semantic labels applied are as follows:

 - pelvis
 - right_leg
 - left_leg
 - spine
 - head
 - left_arm
 - right_arm
 - torso

 References

 .. [1] http://vision.imar.ro/human3.6m/
 """
 from menpo.shape import LabelledPointUndirectedGraph

 n_expected_points = 32
 validate_input(pcloud, n_expected_points)

 pelvis_indices = np.array([1, 0, 4])
 right_leg_indices = np.arange(1, 4)
 left_leg_indices = np.arange(4, 7)
 spine_indices = np.array([0, 7, 8])
 head_indices = np.array([8, 9, 10])
 left_arm_indices = np.array([8, 11, 12, 13])
 right_arm_indices = np.array([8, 14, 15, 16])
 torso_indices = np.array([0, 1, 14, 8, 11, 4])

 pelvis_connectivity = connectivity_from_array(pelvis_indices)
 right_leg_connectivity = connectivity_from_array(right_leg_indices)
 left_leg_connectivity = connectivity_from_array(left_leg_indices)
 spine_connectivity = connectivity_from_array(spine_indices)
 head_connectivity = connectivity_from_array(head_indices)
 left_arm_connectivity = connectivity_from_array(left_arm_indices)
 right_arm_connectivity = connectivity_from_array(right_arm_indices)
 torso_connectivity = connectivity_from_array(torso_indices, close_loop=True)

 all_connectivity = np.vstack(
 [
 pelvis_connectivity,
 right_leg_connectivity,
 left_leg_connectivity,
 spine_connectivity,
 head_connectivity,
 left_arm_connectivity,
 right_arm_connectivity,
 torso_connectivity,
]
)

 mapping = OrderedDict()
 mapping["pelvis"] = pelvis_indices
 mapping["right_leg"] = right_leg_indices
 mapping["left_leg"] = left_leg_indices
 mapping["spine"] = spine_indices
 mapping["head"] = head_indices
 mapping["left_arm"] = left_arm_indices
 mapping["right_arm"] = right_arm_indices
 mapping["torso"] = torso_indices

 # Ignore duplicate points, sole and palms
 ind = np.hstack(
 [
 np.arange(0, 4),
 np.arange(6, 9),
 np.arange(12, 16),
 np.arange(17, 20),
 np.arange(25, 28),
]
)
 new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
 pcloud.points[ind], all_connectivity, mapping
)

 return new_pcloud, mapping

 menpo.math.convolution

 Source code for menpo.math.convolution

log_gabor filter and __frequency_butterworth_filter are derived from Matlab
scripts written by Peter Kovesi. We maintain his copyright notice below.
#
Copyright (c) 1999 Peter Kovesi
School of Computer Science & Software Engineering
The University of Western Australia
http://www.csse.uwa.edu.au/
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
The Software is provided "as is", without warranty of any kind.

import numpy as np

def __adjusted_meshgrid(shape):
 """
 Creates an adjusted meshgrid that accounts for odd image sizes. Linearly
 interpolates the values. This meshgrid assumes 'ij' indexing - which is
 due to the 1st dimension of an image being the y-dimension.

 Parameters

 shape: tuple
 Size of meshgrid, (M, N, ...). The dimensionality should not be
 swapped due to using images. Therefore, for a 2D image, the expected
 tuple is `(HEIGHT, WIDTH)`.

 Returns

 meshgrid : list of (M, N, ...) ndarrays
 The meshgrid over each dimension given by the shape.

 """
 adjust_range = []
 for dim in shape:
 adjust_range.append(np.linspace(-0.5, 0.5, dim))

 return np.meshgrid(*adjust_range, indexing="ij")

def __frequency_butterworth_filter(shape, cutoff, order):
 r"""
 Builds an N-D butterworth filter

 ..math::

 f = \frac{1.0}{1.0 + (w / cutoff)^{2n}}

 The frequency origin of the returned filter is at the corners.

 Parameters

 shape : tuple
 The size of the filter (M, N, ...)
 cutoff : double
 Cutoff frequency of the filter in the range `[0, 0.5]`
 order : positive int
 Order of the filter. The higher it is the sharper the transition

 Returns

 butterworth_filter : (M, N, ...) ndarray
 The butterworth filter for the given parameters. Will be the same
 shape as was requested.
 """
 # Dimension-free sum of squares
 grid = __adjusted_meshgrid(shape)
 grid_sq = [g ** 2 for g in grid]
 grid_sq = sum(grid_sq)

 radius = np.sqrt(grid_sq)
 return np.fft.ifftshift(1.0 / ((radius / cutoff) ** (2 * order) + 1.0))

TODO: merge the 2D and 3D versions if possible
[docs]def log_gabor(image, **kwargs):
 r"""
 Creates a log-gabor filter bank, including smoothing the images via a
 low-pass filter at the edges.

 To create a 2D filter bank, simply specify the number of phi
 orientations (orientations in the xy-plane).

 To create a 3D filter bank, you must specify both the number of
 phi (azimuth) and theta (elevation) orientations.

 This algorithm is directly derived from work by Peter Kovesi.

 Parameters

 image : ``(M, N, ...)`` `ndarray`
 Image to be convolved
 num_scales : `int`, optional
 Number of wavelet scales.

 ========== ==
 Default 2D 4
 Default 3D 4
 ========== ==
 num_phi_orientations : `int`, optional
 Number of filter orientations in the xy-plane

 ========== ==
 Default 2D 6
 Default 3D 6
 ========== ==
 num_theta_orientations : `int`, optional
 Only required for 3D. Number of filter orientations in the z-plane

 ========== ==
 Default 2D N/A
 Default 3D 4
 ========== ==
 min_wavelength : `int`, optional
 Wavelength of smallest scale filter.

 ========== ==
 Default 2D 3
 Default 3D 3
 ========== ==
 scaling_constant : `int`, optional
 Scaling factor between successive filters.

 ========== ==
 Default 2D 2
 Default 3D 2
 ========== ==
 center_sigma : `float`, optional
 Ratio of the standard deviation of the Gaussian describing the Log
 Gabor filter's transfer function in the frequency domain to the filter
 centre frequency.

 ========== ==
 Default 2D 0.65
 Default 3D 0.65
 ========== ==
 d_phi_sigma : `float`, optional
 Angular bandwidth in xy-plane

 ========== ==
 Default 2D 1.3
 Default 3D 1.5
 ========== ==
 d_theta_sigma : `float`, optional
 Only required for 3D. Angular bandwidth in z-plane

 ========== ==
 Default 2D N/A
 Default 3D 1.5
 ========== ==

 Returns

 complex_conv : ``(num_scales, num_orientations, image.shape)`` `ndarray`
 Complex valued convolution results. The real part is the
 result of convolving with the even symmetric filter, the
 imaginary part is the result from convolution with the
 odd symmetric filter.
 bandpass : ``(num_scales, image.shape)`` `ndarray`
 Bandpass images corresponding to each scale `s`
 S : ``(image.shape,)`` `ndarray`
 Convolved image

 Examples

 Return the magnitude of the convolution over the image at
 scale `s` and orientation `o`

 ::

 np.abs(complex_conv[s, o, :, :])

 Return the phase angles

 ::

 np.angle(complex_conv[s, o, :, :])

 References

 .. [1] D. J. Field, "Relations Between the Statistics of Natural Images
 and the Response Properties of Cortical Cells",
 Journal of The Optical Society of America A, Vol 4, No. 12,
 December 1987. pp 2379-2394
 """
 if len(image.shape) == 2: # 2D filter
 return __log_gabor_2d(image, **kwargs)
 elif len(image.shape) == 3: # 3D filter
 return __log_gabor_3d(image, **kwargs)
 else:
 raise ValueError("Image must be either 2D or 3D")

def __log_gabor_3d(
 image,
 num_scales=4,
 num_phi_orientations=6,
 num_theta_orientations=4,
 min_wavelength=3,
 scaling_constant=2,
 center_sigma=0.65,
 d_theta_sigma=1.5,
 d_phi_sigma=1.5,
):
 # Pre-compute sigma values
 theta_sigma = np.pi / num_theta_orientations / d_theta_sigma
 phi_sigma = (2 * np.pi) / num_phi_orientations / d_phi_sigma

 # Allocate space for return structures
 bandpass = np.empty(
 [num_scales, image.shape[0], image.shape[1], image.shape[2]], dtype=np.complex
)
 log_gabor = np.empty([num_scales, image.shape[0], image.shape[1], image.shape[2]])
 S = np.zeros(image.shape)
 complex_conv = np.empty(
 [
 num_scales,
 num_theta_orientations,
 num_phi_orientations,
 image.shape[0],
 image.shape[1],
 image.shape[2],
],
 dtype=np.complex,
)
 tmp_complex_conv = np.empty(
 [num_scales, image.shape[0], image.shape[1], image.shape[2]], dtype=np.complex
)

 # Pre-compute fourier values
 image_fft = np.fft.fftn(image)

 axis0, axis1, axis2 = __adjusted_meshgrid(image.shape)

 radius = np.sqrt(axis0 ** 2 + axis1 ** 2 + axis2 ** 2)
 theta = np.arctan2(axis0, axis1)
 # TODO: Is adding the mean REALLY a good idea?
 m_ab = np.abs(np.mean(radius))
 phi = np.arccos(axis2 / (radius + m_ab))

 radius = np.fft.ifftshift(radius)
 radius[0, 0, 0] = 1.0
 theta = np.fft.ifftshift(theta)
 phi = np.fft.ifftshift(phi)

 sin_theta = np.sin(theta)
 cos_theta = np.cos(theta)
 sin_phi = np.sin(phi)
 cos_phi = np.cos(phi)

 # Compute the lowpass filter
 butterworth_filter = __frequency_butterworth_filter(image.shape, 0.45, 15)

 # Compute radial component of filter
 for s in range(num_scales):
 wavelength = min_wavelength * scaling_constant ** s
 fo = 1.0 / wavelength

 l = np.exp((-np.log(radius / fo) ** 2) / (2.0 * np.log(center_sigma) ** 2))
 l = l * butterworth_filter
 l[0, 0, 0] = 0.0

 log_gabor[s, :, :, :] = l
 bandpass[s, :, :, :] = np.fft.ifft2(image_fft * l)

 # Computer angular component of filter
 for e in range(num_theta_orientations):
 # Pre-compute filter data specific to this orientation
 elevation_angle = e * np.pi / num_theta_orientations

 d_theta_sin = sin_theta * np.cos(elevation_angle) - cos_theta * np.sin(
 elevation_angle
)
 d_theta_cos = cos_theta * np.cos(elevation_angle) + sin_theta * np.sin(
 elevation_angle
)
 d_theta = np.abs(np.arctan2(d_theta_sin, d_theta_cos))

 for a in range(num_phi_orientations):
 azimuth_angle = a * 2 * np.pi / num_phi_orientations
 d_phi_sin = sin_phi * np.cos(azimuth_angle) - cos_phi * np.sin(
 azimuth_angle
)
 d_phi_cos = cos_phi * np.cos(azimuth_angle) + sin_phi * np.sin(
 azimuth_angle
)
 d_phi = np.abs(np.arctan2(d_phi_sin, d_phi_cos))

 phi_spread = (-(d_phi ** 2)) / (2 * phi_sigma ** 2)
 theta_spread = (-(d_theta ** 2)) / (2 * theta_sigma ** 2)
 spread = np.exp(phi_spread + theta_spread)

 # For each scale, multiply by the angular spread
 for s in range(0, num_scales):
 filter_bank = log_gabor[s] * spread

 shifted_filter = np.fft.fftshift(filter_bank)
 S += shifted_filter * np.conjugate(shifted_filter)

 tmp_complex_conv[s, :, :] = np.fft.ifft2(image_fft * filter_bank)

 complex_conv[:, e, a, :, :] = tmp_complex_conv[None, None, ...]

 # TODO: Do we need to flip S as in the 2D version?
 return complex_conv, bandpass, S

def __log_gabor_2d(
 image,
 num_scales=4,
 num_orientations=6,
 min_wavelength=3,
 scaling_constant=2,
 center_sigma=0.65,
 d_phi_sigma=1.3,
):
 # Allocate space for return structures
 bandpass = np.empty([num_scales, image.shape[0], image.shape[1]], dtype=np.complex)
 log_gabor = np.empty([num_scales, image.shape[0], image.shape[1]])
 S = np.zeros(image.shape)
 complex_conv = np.empty(
 [num_scales, num_orientations, image.shape[0], image.shape[1]], dtype=np.complex
)
 tmp_complex_conv = np.empty(
 [num_scales, image.shape[0], image.shape[1]], dtype=np.complex
)

 # Pre-compute phi sigma
 phi_sigma = np.pi / num_orientations / d_phi_sigma

 # Pre-compute fourier values
 image_fft = np.fft.fft2(image)

 axis0, axis1 = __adjusted_meshgrid(image.shape)

 radius = np.sqrt(axis0 ** 2 + axis1 ** 2)
 phi = np.arctan2(axis0, axis1)

 radius = np.fft.ifftshift(radius)
 radius[0][0] = 1.0
 phi = np.fft.ifftshift(phi)

 sin_phi = np.sin(phi)
 cos_phi = np.cos(phi)

 # Compute the lowpass filter
 butterworth_filter = __frequency_butterworth_filter(image.shape, 0.45, 15)

 # Compute radial component of filter
 for s in range(num_scales):
 wavelength = min_wavelength * scaling_constant ** s
 fo = 1.0 / wavelength

 l = np.exp((-((np.log(radius / fo)) ** 2)) / (2.0 * np.log(center_sigma) ** 2))
 l = l * butterworth_filter
 l[0][0] = 0.0

 log_gabor[s, :, :] = l
 bandpass[s, :, :] = np.fft.ifft2(image_fft * l)

 # Computer angular component of filter
 for o in range(num_orientations):
 # Pre-compute filter data specific to this orientation
 filter_angle = o * np.pi / num_orientations

 ds = sin_phi * np.cos(filter_angle) - cos_phi * np.sin(filter_angle)
 dc = cos_phi * np.cos(filter_angle) + sin_phi * np.sin(filter_angle)

 d_phi = np.abs(np.arctan2(ds, dc))

 # Calculate the standard deviation of the angular Gaussian
 # function used to construct filters in the freq. plane.
 spread = np.exp((-(d_phi ** 2.0)) / (2.0 * phi_sigma ** 2))

 # For each scale, multiply by the angular spread
 for s in range(0, num_scales):
 filter_bank = log_gabor[s] * spread

 shifted_filter = np.fft.fftshift(filter_bank)
 S += shifted_filter * np.conjugate(shifted_filter)

 tmp_complex_conv[s, :, :] = np.fft.ifft2(image_fft * filter_bank)

 complex_conv[:, o, :, :] = tmp_complex_conv[None, ...]

 # TODO: Why is this done??
 return complex_conv, bandpass, np.flipud(S)

 menpo.math.decomposition

 Source code for menpo.math.decomposition

import numpy as np
from scipy.sparse import issparse

from .linalg import dot_inplace_right

[docs]def eigenvalue_decomposition(C, is_inverse=False, eps=1e-10):
 r"""
 Eigenvalue decomposition of a given covariance (or scatter) matrix.

 Parameters

 C : ``(N, N)`` `ndarray` or `scipy.sparse`
 The Covariance/Scatter matrix. If it is a `numpy.array`, then
 `numpy.linalg.eigh` is used. If it is an instance of `scipy.sparse`,
 then `scipy.sparse.linalg.eigsh` is used. If it is a precision matrix
 (inverse covariance), then set `is_inverse=True`.
 is_inverse : `bool`, optional
 It ``True``, then it is assumed that `C` is a precision matrix (
 inverse covariance). Thus, the eigenvalues will be inverted. If
 ``False``, then it is assumed that `C` is a covariance matrix.
 eps : `float`, optional
 Tolerance value for positive eigenvalue. Those eigenvalues smaller
 than the specified eps value, together with their corresponding
 eigenvectors, will be automatically discarded. The final
 limit is computed as ::

 limit = np.max(np.abs(eigenvalues)) * eps

 Returns

 pos_eigenvectors : ``(N, p)`` `ndarray`
 The matrix with the eigenvectors corresponding to positive eigenvalues.
 pos_eigenvalues : ``(p,)`` `ndarray`
 The array of positive eigenvalues.
 """
 # compute eigenvalue decomposition
 if issparse(C):
 from scipy.sparse.linalg import eigsh

 eigenvalues, eigenvectors = eigsh(C, k=C.shape[0] - 1)
 else:
 eigenvalues, eigenvectors = np.linalg.eigh(C)

 # sort eigenvalues from largest to smallest
 index = np.argsort(eigenvalues)[::-1]
 eigenvalues = eigenvalues[index]
 eigenvectors = eigenvectors[:, index]

 # set tolerance limit
 limit = np.max(np.abs(eigenvalues)) * eps

 # select positive eigenvalues
 pos_index = eigenvalues > 0.0
 pos_eigenvalues = eigenvalues[pos_index]
 pos_eigenvectors = eigenvectors[:, pos_index]
 # check they are within the expected tolerance
 index = pos_eigenvalues > limit
 pos_eigenvalues = pos_eigenvalues[index]
 pos_eigenvectors = pos_eigenvectors[:, index]

 # if C was a precision matrix (inverse covariance), then invert and re-sort
 # the eigenvalues
 if is_inverse:
 pos_eigenvalues = pos_eigenvalues[::-1] ** -1
 pos_eigenvectors = pos_eigenvectors[:, ::-1]

 return pos_eigenvectors, pos_eigenvalues

[docs]def pca(X, centre=True, inplace=False, eps=1e-10):
 r"""
 Apply Principal Component Analysis (PCA) on the data matrix `X`. In the case
 where the data matrix is very large, it is advisable to set
 ``inplace = True``. However, note this destructively edits the data matrix
 by subtracting the mean inplace.

 Parameters

 X : ``(n_samples, n_dims)`` `ndarray`
 Data matrix.
 centre : `bool`, optional
 Whether to centre the data matrix. If `False`, zero will be subtracted.
 inplace : `bool`, optional
 Whether to do the mean subtracting inplace or not. This is crucial if
 the data matrix is greater than half the available memory size.
 eps : `float`, optional
 Tolerance value for positive eigenvalue. Those eigenvalues smaller
 than the specified eps value, together with their corresponding
 eigenvectors, will be automatically discarded.

 Returns

 U (eigenvectors) : ``(``(n_components, n_dims)``)`` `ndarray`
 Eigenvectors of the data matrix.
 l (eigenvalues) : ``(n_components,)`` `ndarray`
 Positive eigenvalues of the data matrix.
 m (mean vector) : ``(n_dimensions,)`` `ndarray`
 Mean that was subtracted from the data matrix.
 """
 n, d = X.shape

 if centre:
 # centre data
 # m (mean vector): d
 m = np.mean(X, axis=0)
 else:
 m = np.zeros(d, dtype=X.dtype)

 # This is required if the data matrix is very large!
 if inplace:
 X -= m
 else:
 X = X - m

 if d < n:
 # compute covariance matrix
 # C (covariance): d x d
 C = np.dot(X.conj().T, X) / (n - 1)
 # C should be perfectly symmetrical, but numerical error can creep
 # in. Enforce symmetry here to avoid creating complex eigenvectors
 C = (C + C.conj().T) / 2.0

 # perform eigenvalue decomposition
 # U (eigenvectors): d x n
 # s (eigenvalues): n
 U, l = eigenvalue_decomposition(C, is_inverse=False, eps=eps)

 # transpose U
 # U: n x d
 U = U.T

 else:
 # d > n
 # compute small covariance matrix
 # C (covariance): n x n
 C = np.dot(X, X.conj().T) / (n - 1)
 # C should be perfectly symmetrical, but numerical error can creep
 # in. Enforce symmetry here to avoid creating complex eigenvectors
 C = (C + C.conj().T) / 2.0

 # perform eigenvalue decomposition
 # V (eigenvectors): n x n
 # s (eigenvalues): n
 V, l = eigenvalue_decomposition(C, is_inverse=False, eps=eps)

 # compute final eigenvectors
 # U: n x d
 w = np.sqrt(1.0 / ((n - 1) * l))
 dot = dot_inplace_right if inplace else np.dot
 U = dot(V.conj().T, X)
 U *= w[:, None]

 return U, l, m

The default value of eps tolerance is set to 1e-5 (instead of 1e-10 that used
to be). This is done in order for pcacov to work for inverse single precision C
i.e. is_inverse=True and dtype=np.float32. 1e-10 works perfectly when the
covariance matrix has double precision (np.float64). However, if C has single
precision (np.float32) and is inverse, then the first two eigenvectors end up
having noise.
[docs]def pcacov(C, is_inverse=False, eps=1e-5):
 r"""
 Apply Principal Component Analysis (PCA) given a covariance/scatter matrix
 `C`. In the case where the data matrix is very large, it is advisable to set
 ``inplace = True``. However, note this destructively edits the data matrix
 by subtracting the mean inplace.

 Parameters

 C : ``(N, N)`` `ndarray` or `scipy.sparse`
 The Covariance/Scatter matrix. If it is a precision matrix (inverse
 covariance), then set `is_inverse=True`.
 is_inverse : `bool`, optional
 It ``True``, then it is assumed that `C` is a precision matrix (
 inverse covariance). Thus, the eigenvalues will be inverted. If
 ``False``, then it is assumed that `C` is a covariance matrix.
 eps : `float`, optional
 Tolerance value for positive eigenvalue. Those eigenvalues smaller
 than the specified eps value, together with their corresponding
 eigenvectors, will be automatically discarded.

 Returns

 U (eigenvectors) : ``(n_components, n_dims)`` `ndarray`
 Eigenvectors of the data matrix.
 l (eigenvalues) : ``(n_components,)`` `ndarray`
 Positive eigenvalues of the data matrix.
 """
 if C.shape[0] != C.shape[1]:
 raise ValueError("C must be square.")

 # C should be perfectly symmetrical, but numerical error can creep in.
 # Enforce symmetry here to avoid creating complex eigenvectors
 C = (C + C.conj().T) / 2.0

 # C (covariance): d x d
 # perform eigenvalue decomposition
 # U (eigenvectors): d x n
 # s (eigenvalues): n
 U, l = eigenvalue_decomposition(C, is_inverse=is_inverse, eps=eps)

 # transpose U
 # U: n x d
 U = U.conj().T

 return U, l

[docs]def ipca(B, U_a, l_a, n_a, m_a=None, f=1.0, eps=1e-10):
 r"""
 Perform Incremental PCA on the eigenvectors ``U_a``, eigenvalues ``l_a`` and
 mean vector ``m_a`` (if present) given a new data matrix ``B``.

 Parameters

 B : ``(n_samples, n_dims)`` `ndarray`
 New data matrix.
 U_a : ``(n_components, n_dims)`` `ndarray`
 Eigenvectors to be updated.
 l_a : (n_components) `ndarray`
 Eigenvalues to be updated.
 n_a : `int`
 Total number of samples used to produce U_a, s_a and m_a.
 m_a : ``(n_dims,)`` `ndarray`, optional
 Mean to be updated. If ``None`` or ``(n_dims,)`` `ndarray` filled
 with 0s the data matrix will not be centred.
 f : ``[0, 1]`` `float`, optional
 Forgetting factor that weights the relative contribution of new
 samples vs old samples. If 1.0, all samples are weighted equally
 and, hence, the results is the exact same as performing batch
 PCA on the concatenated list of old and new simples. If <1.0,
 more emphasis is put on the new samples. See [1] for details.
 eps : `float`, optional
 Tolerance value for positive eigenvalue. Those eigenvalues smaller
 than the specified eps value, together with their corresponding
 eigenvectors, will be automatically discarded.

 Returns

 U (eigenvectors) : ``(n_components, n_dims)`` `ndarray`
 Updated eigenvectors.
 s (eigenvalues) : ``(n_components,)`` `ndarray`
 Updated positive eigenvalues.
 m (mean vector) : ``(n_dims,)`` `ndarray`
 Updated mean.

 References

 .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang.
 "Incremental Learning for Robust Visual Tracking". IJCV, 2007.
 """
 # multiply current eigenvalues by total number of samples and square
 # root them to obtain singular values of the original data.
 s_a = np.sqrt((n_a - 1) * l_a)

 # obtain number of dimensions and number of samples of new data.
 n_b, d = B.shape
 # multiply the number of samples of the original data by the forgetting
 # factor
 n_a *= f
 # total number of samples
 n = n_a + n_b

 if m_a is not None and not np.all(m_a == 0):
 # centred ipca; compute mean of new data
 m_b = np.mean(B, axis=0)
 # compute new mean
 m = (n_a / n) * m_a + (n_b / n) * m_b
 # centre new data
 B = B - m_b
 # augment centred data with extra sample
 B = np.vstack((B, np.sqrt((n_a * n_b) / n) * (m_b - m_a)))
 else:
 m = np.zeros(d, dtype=B.dtype)

 # project out current eigenspace out of data matrix
 PB = B - B.dot(U_a.T).dot(U_a)
 # orthogonalise the previous projection using QR
 B_tilde = np.linalg.qr(PB.T)[0].T

 # form R matrix
 S_a = np.diag(s_a)
 R = np.hstack(
 (
 np.vstack((f * S_a, B.dot(U_a.T))),
 np.vstack(
 (
 np.zeros((S_a.shape[0], B_tilde.shape[0]), dtype=B.dtype),
 PB.dot(B_tilde.T),
)
),
)
)

 # compute SVD of R
 U_tilde, s_tilde, Vt_tilde = np.linalg.svd(R)

 # compute new eigenvalues
 l = s_tilde ** 2 / (n - 1)
 # keep only positive eigenvalues within tolerance
 l = l[l > eps]

 U = Vt_tilde.dot(np.vstack((U_a, B_tilde)))[: len(l), :]

 return U, l, m

 menpo.math.linalg

 Source code for menpo.math.linalg

from itertools import islice
import numpy as np
from menpo.visualize import print_progress, bytes_str, print_dynamic

[docs]def dot_inplace_left(a, b, block_size=1000):
 r"""
 Inplace dot product for memory efficiency. It computes ``a * b = c``, where
 ``a`` will be replaced inplace with ``c``.

 Parameters

 a : ``(n_big, k)`` `ndarray`
 First array to dot - assumed to be large. Will be damaged by this
 function call as it is used to store the output inplace.
 b : ``(k, n_small)`` `ndarray`, ``n_small <= k``
 The second array to dot - assumed to be small. ``n_small`` must be
 smaller than ``k`` so the result can be stored within the memory space
 of ``a``.
 block_size : `int`, optional
 The size of the block of ``a`` that will be dotted against ``b`` in
 each iteration. larger block sizes increase the time performance of the
 dot product at the cost of a higher memory overhead for the operation.

 Returns

 c : ``(n_big, n_small)`` `ndarray`
 The output of the operation. Exactly the same as a memory view onto
 ``a`` (``a[:, :n_small]``) as ``a`` is modified inplace to store the
 result.
 """
 (n_big, k_a), (k_b, n_small) = a.shape, b.shape
 if k_a != k_b:
 raise ValueError("Cannot dot {} * {}".format(a.shape, b.shape))
 if n_small > k_a:
 raise ValueError(
 "Cannot dot inplace left - "
 "b.shape[1] ({}) > a.shape[1] "
 "({})".format(n_small, k_a)
)
 for i in range(0, n_big, block_size):
 j = i + block_size
 a[i:j, :n_small] = a[i:j].dot(b)
 return a[:, :n_small]

[docs]def dot_inplace_right(a, b, block_size=1000):
 r"""
 Inplace dot product for memory efficiency. It computes ``a * b = c`` where
 ``b`` will be replaced inplace with ``c``.

 Parameters

 a : ``(n_small, k)`` `ndarray`, n_small <= k
 The first array to dot - assumed to be small. ``n_small`` must be
 smaller than ``k`` so the result can be stored within the memory space
 of ``b``.
 b : ``(k, n_big)`` `ndarray`
 Second array to dot - assumed to be large. Will be damaged by this
 function call as it is used to store the output inplace.
 block_size : `int`, optional
 The size of the block of ``b`` that ``a`` will be dotted against
 in each iteration. larger block sizes increase the time performance of
 the dot product at the cost of a higher memory overhead for the
 operation.

 Returns

 c : ``(n_small, n_big)`` `ndarray`
 The output of the operation. Exactly the same as a memory view onto
 ``b`` (``b[:n_small]``) as ``b`` is modified inplace to store the
 result.
 """
 (n_small, k_a), (k_b, n_big) = a.shape, b.shape
 if k_a != k_b:
 raise ValueError("Cannot dot {} * {}".format(a.shape, b.shape))
 if n_small > k_b:
 raise ValueError(
 "Cannot dot inplace right - "
 "a.shape[1] ({}) > b.shape[0] "
 "({})".format(n_small, k_b)
)
 for i in range(0, n_big, block_size):
 j = i + block_size
 b[:n_small, i:j] = a.dot(b[:, i:j])
 return b[:n_small]

[docs]def as_matrix(vectorizables, length=None, return_template=False, verbose=False):
 r"""
 Create a matrix from a list/generator of :map:`Vectorizable` objects.
 All the objects in the list **must** be the same size when vectorized.

 Consider using a generator if the matrix you are creating is large and
 passing the length of the generator explicitly.

 Parameters

 vectorizables : `list` or generator if :map:`Vectorizable` objects
 A list or generator of objects that supports the vectorizable interface
 length : `int`, optional
 Length of the vectorizable list. Useful if you are passing a generator
 with a known length.
 verbose : `bool`, optional
 If ``True``, will print the progress of building the matrix.
 return_template : `bool`, optional
 If ``True``, will return the first element of the list/generator, which
 was used as the template. Useful if you need to map back from the
 matrix to a list of vectorizable objects.

 Returns

 M : (length, n_features) `ndarray`
 Every row is an element of the list.
 template : :map:`Vectorizable`, optional
 If ``return_template == True``, will return the template used to
 build the matrix `M`.

 Raises

 ValueError
 ``vectorizables`` terminates in fewer than ``length`` iterations
 """
 # get the first element as the template and use it to configure the
 # data matrix
 if length is None:
 # samples is a list
 length = len(vectorizables)
 template = vectorizables[0]
 vectorizables = vectorizables[1:]
 else:
 # samples is an iterator
 template = next(vectorizables)
 n_features = template.n_parameters
 template_vector = template.as_vector()

 data = np.zeros((length, n_features), dtype=template_vector.dtype)
 if verbose:
 print(
 "Allocated data matrix of size {} "
 "({} samples)".format(bytes_str(data.nbytes), length)
)

 # now we can fill in the first element from the template
 data[0] = template_vector
 del template_vector

 # ensure we take at most the remaining length - 1 elements
 vectorizables = islice(vectorizables, length - 1)

 if verbose:
 vectorizables = print_progress(
 vectorizables,
 n_items=length,
 offset=1,
 prefix="Building data matrix",
 end_with_newline=False,
)

 # 1-based as we have the template vector set already
 i = 0
 for i, sample in enumerate(vectorizables, 1):
 data[i] = sample.as_vector()

 # we have exhausted the iterable, but did we get enough items?
 if i != length - 1: # -1
 raise ValueError(
 "Incomplete data matrix due to early iterator "
 "termination (expected {} items, got {})".format(length, i + 1)
)

 if return_template:
 return data, template
 else:
 return data

[docs]def from_matrix(matrix, template):
 r"""
 Create a generator from a matrix given a template :map:`Vectorizable`
 objects as a template. The ``from_vector`` method will be used to
 reconstruct each object.

 If you want a list, warp the returned value in ``list()``.

 Parameters

 matrix : (n_items, n_features) `ndarray`
 A matrix whereby every *row* represents the data of a vectorizable
 object.
 template : :map:`Vectorizable`
 The template object to use to reconstruct each row of the matrix with.

 Returns

 vectorizables : generator of :map:`Vectorizable`
 Every row of the matrix becomes an element of the list.
 """
 return (template.from_vector(row) for row in matrix)

 menpo.model.gmrf

 Source code for menpo.model.gmrf

from functools import partial
import numpy as np
from scipy.sparse import bsr_matrix

from menpo.base import name_of_callable
from menpo.math import as_matrix
from menpo.shape import UndirectedGraph
from menpo.visualize import print_progress, bytes_str, print_dynamic

def _covariance_matrix_inverse(cov_mat, n_components):
 if n_components is None:
 return np.linalg.inv(cov_mat)
 else:
 try:
 s, v, d = np.linalg.svd(cov_mat)
 s = s[:, :n_components]
 v = v[:n_components]
 d = d[:n_components, :]
 return s.dot(np.diag(1 / v)).dot(d)
 except:
 return np.linalg.inv(cov_mat)

def _create_sparse_precision(
 X,
 graph,
 n_features,
 n_features_per_vertex,
 mode="concatenation",
 dtype=np.float32,
 n_components=None,
 bias=0,
 return_covariances=False,
 verbose=False,
):
 # check mode argument
 if mode not in ["concatenation", "subtraction"]:
 raise ValueError(
 "mode must be either ''concatenation'' "
 "or ''subtraction''; {} is given.".format(mode)
)

 # Initialize arrays
 all_blocks = np.zeros(
 (graph.n_edges * 4, n_features_per_vertex, n_features_per_vertex), dtype=dtype
)
 if return_covariances:
 if mode == "concatenation":
 cov_shape = (
 graph.n_edges,
 2 * n_features_per_vertex,
 2 * n_features_per_vertex,
)
 else:
 cov_shape = (graph.n_edges, n_features_per_vertex, n_features_per_vertex)
 all_covariances = np.zeros(cov_shape, dtype=dtype)
 columns = np.zeros(graph.n_edges * 4)
 rows = np.zeros(graph.n_edges * 4)

 # Print information if asked
 if verbose:
 edges = print_progress(
 range(graph.n_edges),
 n_items=graph.n_edges,
 prefix="Precision per edge",
 end_with_newline=False,
)
 else:
 edges = range(graph.n_edges)

 # Compute covariance matrix for each edge, invert it and store it
 count = -1
 for e in edges:
 # edge vertices
 v1 = graph.edges[e, 0]
 v2 = graph.edges[e, 1]

 # find indices in data matrix
 v1_from = v1 * n_features_per_vertex
 v1_to = (v1 + 1) * n_features_per_vertex
 v2_from = v2 * n_features_per_vertex
 v2_to = (v2 + 1) * n_features_per_vertex

 # data concatenation
 if mode == "concatenation":
 edge_data = X[:, list(range(v1_from, v1_to)) + list(range(v2_from, v2_to))]
 else:
 edge_data = X[:, v1_from:v1_to] - X[:, v2_from:v2_to]

 # compute covariance matrix
 covmat = np.cov(edge_data, rowvar=0, bias=bias)
 if return_covariances:
 all_covariances[e] = covmat

 # invert it
 covmat = _covariance_matrix_inverse(covmat, n_components)

 # store it
 if mode == "concatenation":
 # v1, v1
 count += 1
 all_blocks[count] = covmat[:n_features_per_vertex, :n_features_per_vertex]
 rows[count] = v1
 columns[count] = v1
 # v2, v2
 count += 1
 all_blocks[count] = covmat[n_features_per_vertex::, n_features_per_vertex::]
 rows[count] = v2
 columns[count] = v2
 # v1, v2
 count += 1
 all_blocks[count] = covmat[:n_features_per_vertex, n_features_per_vertex::]
 rows[count] = v1
 columns[count] = v2
 # v2, v1
 count += 1
 all_blocks[count] = covmat[n_features_per_vertex::, :n_features_per_vertex]
 rows[count] = v2
 columns[count] = v1
 else:
 # v1, v1
 count += 1
 all_blocks[count] = covmat
 rows[count] = v1
 columns[count] = v1
 # v2, v2
 count += 1
 all_blocks[count] = covmat
 rows[count] = v2
 columns[count] = v2
 # v1, v2
 count += 1
 all_blocks[count] = -covmat
 rows[count] = v1
 columns[count] = v2
 # v2, v1
 count += 1
 all_blocks[count] = -covmat
 rows[count] = v2
 columns[count] = v1

 # sort rows, columns and all_blocks
 rows_arg_sort = rows.argsort()
 columns = columns[rows_arg_sort]
 all_blocks = all_blocks[rows_arg_sort]
 rows = rows[rows_arg_sort]

 # create indptr
 n_rows = graph.n_vertices
 indptr = np.zeros(n_rows + 1)
 for i in range(n_rows):
 (inds,) = np.where(rows == i)
 if inds.size == 0:
 indptr[i + 1] = indptr[i]
 else:
 indptr[i] = inds[0]
 indptr[i + 1] = inds[-1] + 1

 # create block sparse matrix
 if return_covariances:
 return (
 bsr_matrix(
 (all_blocks, columns, indptr),
 shape=(n_features, n_features),
 dtype=dtype,
),
 all_covariances,
)
 else:
 return bsr_matrix(
 (all_blocks, columns, indptr), shape=(n_features, n_features), dtype=dtype
)

def _create_dense_precision(
 X,
 graph,
 n_features,
 n_features_per_vertex,
 mode="concatenation",
 dtype=np.float32,
 n_components=None,
 bias=0,
 return_covariances=False,
 verbose=False,
):
 # check mode argument
 if mode not in ["concatenation", "subtraction"]:
 raise ValueError(
 "mode must be either ''concatenation'' "
 "or ''subtraction''; {} is given.".format(mode)
)

 # Initialize precision
 precision = np.zeros((n_features, n_features), dtype=dtype)
 if return_covariances:
 if mode == "concatenation":
 cov_shape = (
 graph.n_edges,
 2 * n_features_per_vertex,
 2 * n_features_per_vertex,
)
 else:
 cov_shape = (graph.n_edges, n_features_per_vertex, n_features_per_vertex)
 all_covariances = np.zeros(cov_shape, dtype=dtype)

 # Print information if asked
 if verbose:
 print_dynamic(
 "Allocated precision matrix of size {}".format(bytes_str(precision.nbytes))
)
 edges = print_progress(
 range(graph.n_edges),
 n_items=graph.n_edges,
 prefix="Precision per edge",
 end_with_newline=False,
)
 else:
 edges = range(graph.n_edges)

 # Compute covariance matrix for each edge, invert it and store it
 for e in edges:
 # edge vertices
 v1 = graph.edges[e, 0]
 v2 = graph.edges[e, 1]

 # find indices in data matrix
 v1_from = v1 * n_features_per_vertex
 v1_to = (v1 + 1) * n_features_per_vertex
 v2_from = v2 * n_features_per_vertex
 v2_to = (v2 + 1) * n_features_per_vertex

 # data concatenation
 if mode == "concatenation":
 edge_data = X[:, list(range(v1_from, v1_to)) + list(range(v2_from, v2_to))]
 else:
 edge_data = X[:, v1_from:v1_to] - X[:, v2_from:v2_to]

 # compute covariance matrix
 covmat = np.cov(edge_data, rowvar=0, bias=bias)
 if return_covariances:
 all_covariances[e] = covmat

 # invert it
 covmat = _covariance_matrix_inverse(covmat, n_components)

 # store it
 if mode == "concatenation":
 # v1, v1
 precision[v1_from:v1_to, v1_from:v1_to] += covmat[
 :n_features_per_vertex, :n_features_per_vertex
]
 # v2, v2
 precision[v2_from:v2_to, v2_from:v2_to] += covmat[
 n_features_per_vertex::, n_features_per_vertex::
]
 # v1, v2
 precision[v1_from:v1_to, v2_from:v2_to] = covmat[
 :n_features_per_vertex, n_features_per_vertex::
]
 # v2, v1
 precision[v2_from:v2_to, v1_from:v1_to] = covmat[
 n_features_per_vertex::, :n_features_per_vertex
]
 elif mode == "subtraction":
 # v1, v2
 precision[v1_from:v1_to, v2_from:v2_to] = -covmat
 # v2, v1
 precision[v2_from:v2_to, v1_from:v1_to] = -covmat
 # v1, v1
 precision[v1_from:v1_to, v1_from:v1_to] += covmat
 # v2, v2
 precision[v2_from:v2_to, v2_from:v2_to] += covmat

 # return covariances
 if return_covariances:
 return precision, all_covariances
 else:
 return precision

def _create_sparse_diagonal_precision(
 X,
 graph,
 n_features,
 n_features_per_vertex,
 dtype=np.float32,
 n_components=None,
 bias=0,
 return_covariances=False,
 verbose=False,
):
 # initialize covariances matrix
 all_blocks = np.zeros(
 (graph.n_vertices, n_features_per_vertex, n_features_per_vertex), dtype=dtype
)
 if return_covariances:
 all_covariances = np.zeros(
 (graph.n_vertices, n_features_per_vertex, n_features_per_vertex),
 dtype=dtype,
)
 columns = np.zeros(graph.n_vertices)
 rows = np.zeros(graph.n_vertices)

 # Print information if asked
 if verbose:
 vertices = print_progress(
 range(graph.n_vertices),
 n_items=graph.n_vertices,
 prefix="Precision per vertex",
 end_with_newline=False,
)
 else:
 vertices = range(graph.n_vertices)

 # Compute covariance matrix for each patch
 for v in vertices:
 # find indices in target precision matrix
 i_from = v * n_features_per_vertex
 i_to = (v + 1) * n_features_per_vertex

 # compute covariance
 covmat = np.cov(X[:, i_from:i_to], rowvar=0, bias=bias)
 if return_covariances:
 all_covariances[v] = covmat

 # invert it
 all_blocks[v] = _covariance_matrix_inverse(covmat, n_components)

 # store the inverse covariance and its locations
 rows[v] = v
 columns[v] = v

 # sort rows, columns and all_blocks
 rows_arg_sort = rows.argsort()
 columns = columns[rows_arg_sort]
 all_blocks = all_blocks[rows_arg_sort]
 rows = rows[rows_arg_sort]

 # create indptr
 n_rows = graph.n_vertices
 indptr = np.zeros(n_rows + 1)
 for i in range(n_rows):
 (inds,) = np.where(rows == i)
 if inds.size == 0:
 indptr[i + 1] = indptr[i]
 else:
 indptr[i] = inds[0]
 indptr[i + 1] = inds[-1] + 1

 # create block sparse matrix
 if return_covariances:
 return (
 bsr_matrix(
 (all_blocks, columns, indptr),
 shape=(n_features, n_features),
 dtype=dtype,
),
 all_covariances,
)
 else:
 return bsr_matrix(
 (all_blocks, columns, indptr), shape=(n_features, n_features), dtype=dtype
)

def _create_dense_diagonal_precision(
 X,
 graph,
 n_features,
 n_features_per_vertex,
 dtype=np.float32,
 n_components=None,
 bias=0,
 return_covariances=False,
 verbose=False,
):
 # Initialize precision
 precision = np.zeros((n_features, n_features), dtype=dtype)
 if return_covariances:
 all_covariances = np.zeros(
 (graph.n_vertices, n_features_per_vertex, n_features_per_vertex),
 dtype=dtype,
)
 if verbose:
 print_dynamic(
 "Allocated precision matrix of size {}".format(bytes_str(precision.nbytes))
)

 # Print information if asked
 if verbose:
 vertices = print_progress(
 range(graph.n_vertices),
 n_items=graph.n_vertices,
 prefix="Precision per vertex",
 end_with_newline=False,
)
 else:
 vertices = range(graph.n_vertices)

 # Compute covariance matrix for each patch
 for v in vertices:
 # find indices in target precision matrix
 i_from = v * n_features_per_vertex
 i_to = (v + 1) * n_features_per_vertex

 # compute covariance
 covmat = np.cov(X[:, i_from:i_to], rowvar=0, bias=bias)
 if return_covariances:
 all_covariances[v] = covmat

 # invert it
 covmat = _covariance_matrix_inverse(covmat, n_components)

 # insert to precision matrix
 precision[i_from:i_to, i_from:i_to] = covmat

 # return covariances
 if return_covariances:
 return precision, all_covariances
 else:
 return precision

def _increment_sparse_precision(
 X,
 mean_vector,
 covariances,
 n,
 graph,
 n_features,
 n_features_per_vertex,
 mode="concatenation",
 dtype=np.float32,
 n_components=None,
 bias=0,
 verbose=False,
):
 # check mode argument
 if mode not in ["concatenation", "subtraction"]:
 raise ValueError(
 "mode must be either ''concatenation'' "
 "or ''subtraction''; {} is given.".format(mode)
)

 # Initialize arrays
 all_blocks = np.zeros(
 (graph.n_edges * 4, n_features_per_vertex, n_features_per_vertex), dtype=dtype
)
 columns = np.zeros(graph.n_edges * 4)
 rows = np.zeros(graph.n_edges * 4)

 # Print information if asked
 if verbose:
 edges = print_progress(
 range(graph.n_edges),
 n_items=graph.n_edges,
 prefix="Precision per edge",
 end_with_newline=False,
)
 else:
 edges = range(graph.n_edges)

 # Compute covariance matrix for each edge, invert it and store it
 count = -1
 for e in edges:
 # edge vertices
 v1 = graph.edges[e, 0]
 v2 = graph.edges[e, 1]

 # find indices in data matrix
 v1_from = v1 * n_features_per_vertex
 v1_to = (v1 + 1) * n_features_per_vertex
 v2_from = v2 * n_features_per_vertex
 v2_to = (v2 + 1) * n_features_per_vertex

 # data concatenation
 if mode == "concatenation":
 edge_data = X[:, list(range(v1_from, v1_to)) + list(range(v2_from, v2_to))]
 m = mean_vector[list(range(v1_from, v1_to)) + list(range(v2_from, v2_to))]
 else:
 edge_data = X[:, v1_from:v1_to] - X[:, v2_from:v2_to]
 m = mean_vector[v1_from:v1_to] - mean_vector[v2_from:v2_to]

 # increment
 _, covariances[e] = _increment_multivariate_gaussian_cov(
 edge_data, m, covariances[e], n, bias=bias
)

 # invert it
 covmat = _covariance_matrix_inverse(covariances[e], n_components)

 # store it
 if mode == "concatenation":
 # v1, v1
 count += 1
 all_blocks[count] = covmat[:n_features_per_vertex, :n_features_per_vertex]
 rows[count] = v1
 columns[count] = v1
 # v2, v2
 count += 1
 all_blocks[count] = covmat[n_features_per_vertex::, n_features_per_vertex::]
 rows[count] = v2
 columns[count] = v2
 # v1, v2
 count += 1
 all_blocks[count] = covmat[:n_features_per_vertex, n_features_per_vertex::]
 rows[count] = v1
 columns[count] = v2
 # v2, v1
 count += 1
 all_blocks[count] = covmat[n_features_per_vertex::, :n_features_per_vertex]
 rows[count] = v2
 columns[count] = v1
 else:
 # v1, v1
 count += 1
 all_blocks[count] = covmat
 rows[count] = v1
 columns[count] = v1
 # v2, v2
 count += 1
 all_blocks[count] = covmat
 rows[count] = v2
 columns[count] = v2
 # v1, v2
 count += 1
 all_blocks[count] = -covmat
 rows[count] = v1
 columns[count] = v2
 # v2, v1
 count += 1
 all_blocks[count] = -covmat
 rows[count] = v2
 columns[count] = v1

 # sort rows, columns and all_blocks
 rows_arg_sort = rows.argsort()
 columns = columns[rows_arg_sort]
 all_blocks = all_blocks[rows_arg_sort]
 rows = rows[rows_arg_sort]

 # create indptr
 n_rows = graph.n_vertices
 indptr = np.zeros(n_rows + 1)
 for i in range(n_rows):
 (inds,) = np.where(rows == i)
 if inds.size == 0:
 indptr[i + 1] = indptr[i]
 else:
 indptr[i] = inds[0]
 indptr[i + 1] = inds[-1] + 1

 # create block sparse matrix
 return (
 bsr_matrix(
 (all_blocks, columns, indptr), shape=(n_features, n_features), dtype=dtype
),
 covariances,
)

def _increment_dense_precision(
 X,
 mean_vector,
 covariances,
 n,
 graph,
 n_features,
 n_features_per_vertex,
 mode="concatenation",
 dtype=np.float32,
 n_components=None,
 bias=0,
 verbose=False,
):
 # check mode argument
 if mode not in ["concatenation", "subtraction"]:
 raise ValueError(
 "mode must be either ''concatenation'' "
 "or ''subtraction''; {} is given.".format(mode)
)

 # Initialize precision
 precision = np.zeros((n_features, n_features), dtype=dtype)

 # Print information if asked
 if verbose:
 print_dynamic(
 "Allocated precision matrix of size {}".format(bytes_str(precision.nbytes))
)
 edges = print_progress(
 range(graph.n_edges),
 n_items=graph.n_edges,
 prefix="Precision per edge",
 end_with_newline=False,
)
 else:
 edges = range(graph.n_edges)

 # Compute covariance matrix for each edge, invert it and store it
 for e in edges:
 # edge vertices
 v1 = graph.edges[e, 0]
 v2 = graph.edges[e, 1]

 # find indices in data matrix
 v1_from = v1 * n_features_per_vertex
 v1_to = (v1 + 1) * n_features_per_vertex
 v2_from = v2 * n_features_per_vertex
 v2_to = (v2 + 1) * n_features_per_vertex

 # data concatenation
 if mode == "concatenation":
 edge_data = X[:, list(range(v1_from, v1_to)) + list(range(v2_from, v2_to))]
 m = mean_vector[list(range(v1_from, v1_to)) + list(range(v2_from, v2_to))]
 else:
 edge_data = X[:, v1_from:v1_to] - X[:, v2_from:v2_to]
 m = mean_vector[v1_from:v1_to] - mean_vector[v2_from:v2_to]

 # increment
 _, covariances[e] = _increment_multivariate_gaussian_cov(
 edge_data, m, covariances[e], n, bias=bias
)

 # invert it
 covmat = _covariance_matrix_inverse(covariances[e], n_components)

 # store it
 if mode == "concatenation":
 # v1, v1
 precision[v1_from:v1_to, v1_from:v1_to] += covmat[
 :n_features_per_vertex, :n_features_per_vertex
]
 # v2, v2
 precision[v2_from:v2_to, v2_from:v2_to] += covmat[
 n_features_per_vertex::, n_features_per_vertex::
]
 # v1, v2
 precision[v1_from:v1_to, v2_from:v2_to] = covmat[
 :n_features_per_vertex, n_features_per_vertex::
]
 # v2, v1
 precision[v2_from:v2_to, v1_from:v1_to] = covmat[
 n_features_per_vertex::, :n_features_per_vertex
]
 elif mode == "subtraction":
 # v1, v2
 precision[v1_from:v1_to, v2_from:v2_to] = -covmat
 # v2, v1
 precision[v2_from:v2_to, v1_from:v1_to] = -covmat
 # v1, v1
 precision[v1_from:v1_to, v1_from:v1_to] += covmat
 # v2, v2
 precision[v2_from:v2_to, v2_from:v2_to] += covmat

 # return covariances
 return precision, covariances

def _increment_sparse_diagonal_precision(
 X,
 mean_vector,
 covariances,
 n,
 graph,
 n_features,
 n_features_per_vertex,
 dtype=np.float32,
 n_components=None,
 bias=0,
 verbose=False,
):
 # initialize covariances matrix
 all_blocks = np.zeros(
 (graph.n_vertices, n_features_per_vertex, n_features_per_vertex), dtype=dtype
)
 columns = np.zeros(graph.n_vertices)
 rows = np.zeros(graph.n_vertices)

 # Print information if asked
 if verbose:
 vertices = print_progress(
 range(graph.n_vertices),
 n_items=graph.n_vertices,
 prefix="Precision per vertex",
 end_with_newline=False,
)
 else:
 vertices = range(graph.n_vertices)

 # Compute covariance matrix for each patch
 for v in vertices:
 # find indices in target precision matrix
 i_from = v * n_features_per_vertex
 i_to = (v + 1) * n_features_per_vertex

 # get data
 edge_data = X[:, i_from:i_to]
 m = mean_vector[i_from:i_to]

 # increment
 _, covariances[v] = _increment_multivariate_gaussian_cov(
 edge_data, m, covariances[v], n, bias=bias
)

 # invert it
 all_blocks[v] = _covariance_matrix_inverse(covariances[v], n_components)

 # store the inverse covariance and its locations
 rows[v] = v
 columns[v] = v

 # sort rows, columns and all_blocks
 rows_arg_sort = rows.argsort()
 columns = columns[rows_arg_sort]
 all_blocks = all_blocks[rows_arg_sort]
 rows = rows[rows_arg_sort]

 # create indptr
 n_rows = graph.n_vertices
 indptr = np.zeros(n_rows + 1)
 for i in range(n_rows):
 (inds,) = np.where(rows == i)
 if inds.size == 0:
 indptr[i + 1] = indptr[i]
 else:
 indptr[i] = inds[0]
 indptr[i + 1] = inds[-1] + 1

 # create block sparse matrix
 return (
 bsr_matrix(
 (all_blocks, columns, indptr), shape=(n_features, n_features), dtype=dtype
),
 covariances,
)

def _increment_dense_diagonal_precision(
 X,
 mean_vector,
 covariances,
 n,
 graph,
 n_features,
 n_features_per_vertex,
 dtype=np.float32,
 n_components=None,
 bias=0,
 verbose=False,
):
 # Initialize precision
 precision = np.zeros((n_features, n_features), dtype=dtype)

 # Print information if asked
 if verbose:
 print_dynamic(
 "Allocated precision matrix of size {}".format(bytes_str(precision.nbytes))
)
 vertices = print_progress(
 range(graph.n_vertices),
 n_items=graph.n_vertices,
 prefix="Precision per vertex",
 end_with_newline=False,
)
 else:
 vertices = range(graph.n_vertices)

 # Compute covariance matrix for each patch
 for v in vertices:
 # find indices in target precision matrix
 i_from = v * n_features_per_vertex
 i_to = (v + 1) * n_features_per_vertex

 # get data
 edge_data = X[:, i_from:i_to]
 m = mean_vector[i_from:i_to]

 # increment
 _, covariances[v] = _increment_multivariate_gaussian_cov(
 edge_data, m, covariances[v], n, bias=bias
)

 # invert it
 precision[i_from:i_to, i_from:i_to] = _covariance_matrix_inverse(
 covariances[v], n_components
)

 # return covariances
 return precision, covariances

def _increment_multivariate_gaussian_mean(X, m, n):
 # Get new number of samples
 new_n = X.shape[0]

 # Update mean vector
 # m_{new} = (n m + \sum_{i=1}^{n_{new}} x_i) / (n + n_{new})
 # where: m -> old mean vector
 # n_{new} -> new number of samples
 # n -> old number of samples
 # x_i -> new data vectors
 return (n * m + np.sum(X, axis=0)) / (n + new_n)

def _increment_multivariate_gaussian_cov(X, m, S, n, bias=0):
 # Get new number of samples
 new_n = X.shape[0]

 # Update mean vector
 # m_{new} = (n m + \sum_{i=1}^{n_{new}} x_i) / (n + n_{new})
 # where: m_{new} -> new mean vector
 # m -> old mean vector
 # n_{new} -> new number of samples
 # n -> old number of samples
 # x_i -> new data vectors
 new_m = _increment_multivariate_gaussian_mean(X, m, n)

 # Select the normalization value
 if bias == 1:
 k = n
 elif bias == 0:
 k = n - 1
 else:
 raise ValueError("bias must be either 0 or 1")

 # Update covariance matrix
 # S__{new} = (k S + n m^T m + X^T X - (n + n_{new}) m_{new}^T m_{new})
 # / (k + n_{new})
 m1 = n * m[None, :].T.dot(m[None, :])
 m2 = (n + new_n) * new_m[None, :].T.dot(new_m[None, :])
 new_S = (k * S + m1 + X.T.dot(X) - m2) / (k + new_n)

 return new_m, new_S

[docs]class GMRFVectorModel(object):
 r"""
 Trains a Gaussian Markov Random Field (GMRF).

 Parameters

 samples : `ndarray` or `list` or `iterable` of `ndarray`
 List or iterable of numpy arrays to build the model from, or an
 existing data matrix.
 graph : :map:`UndirectedGraph` or :map:`DirectedGraph` or :map:`Tree`
 The graph that defines the relations between the features.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a `list` (so we
 know how large the data matrix needs to be).
 mode : ``{'concatenation', 'subtraction'}``, optional
 Defines the feature vector of each edge. Assuming that
 :math:`\mathbf{x}_i` and :math:`\mathbf{x}_j` are the feature vectors
 of two adjacent vertices (:math:`i,j:(v_i,v_j)\in E`), then the edge's
 feature vector in the case of ``'concatenation'`` is

 .. math::
 \left[{\mathbf{x}_i}^T, {\mathbf{x}_j}^T\right]^T

 and in the case of ``'subtraction'``

 .. math::
 \mathbf{x}_i - \mathbf{x}_j

 n_components : `int` or ``None``, optional
 When ``None`` (default), the covariance matrix of each edge is inverted
 using `np.linalg.inv`. If `int`, it is inverted using truncated SVD
 using the specified number of compnents.
 dtype : `numpy.dtype`, optional
 The data type of the GMRF's precision matrix. For example, it can be set
 to `numpy.float32` for single precision or to `numpy.float64` for double
 precision. Depending on the size of the precision matrix, this option can
 you a lot of memory.
 sparse : `bool`, optional
 When ``True``, the GMRF's precision matrix has type
 `scipy.sparse.bsr_matrix`, otherwise it is a `numpy.array`.
 bias : `int`, optional
 Default normalization is by ``(N - 1)``, where ``N`` is the number of
 observations given (unbiased estimate). If `bias` is 1, then
 normalization is by ``N``. These values can be overridden by using
 the keyword ``ddof`` in numpy versions >= 1.5.
 incremental : `bool`, optional
 This argument must be set to ``True`` in case the user wants to
 incrementally update the GMRF. Note that if ``True``, the model
 occupies 2x memory.
 verbose : `bool`, optional
 If ``True``, the progress of the model's training is printed.

 Notes

 Let us denote a graph as :math:`G=(V,E)`, where
 :math:`V=\{v_i,v_2,\ldots, v_{|V|}\}` is the set of :math:`|V|` vertices and
 there is an edge :math:`(v_i,v_j)\in E` for each pair of connected vertices.
 Let us also assume that we have a set of random variables
 :math:`X=\{X_i\}, \forall i:v_i\in V`, which represent an abstract feature
 vector of length :math:`k` extracted from each vertex :math:`v_i`, i.e.
 :math:`\mathbf{x}_i,i:v_i\in V`.

 A GMRF is described by an undirected graph, where the vertexes stand for
 random variables and the edges impose statistical constraints on these
 random variables. Thus, the GMRF models the set of random variables with
 a multivariate normal distribution

 .. math::
 p(X=\mathbf{x}|G)\sim\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})

 We denote by :math:`\mathbf{Q}` the block-sparse precision matrix that is
 the inverse of the covariance matrix :math:`\boldsymbol{\Sigma}`, i.e.
 :math:`\mathbf{Q}=\boldsymbol{\Sigma}^{-1}`. By applying the GMRF we make
 the assumption that the random variables satisfy the three Markov
 properties (pairwise, local and global) and that the blocks of the
 precision matrix that correspond to disjoint vertexes are zero, i.e.

 .. math::
 \mathbf{Q}_{ij}=\mathbf{0}_{k\times k},\forall i,j:(v_i,v_j)\notin E

 References

 .. [1] H. Rue, and L. Held. "Gaussian Markov random fields: theory and
 applications," CRC Press, 2005.
 .. [2] E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. "Active
 Pictorial Structures", IEEE International Conference on Computer Vision
 & Pattern Recognition (CVPR), Boston, MA, USA, pp. 5435-5444, June 2015.
 """

 def __init__(
 self,
 samples,
 graph,
 n_samples=None,
 mode="concatenation",
 n_components=None,
 dtype=np.float64,
 sparse=True,
 bias=0,
 incremental=False,
 verbose=False,
):
 # Generate data matrix
 # (n_samples, n_features)
 data, self.n_samples = self._data_to_matrix(samples, n_samples)

 # n_features and n_features_per_vertex
 self.n_features = data.shape[1]
 self.n_features_per_vertex = int(self.n_features / graph.n_vertices)

 # Assign arguments
 self.graph = graph
 self.mode = mode
 self.n_components = n_components
 self.sparse = sparse
 self.dtype = dtype
 self.bias = bias
 self.is_incremental = incremental

 # Compute mean vector
 self.mean_vector = np.mean(data, axis=0)

 # Select correct method to create the precision matrix based on the
 # graph type and the sparse flag
 if self.graph.n_edges == 0:
 if self.sparse:
 constructor = _create_sparse_diagonal_precision
 else:
 constructor = _create_dense_diagonal_precision
 else:
 if self.sparse:
 constructor = partial(_create_sparse_precision, mode=self.mode)
 else:
 constructor = partial(_create_dense_precision, mode=self.mode)

 # Create the precision matrix and optionally store the covariance
 # matrices
 if self.is_incremental:
 self.precision, self._covariance_matrices = constructor(
 data,
 self.graph,
 self.n_features,
 self.n_features_per_vertex,
 dtype=self.dtype,
 n_components=self.n_components,
 bias=self.bias,
 return_covariances=self.is_incremental,
 verbose=verbose,
)
 else:
 self._covariance_matrices = None
 self.precision = constructor(
 data,
 self.graph,
 self.n_features,
 self.n_features_per_vertex,
 dtype=self.dtype,
 n_components=self.n_components,
 bias=self.bias,
 return_covariances=self.is_incremental,
 verbose=verbose,
)

 def _data_to_matrix(self, data, n_samples):
 # build a data matrix from all the samples
 if n_samples is None:
 n_samples = len(data)
 # Assumed data is ndarray of (n_samples, n_features) or list of samples
 if not isinstance(data, np.ndarray):
 # Make sure we have an array, slice of the number of requested
 # samples
 data = np.array(data)[:n_samples]
 return data, n_samples

[docs] def mean(self):
 r"""
 Return the mean of the model. For this model, returns the same result
 as ``mean_vector``.

 :type: `ndarray`
 """
 return self.mean_vector

[docs] def increment(self, samples, n_samples=None, verbose=False):
 r"""
 Update the mean and precision matrix of the GMRF by updating the
 distributions of all the edges.

 Parameters

 samples : `ndarray` or `list` or `iterable` of `ndarray`
 List or iterable of numpy arrays to build the model from, or an
 existing data matrix.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a
 list (so we know how large the data matrix needs to be).
 verbose : `bool`, optional
 If ``True``, the progress of the model's incremental update is
 printed.
 """
 # Check if it can be incrementally updated
 if not self.is_incremental:
 raise ValueError("GMRF cannot be incrementally updated.")

 # Build a data matrix from the new samples
 data, _ = self._data_to_matrix(samples, n_samples)

 # Increment the model
 self._increment(data=data, verbose=verbose)

 def _increment(self, data, verbose):
 # Empty memory
 self.precision = 0

 # Select correct method to create the precision matrix based on the
 # graph type and the sparse flag
 if self.graph.n_edges == 0:
 if self.sparse:
 constructor = _increment_sparse_diagonal_precision
 else:
 constructor = _increment_dense_diagonal_precision
 else:
 if self.sparse:
 constructor = partial(_increment_sparse_precision, mode=self.mode)
 else:
 constructor = partial(_increment_dense_precision, mode=self.mode)

 # Create the precision matrix and optionally store the covariance
 # matrices
 self.precision, self._covariance_matrices = constructor(
 data,
 self.mean_vector,
 self._covariance_matrices,
 self.n_samples,
 self.graph,
 self.n_features,
 self.n_features_per_vertex,
 dtype=self.dtype,
 n_components=self.n_components,
 bias=self.bias,
 verbose=verbose,
)

 # Update mean and number of samples
 self.mean_vector = _increment_multivariate_gaussian_mean(
 data, self.mean_vector, self.n_samples
)
 self.n_samples += data.shape[0]

[docs] def mahalanobis_distance(self, samples, subtract_mean=True, square_root=False):
 r"""
 Compute the mahalanobis distance given a sample :math:`\mathbf{x}` or an
 array of samples :math:`\mathbf{X}`, i.e.

 .. math::
 \sqrt{(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{x}-\boldsymbol{\mu})}
 \text{ or }
 \sqrt{(\mathbf{X}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{X}-\boldsymbol{\mu})}

 Parameters

 samples : `ndarray`
 A single data vector or an array of multiple data vectors.
 subtract_mean : `bool`, optional
 When ``True``, the mean vector is subtracted from the data vector.
 square_root : `bool`, optional
 If ``False``, the mahalanobis distance gets squared.
 """
 samples, _ = self._data_to_matrix(samples, None)
 if len(samples.shape) == 1:
 samples = samples[..., None].T
 return self._mahalanobis_distance(
 samples=samples, subtract_mean=subtract_mean, square_root=square_root
)

 def _mahalanobis_distance(self, samples, subtract_mean, square_root):
 # we assume that samples is an ndarray of n_samples x n_features

 # create data matrix
 if subtract_mean:
 n_samples = samples.shape[0]
 samples = samples - np.tile(self.mean_vector[..., None], n_samples).T

 # compute mahalanobis per sample
 if self.sparse:
 # if sparse, unfortunately the einstein sum is not implemented
 tmp = self.precision.dot(samples.T)
 d = samples.dot(tmp)
 d = np.diag(d)
 else:
 # if dense, then the einstein sum is much faster
 d = np.einsum("ij,ij->i", np.dot(samples, self.precision), samples)

 # if only one sample, then return a scalar
 if d.shape[0] == 1:
 d = d[0]

 # square root
 if square_root:
 return np.sqrt(d)
 else:
 return d

[docs] def principal_components_analysis(self, max_n_components=None):
 r"""
 Returns a :map:`PCAVectorModel` with the Principal Components.

 Note that the eigenvalue decomposition is applied directly on the
 precision matrix and then the eigenvalues are inverted.

 Parameters

 max_n_components : `int` or ``None``, optional
 The maximum number of principal components. If ``None``, all the
 components are returned.

 Returns

 pca : :map:`PCAVectorModel`
 The PCA model.
 """
 from .pca import PCAVectorModel

 return PCAVectorModel.init_from_covariance_matrix(
 C=self.precision,
 mean=self.mean_vector,
 n_samples=self.n_samples,
 centred=True,
 is_inverse=True,
 max_n_components=max_n_components,
)

 @property
 def _str_title(self):
 r"""
 Returns a string containing the name of the model.

 :type: `str`
 """
 tmp = "a"
 if isinstance(self.graph, UndirectedGraph):
 tmp = "an"
 return "GMRF model on {} {}".format(tmp, self.graph)

 def __str__(self):
 incremental_str = (
 " - Can be incrementally updated."
 if self.is_incremental
 else " - Cannot be " "incrementally updated."
)
 svd_str = (
 " - # SVD components: {}".format(self.n_components)
 if self.n_components is not None
 else " - No " "SVD used."
)
 _Q_sparse = "scipy.sparse" if self.sparse else "numpy.array"
 q_str = " - Q is stored as {} with {} precision".format(
 _Q_sparse, name_of_callable(self.dtype)
)
 mode_str = "concatenated" if self.mode == "concatenation" else "subtracted"
 str_out = (
 "Gaussian MRF Model \n"
 " - {}\n"
 " - The data of the vertexes of each edge are {}.\n"
 "{}\n"
 " - # variables (vertexes): {}\n"
 " - # features per variable: {}\n"
 " - # features in total: {}\n"
 "{}\n"
 " - # samples: {}\n"
 "{}\n".format(
 self.graph.__str__(),
 mode_str,
 q_str,
 self.graph.n_vertices,
 self.n_features_per_vertex,
 self.n_features,
 svd_str,
 self.n_samples,
 incremental_str,
)
)
 return str_out

[docs]class GMRFModel(GMRFVectorModel):
 r"""
 Trains a Gaussian Markov Random Field (GMRF).

 Parameters

 samples : `list` or `iterable` of :map:`Vectorizable`
 List or iterable of samples to build the model from.
 graph : :map:`UndirectedGraph` or :map:`DirectedGraph` or :map:`Tree`
 The graph that defines the relations between the features.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a `list` (so we
 know how large the data matrix needs to be).
 mode : ``{'concatenation', 'subtraction'}``, optional
 Defines the feature vector of each edge. Assuming that
 :math:`\mathbf{x}_i` and :math:`\mathbf{x}_j` are the feature vectors
 of two adjacent vertices (:math:`i,j:(v_i,v_j)\in E`), then the edge's
 feature vector in the case of ``'concatenation'`` is

 .. math::
 \left[{\mathbf{x}_i}^T, {\mathbf{x}_j}^T\right]^T

 and in the case of ``'subtraction'``

 .. math::
 \mathbf{x}_i - \mathbf{x}_j

 n_components : `int` or ``None``, optional
 When ``None`` (default), the covariance matrix of each edge is inverted
 using `np.linalg.inv`. If `int`, it is inverted using truncated SVD
 using the specified number of compnents.
 dtype : `numpy.dtype`, optional
 The data type of the GMRF's precision matrix. For example, it can be set
 to `numpy.float32` for single precision or to `numpy.float64` for double
 precision. Depending on the size of the precision matrix, this option can
 you a lot of memory.
 sparse : `bool`, optional
 When ``True``, the GMRF's precision matrix has type
 `scipy.sparse.bsr_matrix`, otherwise it is a `numpy.array`.
 bias : `int`, optional
 Default normalization is by ``(N - 1)``, where ``N`` is the number of
 observations given (unbiased estimate). If `bias` is 1, then
 normalization is by ``N``. These values can be overridden by using
 the keyword ``ddof`` in numpy versions >= 1.5.
 incremental : `bool`, optional
 This argument must be set to ``True`` in case the user wants to
 incrementally update the GMRF. Note that if ``True``, the model
 occupies 2x memory.
 verbose : `bool`, optional
 If ``True``, the progress of the model's training is printed.

 Notes

 Let us denote a graph as :math:`G=(V,E)`, where
 :math:`V=\{v_i,v_2,\ldots, v_{|V|}\}` is the set of :math:`|V|` vertices and
 there is an edge :math:`(v_i,v_j)\in E` for each pair of connected vertices.
 Let us also assume that we have a set of random variables
 :math:`X=\{X_i\}, \forall i:v_i\in V`, which represent an abstract feature
 vector of length :math:`k` extracted from each vertex :math:`v_i`, i.e.
 :math:`\mathbf{x}_i,i:v_i\in V`.

 A GMRF is described by an undirected graph, where the vertexes stand for
 random variables and the edges impose statistical constraints on these
 random variables. Thus, the GMRF models the set of random variables with
 a multivariate normal distribution

 .. math::
 p(X=\mathbf{x}|G)\sim\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})

 We denote by :math:`\mathbf{Q}` the block-sparse precision matrix that is
 the inverse of the covariance matrix :math:`\boldsymbol{\Sigma}`, i.e.
 :math:`\mathbf{Q}=\boldsymbol{\Sigma}^{-1}`. By applying the GMRF we make
 the assumption that the random variables satisfy the three Markov
 properties (pairwise, local and global) and that the blocks of the
 precision matrix that correspond to disjoint vertexes are zero, i.e.

 .. math::
 \mathbf{Q}_{ij}=\mathbf{0}_{k\times k},\forall i,j:(v_i,v_j)\notin E

 References

 .. [1] H. Rue, and L. Held. "Gaussian Markov random fields: theory and
 applications," CRC Press, 2005.
 .. [2] E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. "Active
 Pictorial Structures", IEEE International Conference on Computer Vision
 & Pattern Recognition (CVPR), Boston, MA, USA, pp. 5435-5444, June 2015.
 """

 def __init__(
 self,
 samples,
 graph,
 mode="concatenation",
 n_components=None,
 dtype=np.float64,
 sparse=True,
 n_samples=None,
 bias=0,
 incremental=False,
 verbose=False,
):
 # Build a data matrix from all the samples
 data, self.template_instance = as_matrix(
 samples, length=n_samples, return_template=True, verbose=verbose
)
 n_samples = data.shape[0]

 GMRFVectorModel.__init__(
 self,
 data,
 graph,
 mode=mode,
 n_components=n_components,
 dtype=dtype,
 sparse=sparse,
 n_samples=n_samples,
 bias=bias,
 incremental=incremental,
 verbose=verbose,
)

[docs] def mean(self):
 r"""
 Return the mean of the model.

 :type: :map:`Vectorizable`
 """
 return self.template_instance.from_vector(self.mean_vector)

[docs] def increment(self, samples, n_samples=None, verbose=False):
 r"""
 Update the mean and precision matrix of the GMRF by updating the
 distributions of all the edges.

 Parameters

 samples : `list` or `iterable` of :map:`Vectorizable`
 List or iterable of samples to build the model from.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a
 list (so we know how large the data matrix needs to be).
 verbose : `bool`, optional
 If ``True``, the progress of the model's incremental update is
 printed.
 """
 # Check if it can be incrementally updated
 if not self.is_incremental:
 raise ValueError("GMRF cannot be incrementally updated.")

 # Build a data matrix from the new samples
 data = as_matrix(samples, length=n_samples, verbose=verbose)

 # Increment the model
 self._increment(data=data, verbose=verbose)

[docs] def mahalanobis_distance(self, samples, subtract_mean=True, square_root=False):
 r"""
 Compute the mahalanobis distance given a sample :math:`\mathbf{x}` or an
 array of samples :math:`\mathbf{X}`, i.e.

 .. math::
 \sqrt{(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{x}-\boldsymbol{\mu})}
 \text{ or }
 \sqrt{(\mathbf{X}-\boldsymbol{\mu})^T \mathbf{Q} (\mathbf{X}-\boldsymbol{\mu})}

 Parameters

 samples : :map:`Vectorizable` or `list` of :map:`Vectorizable`
 The new data sample or a list of samples.
 subtract_mean : `bool`, optional
 When ``True``, the mean vector is subtracted from the data vector.
 square_root : `bool`, optional
 If ``False``, the mahalanobis distance gets squared.
 """
 if isinstance(samples, list):
 samples = as_matrix(
 samples, length=None, return_template=False, verbose=False
)
 else:
 samples = samples.as_vector()[..., None].T
 return self._mahalanobis_distance(
 samples=samples, subtract_mean=subtract_mean, square_root=square_root
)

[docs] def principal_components_analysis(self, max_n_components=None):
 r"""
 Returns a :map:`PCAModel` with the Principal Components.

 Note that the eigenvalue decomposition is applied directly on the
 precision matrix and then the eigenvalues are inverted.

 Parameters

 max_n_components : `int` or ``None``, optional
 The maximum number of principal components. If ``None``, all the
 components are returned.

 Returns

 pca : :map:`PCAModel`
 The PCA model.
 """
 from .pca import PCAModel

 return PCAModel.init_from_covariance_matrix(
 C=self.precision,
 mean=self.mean(),
 n_samples=self.n_samples,
 centred=True,
 is_inverse=True,
 max_n_components=max_n_components,
)

 menpo.model.linear

 Source code for menpo.model.linear

import numpy as np
from menpo.base import Copyable

[docs]class LinearVectorModel(Copyable):
 r"""
 A Linear Model contains a matrix of vector components, each component
 vector being made up of `features`.

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The components array.
 """

 def __init__(self, components):
 self._components = components # getter/setter variable

 @property
 def n_components(self):
 r"""
 The number of bases of the model.

 :type: `int`
 """
 return self._components.shape[0]

 @property
 def n_features(self):
 r"""
 The number of elements in each linear component.

 :type: `int`
 """
 return self.components.shape[-1]

 @property
 def components(self):
 r"""
 The components matrix of the linear model.

 :type: ``(n_available_components, n_features)`` `ndarray`
 """
 return self._components

 @components.setter
 def components(self, value):
 r"""
 Updates the components of this linear model, ensuring that the shape
 of the components is not changed.

 Parameters

 value : ``(n_components, n_features)`` `ndarray`
 The new components array.

 Raises

 ValueError
 Trying to replace components of shape {} with some of shape {}
 """
 if value.shape != self._components.shape:
 raise ValueError(
 "Trying to replace components of shape {} with some of "
 "shape {}".format(self.components.shape, value.shape)
)
 else:
 np.copyto(self._components, value, casting="safe")

[docs] def component(self, index):
 r"""
 A particular component of the model.

 Parameters

 index : `int`
 The component that is to be returned.

 Returns

 component_vector : ``(n_features,)`` `ndarray`
 The component vector.
 """
 return self.components[index]

[docs] def instance(self, weights):
 r"""
 Creates a new vector instance of the model by weighting together the
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 The weightings for the first `n_weights` components that should be
 used.

 ``weights[j]`` is the linear contribution of the j'th principal
 component to the instance vector.

 Returns

 vector : ``(n_features,)`` `ndarray`
 The instance vector for the weighting provided.
 """
 # just call the plural version and adapt
 weights = np.asarray(weights) # if eg a list is provided
 return self.instance_vectors(weights[None, :]).flatten()

[docs] def instance_vectors(self, weights):
 """
 Creates new vectorized instances of the model using all the components
 of the linear model.

 Parameters

 weights : ``(n_vectors, n_weights)`` `ndarray` or `list` of `lists`
 The weightings for all components of the linear model. All
 components will be used to produce the instance.

 ``weights[i, j]`` is the linear contribution of the j'th
 principal component to the i'th instance vector produced.

 Raises

 ValueError
 If n_weights > n_available_components

 Returns

 vectors : ``(n_vectors, n_features)`` `ndarray`
 The instance vectors for the weighting provided.
 """
 weights = np.asarray(weights) # if eg a list is provided
 n_instances, n_weights = weights.shape
 if not n_weights == self.n_components:
 raise ValueError(
 "Number of weightings has to match number of available "
 "components = {}".format(self.n_components)
)
 return self._instance_vectors_for_full_weights(weights)

 def _instance_vectors_for_full_weights(self, full_weights):
 return np.dot(full_weights, self.components)

[docs] def project(self, vector):
 """
 Projects the `vector` onto the model, retrieving the optimal
 linear reconstruction weights.

 Parameters

 vector : ``(n_features,)`` `ndarray`
 A vectorized novel instance.

 Returns

 weights : ``(n_components,)`` `ndarray`
 A vector of optimal linear weights.
 """
 return self.project_vectors(vector[None, :]).flatten()

[docs] def project_vectors(self, vectors):
 """
 Projects each of the `vectors` onto the model, retrieving
 the optimal linear reconstruction weights for each instance.

 Parameters

 vectors : ``(n_samples, n_features)`` `ndarray`
 Array of vectorized novel instances.

 Returns

 weights : ``(n_samples, n_components)`` `ndarray`
 The matrix of optimal linear weights.
 """
 return np.dot(vectors, self.components.T)

[docs] def reconstruct(self, vector):
 """
 Project a `vector` onto the linear space and rebuild from the weights
 found.

 Parameters

 vector : ``(n_features,)`` `ndarray`
 A vectorized novel instance to project.

 Returns

 reconstructed : ``(n_features,)`` `ndarray`
 The reconstructed vector.
 """
 return self.reconstruct_vectors(vector[None, :]).flatten()

[docs] def reconstruct_vectors(self, vectors):
 """
 Projects the `vectors` onto the linear space and rebuilds vectors from
 the weights found.

 Parameters

 vectors : ``(n_vectors, n_features)`` `ndarray`
 A set of vectors to project.

 Returns

 reconstructed : ``(n_vectors, n_features)`` `ndarray`
 The reconstructed vectors.
 """
 return self.instance_vectors(self.project_vectors(vectors))

[docs] def project_out(self, vector):
 """
 Returns a version of `vector` where all the basis of the model have
 been projected out.

 Parameters

 vector : ``(n_features,)`` `ndarray`
 A novel vector.

 Returns

 projected_out : ``(n_features,)`` `ndarray`
 A copy of `vector` with all basis of the model projected out.
 """
 return self.project_out_vectors(vector[None, :])

[docs] def project_out_vectors(self, vectors):
 """
 Returns a version of `vectors` where all the basis of the model have
 been projected out.

 Parameters

 vectors : ``(n_vectors, n_features)`` `ndarray`
 A matrix of novel vectors.

 Returns

 projected_out : ``(n_vectors, n_features)`` `ndarray`
 A copy of `vectors` with all basis of the model projected out.
 """
 weights = self.project_vectors(vectors)
 return vectors - self._instance_vectors_for_full_weights(weights)

[docs] def orthonormalize_inplace(self):
 r"""
 Enforces that this model's components are orthonormalized,
 s.t. ``component_vector(i).dot(component_vector(j) = dirac_delta``.
 """
 Q = np.linalg.qr(self.components.T)[0].T
 self.components[...] = Q

 # TODO: Investigate the meaning and consequences of trying to
 # orthonormalize two identical vectors
[docs] def orthonormalize_against_inplace(self, linear_model):
 r"""
 Enforces that the union of this model's components and another are
 both mutually orthonormal.

 Both models keep its number of components unchanged or else a value
 error is raised.

 Parameters

 linear_model : :class:`LinearVectorModel`
 A second linear model to orthonormalize this against.

 Raises

 ValueError
 The number of features must be greater or equal than the sum of the
 number of components in both linear models ({} < {})
 """
 n_components_sum = self.n_components + linear_model.n_components
 if not self.n_features >= n_components_sum:
 raise ValueError(
 "The number of features must be greater or equal than the "
 "sum of the number of components in both linear models ({} < "
 "{})".format(self.n_features, n_components_sum)
)
 # take the QR decomposition of the model components
 Q = (
 np.linalg.qr(np.hstack((linear_model._components.T, self._components.T)))[0]
).T
 # set the orthonormalized components of the model being passed
 linear_model.components = Q[: linear_model.n_components, :]
 # set the orthonormalized components of this model
 self.components = Q[linear_model.n_components :, :]

[docs]class MeanLinearVectorModel(LinearVectorModel):
 r"""
 A Linear Model containing a matrix of vector components, each component
 vector being made up of `features`. The model additionally has a mean
 component which is handled accordingly when either:

 1. A component of the model is selected
 2. A projection operation is performed

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The components array.
 mean : ``(n_features,)`` `ndarray`
 The mean vector.
 """

 def __init__(self, components, mean):
 super(MeanLinearVectorModel, self).__init__(components)
 self._mean = mean

[docs] def mean(self):
 r"""
 Return the mean of the model.

 :type: `ndarray`
 """
 return self._mean

[docs] def component(self, index, with_mean=True, scale=1.0):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned
 with_mean : `bool`, optional
 If ``True``, the component will be blended with the mean vector
 before being returned. If not, the component is returned on it's
 own.
 scale : `float`, optional
 A scale factor that should be directly applied to the component.
 Only valid in the case where ``with_mean == True``.

 Returns

 component_vector : ``(n_features,)`` `ndarray`
 The component vector.
 """
 if with_mean:
 return (scale * self.components[index]) + self._mean
 else:
 return self.components[index]

[docs] def project_vectors(self, vectors):
 """
 Projects each of the `vectors` onto the model, retrieving
 the optimal linear reconstruction weights for each instance.

 Parameters

 vectors : ``(n_samples, n_features)`` `ndarray`
 Array of vectorized novel instances.

 Returns

 projected : ``(n_samples, n_components)`` `ndarray`
 The matrix of optimal linear weights.
 """
 X = vectors - self._mean
 return np.dot(X, self.components.T)

[docs] def project_out_vectors(self, vectors):
 """
 Returns a version of `vectors` where all the bases of the model have
 been projected out.

 Parameters

 vectors : ``(n_vectors, n_features)`` `ndarray`
 A matrix of novel vectors.

 Returns

 projected_out : ``(n_vectors, n_features)`` `ndarray`
 A copy of `vectors` with all bases of the model projected out.
 """
 weights = self.project_vectors(vectors)
 # We don't add the mean back, in fact the residual is defined as
 # the mean subtracted.
 return (
 vectors - self._mean[None, ...]
) - LinearVectorModel._instance_vectors_for_full_weights(self, weights)

 def _instance_vectors_for_full_weights(self, full_weights):
 x = LinearVectorModel._instance_vectors_for_full_weights(self, full_weights)
 return x + self._mean

TODO: Deprecate in 0.7.0
These have been maintained for backwards compatibility
LinearModel = LinearVectorModel
MeanLinearModel = MeanLinearVectorModel

 menpo.model.pca

 Source code for menpo.model.pca

import numpy as np

from menpo.base import doc_inherit, name_of_callable
from menpo.math import as_matrix, ipca, pca, pcacov
from .linear import MeanLinearVectorModel
from .vectorizable import VectorizableBackedModel

[docs]class PCAVectorModel(MeanLinearVectorModel):
 r"""
 A :map:`MeanLinearModel` where components are Principal Components.

 Principal Component Analysis (PCA) by eigenvalue decomposition of the
 data's scatter matrix. For details of the implementation of PCA, see
 :map:`pca`.

 Parameters

 samples : `ndarray` or `list` or `iterable` of `ndarray`
 List or iterable of numpy arrays to build the model from, or an
 existing data matrix.
 centre : `bool`, optional
 When ``True`` (default) PCA is performed after mean centering the data.
 If ``False`` the data is assumed to be centred, and the mean will be
 ``0``.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a `list` (so we
 know how large the data matrix needs to be).
 max_n_components : `int`, optional
 The maximum number of components to keep in the model. Any components
 above and beyond this one are discarded.
 inplace : `bool`, optional
 If ``True`` the data matrix is modified in place. Otherwise, the data
 matrix is copied.
 """

 def __init__(
 self, samples, centre=True, n_samples=None, max_n_components=None, inplace=True
):
 # Generate data matrix
 data, self.n_samples = self._data_to_matrix(samples, n_samples)

 # Compute pca
 e_vectors, e_values, mean = pca(data, centre=centre, inplace=inplace)

 # The call to __init__ of MeanLinearModel is done in here
 self._constructor_helper(
 eigenvalues=e_values,
 eigenvectors=e_vectors,
 mean=mean,
 centred=centre,
 max_n_components=max_n_components,
)

[docs] @classmethod
 def init_from_covariance_matrix(
 cls, C, mean, n_samples, centred=True, is_inverse=False, max_n_components=None
):
 r"""
 Build the Principal Component Analysis (PCA) by eigenvalue
 decomposition of the provided covariance/scatter matrix. For details
 of the implementation of PCA, see :map:`pcacov`.

 Parameters

 C : ``(n_features, n_features)`` `ndarray` or `scipy.sparse`
 The Covariance/Scatter matrix. If it is a precision matrix (inverse
 covariance), then set `is_inverse=True`.
 mean : ``(n_features,)`` `ndarray`
 The mean vector.
 n_samples : `int`
 The number of samples used to generate the covariance matrix.
 centred : `bool`, optional
 When ``True`` we assume that the data were centered before
 computing the covariance matrix.
 is_inverse : `bool`, optional
 It ``True``, then it is assumed that `C` is a precision matrix (
 inverse covariance). Thus, the eigenvalues will be inverted. If
 ``False``, then it is assumed that `C` is a covariance matrix.
 max_n_components : `int`, optional
 The maximum number of components to keep in the model. Any
 components above and beyond this one are discarded.
 """
 # Compute pca on covariance
 e_vectors, e_values = pcacov(C, is_inverse=is_inverse)

 # Create new pca instance
 model = cls.__new__(cls)
 model.n_samples = n_samples

 # The call to __init__ of MeanLinearModel is done in here
 model._constructor_helper(
 eigenvalues=e_values,
 eigenvectors=e_vectors,
 mean=mean,
 centred=centred,
 max_n_components=max_n_components,
)
 return model

[docs] @classmethod
 def init_from_components(
 cls, components, eigenvalues, mean, n_samples, centred, max_n_components=None
):
 r"""
 Build the Principal Component Analysis (PCA) using the provided
 components (eigenvectors) and eigenvalues.

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The eigenvectors to be used.
 eigenvalues : ``(n_components,)`` `ndarray`
 The corresponding eigenvalues.
 mean : ``(n_features,)`` `ndarray`
 The mean vector.
 n_samples : `int`
 The number of samples used to generate the eigenvectors.
 centred : `bool`
 When ``True`` we assume that the data were centered before
 computing the eigenvectors.
 max_n_components : `int`, optional
 The maximum number of components to keep in the model. Any
 components above and beyond this one are discarded.
 """
 # This is a bit of a filthy trick that by rights should not be done,
 # but we want to have these nice static constructors so we are living
 # with the shame (create an empty object instance which we fill in).
 model = cls.__new__(cls)
 model.n_samples = n_samples

 # The call to __init__ of MeanLinearModel is done in here
 model._constructor_helper(
 eigenvalues=eigenvalues,
 eigenvectors=components,
 mean=mean,
 centred=centred,
 max_n_components=max_n_components,
)
 return model

 def _constructor_helper(
 self, eigenvalues, eigenvectors, mean, centred, max_n_components
):
 # if covariance is not centred, mean must be zeros.
 if centred:
 MeanLinearVectorModel.__init__(self, eigenvectors, mean)
 else:
 MeanLinearVectorModel.__init__(
 self, eigenvectors, np.zeros(mean.shape, dtype=mean.dtype)
)
 self.centred = centred
 self._eigenvalues = eigenvalues
 # start the active components as all the components
 self._n_active_components = int(self.n_components)
 self._trimmed_eigenvalues = np.array([])
 if max_n_components is not None:
 self.trim_components(max_n_components)

 def _data_to_matrix(self, data, n_samples):
 # build a data matrix from all the samples
 if n_samples is None:
 n_samples = len(data)
 # Assumed data is ndarray of (n_samples, n_features) or list of samples
 if not isinstance(data, np.ndarray):
 # Make sure we have an array, slice of the number of requested
 # samples
 data = np.array(data)[:n_samples]
 return data, n_samples

 def __setstate__(self, state):
 if "mean_vector" in state:
 state["_mean"] = state["mean_vector"]
 del state["mean_vector"]

 self.__dict__ = state

 @property
 def n_active_components(self):
 r"""
 The number of components currently in use on this model.

 :type: `int`
 """
 return self._n_active_components

 @n_active_components.setter
 def n_active_components(self, value):
 r"""
 Sets an updated number of active components on this model. The number
 of active components represents the number of principal components
 that will be used for generative purposes. Note that this therefore
 makes the model stateful. Also note that setting the number of
 components will not affect memory unless :meth:`trim_components`
 is called.

 Parameters

 value : `int`
 The new number of active components.

 Raises

 ValueError
 Tried setting n_active_components to {value} - value needs to be a
 float 0.0 < n_components < self._total_kept_variance_ratio ({}) or
 an integer 1 < n_components < self.n_components ({})
 """
 err_str = (
 "Tried setting n_active_components to {} - "
 "value needs to be a float "
 "0.0 < n_components < self._total_kept_variance_ratio "
 "({}) or an integer 1 < n_components < "
 "self.n_components ({})".format(
 value, self._total_variance_ratio(), self.n_components
)
)

 # check value
 if isinstance(value, float):
 if 0.0 < value <= self._total_variance_ratio():
 # value needed to capture desired variance
 value = (
 np.sum(
 [r < value for r in self._total_eigenvalues_cumulative_ratio()]
)
 + 1
)
 else:
 # variance must be bigger than 0.0
 raise ValueError(err_str)
 if isinstance(value, int):
 if value < 1:
 # at least 1 value must be kept
 raise ValueError(err_str)
 elif value >= self.n_components:
 if self.n_active_components < self.n_components:
 # if the number of available components is smaller than
 # the total number of components set value to the later
 value = self.n_components
 else:
 # if the previous is false and value bigger than the
 # total number of components, do nothing
 return
 if 0 < value <= self.n_components:
 self._n_active_components = int(value)
 else:
 raise ValueError(err_str)

 @property
 def components(self):
 r"""
 Returns the active components of the model.

 :type: ``(n_active_components, n_features)`` `ndarray`
 """
 return self._components[: self.n_active_components, :]

 @components.setter
 def components(self, value):
 r"""
 Updates the components of this linear model, ensuring that the shape
 of the components is not changed.

 Parameters

 value : ``(n_components, n_features)`` `ndarray`
 The new components array.

 Raises

 ValueError
 Trying to replace components of shape {} with some of shape {}
 """
 if value.shape != self._components.shape:
 raise ValueError(
 "Trying to replace components of shape {} with some of "
 "shape {}".format(self.components.shape, value.shape)
)
 else:
 np.copyto(self._components, value, casting="safe")

 @property
 def eigenvalues(self):
 r"""
 Returns the eigenvalues associated with the active components of the
 model, i.e. the amount of variance captured by each active component,
 sorted form largest to smallest.

 :type: ``(n_active_components,)`` `ndarray`
 """
 return self._eigenvalues[: self.n_active_components]

[docs] def whitened_components(self):
 r"""
 Returns the active components of the model, whitened.

 Returns

 whitened_components : ``(n_active_components, n_features)`` `ndarray`
 The whitened components.
 """
 return self.components / (
 np.sqrt(self.eigenvalues * self.n_samples + self.noise_variance())[:, None]
)

[docs] def original_variance(self):
 r"""
 Returns the total amount of variance captured by the original model,
 i.e. the amount of variance present on the original samples.

 Returns

 optional_variance : `float`
 The variance captured by the model.
 """
 return self._eigenvalues.sum() + self._trimmed_eigenvalues.sum()

[docs] def variance(self):
 r"""
 Returns the total amount of variance retained by the active
 components.

 Returns

 variance : `float`
 Total variance captured by the active components.
 """
 return self.eigenvalues.sum()

 def _total_variance(self):
 r"""
 Returns the total amount of variance retained by all components
 (active and inactive). Useful when the model has been trimmed.

 Returns

 total_variance : `float`
 Total variance captured by all components.
 """
 return self._eigenvalues.sum()

[docs] def variance_ratio(self):
 r"""
 Returns the ratio between the amount of variance retained by the
 active components and the total amount of variance present on the
 original samples.

 Returns

 variance_ratio : `float`
 Ratio of active components variance and total variance present
 in original samples.
 """
 return self.variance() / self.original_variance()

 def _total_variance_ratio(self):
 r"""
 Returns the ratio between the total amount of variance retained by
 all components (active and inactive) and the total amount of variance
 present on the original samples.

 Returns

 total_variance_ratio : `float`
 Ratio of total variance over the original variance.
 """
 return self._total_variance() / self.original_variance()

[docs] def eigenvalues_ratio(self):
 r"""
 Returns the ratio between the variance captured by each active
 component and the total amount of variance present on the original
 samples.

 Returns

 eigenvalues_ratio : ``(n_active_components,)`` `ndarray`
 The active eigenvalues array scaled by the original variance.
 """
 return self.eigenvalues / self.original_variance()

 def _total_eigenvalues_ratio(self):
 r"""
 Returns the ratio between the variance captured by each active
 component and the total amount of variance present on the original
 samples.

 Returns

 total_eigenvalues_ratio : ``(n_components,)`` `ndarray`
 Array of eigenvalues scaled by the original variance.
 """
 return self._eigenvalues / self.original_variance()

[docs] def eigenvalues_cumulative_ratio(self):
 r"""
 Returns the cumulative ratio between the variance captured by the
 active components and the total amount of variance present on the
 original samples.

 Returns

 eigenvalues_cumulative_ratio : ``(n_active_components,)`` `ndarray`
 Array of cumulative eigenvalues.
 """
 return np.cumsum(self.eigenvalues_ratio())

 def _total_eigenvalues_cumulative_ratio(self):
 r"""
 Returns the cumulative ratio between the variance captured by the
 active components and the total amount of variance present on the
 original samples.

 Returns

 total_eigenvalues_cumulative_ratio : ``(n_active_components,)`` `ndarray`
 Array of total cumulative eigenvalues.
 """
 return np.cumsum(self._total_eigenvalues_ratio())

[docs] def noise_variance(self):
 r"""
 Returns the average variance captured by the inactive components,
 i.e. the sample noise assumed in a Probabilistic PCA formulation.

 If all components are active, then ``noise_variance == 0.0``.

 Returns

 noise_variance : `float`
 The mean variance of the inactive components.
 """
 if self.n_active_components == self.n_components:
 if self._trimmed_eigenvalues.size != 0:
 noise_variance = self._trimmed_eigenvalues.mean()
 else:
 noise_variance = 0.0
 else:
 noise_variance = np.hstack(
 (
 self._eigenvalues[self.n_active_components :],
 self._trimmed_eigenvalues,
)
).mean()
 return noise_variance

[docs] def noise_variance_ratio(self):
 r"""
 Returns the ratio between the noise variance and the total amount of
 variance present on the original samples.

 Returns

 noise_variance_ratio : `float`
 The ratio between the noise variance and the variance present
 in the original samples.
 """
 return self.noise_variance() / self.original_variance()

[docs] def inverse_noise_variance(self):
 r"""
 Returns the inverse of the noise variance.

 Returns

 inverse_noise_variance : `float`
 Inverse of the noise variance.

 Raises

 ValueError
 If ``noise_variance() == 0``
 """
 noise_variance = self.noise_variance()
 if np.allclose(noise_variance, 0):
 raise ValueError(
 "noise variance is effectively 0 - " "cannot take the inverse"
)
 return 1.0 / noise_variance

[docs] def component(self, index, with_mean=True, scale=1.0):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned
 with_mean: `bool`, optional
 If ``True``, the component will be blended with the mean vector
 before being returned. If not, the component is returned on it's
 own.
 scale : `float`, optional
 A scale factor that should be applied to the component. Only
 valid in the case where with_mean is ``True``. The scale is applied
 in units of standard deviations (so a scale of ``1.0``
 `with_mean` visualizes the mean plus ``1`` std. dev of the component
 in question).

 Returns

 component_vector : ``(n_features,)`` `ndarray`
 The component vector of the given index.
 """
 if with_mean:
 # on PCA, scale is in units of std. deviations...
 scaled_eigval = scale * np.sqrt(self.eigenvalues[index])
 return (scaled_eigval * self.components[index]) + self._mean
 else:
 return self.components[index]

[docs] def instance_vectors(self, weights, normalized_weights=False):
 """
 Creates new vectorized instances of the model using the first
 components in a particular weighting.

 Parameters

 weights : ``(n_vectors, n_weights)`` `ndarray` or `list` of `lists`
 The weightings for the first `n_weights` components that
 should be used per instance that is to be produced

 ``weights[i, j]`` is the linear contribution of the j'th
 principal component to the i'th instance vector produced. Note
 that if ``n_weights < n_components``, only the first ``n_weight``
 components are used in the reconstruction (i.e. unspecified
 weights are implicitly ``0``).
 normalized_weights : `bool`, optional
 If ``True``, the weights are assumed to be normalized w.r.t the
 eigenvalues. This can be easier to create unique instances by
 making the weights more interpretable.

 Returns

 vectors : ``(n_vectors, n_features)`` `ndarray`
 The instance vectors for the weighting provided.

 Raises

 ValueError
 If n_weights > n_components
 """
 weights = np.asarray(weights) # if eg a list is provided
 n_instances, n_weights = weights.shape
 if n_weights > self.n_active_components:
 raise ValueError(
 "Number of weightings cannot be greater than {}".format(
 self.n_active_components
)
)
 else:
 full_weights = np.zeros(
 (n_instances, self.n_active_components), dtype=self._components.dtype
)
 full_weights[..., :n_weights] = weights
 weights = full_weights

 if normalized_weights:
 # If the weights were normalized, then they are all relative to
 # to the scale of the eigenvalues and thus must be multiplied by
 # the sqrt of the eigenvalues.
 weights *= self.eigenvalues ** 0.5
 return self._instance_vectors_for_full_weights(weights)

[docs] def instance(self, weights, normalized_weights=False):
 r"""
 Creates a new vector instance of the model by weighting together the
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 The weightings for the first `n_weights` components that should be
 used.

 ``weights[j]`` is the linear contribution of the j'th principal
 component to the instance vector.
 normalized_weights : `bool`, optional
 If ``True``, the weights are assumed to be normalized w.r.t the
 eigenvalues. This can be easier to create unique instances by
 making the weights more interpretable.

 Returns

 vector : ``(n_features,)`` `ndarray`
 The instance vector for the weighting provided.
 """
 weights = np.asarray(weights)
 return self.instance_vectors(
 weights[None, :], normalized_weights=normalized_weights
).flatten()

[docs] def trim_components(self, n_components=None):
 r"""
 Permanently trims the components down to a certain amount. The number of
 active components will be automatically reset to this particular value.

 This will reduce `self.n_components` down to `n_components`
 (if ``None``, `self.n_active_components` will be used), freeing up
 memory in the process.

 Once the model is trimmed, the trimmed components cannot be recovered.

 Parameters

 n_components: `int` >= ``1`` or `float` > ``0.0`` or ``None``, optional
 The number of components that are kept or else the amount (ratio)
 of variance that is kept. If ``None``, `self.n_active_components` is
 used.

 Notes

 In case `n_components` is greater than the total number of components or
 greater than the amount of variance currently kept, this method does
 not perform any action.
 """
 if n_components is None:
 # by default trim using the current n_active_components
 n_components = self.n_active_components
 # set self.n_active_components to n_components
 self.n_active_components = n_components

 if self.n_active_components < self.n_components:
 # Just stored so that we can fit < 80 chars
 nac = self.n_active_components
 # set self.n_components to n_components. We have to copy to ensure
 # that the data is actually removed, otherwise a view is returned
 self._components = self._components[:nac].copy()
 # store the eigenvalues associated to the discarded components
 self._trimmed_eigenvalues = np.hstack(
 (
 self._trimmed_eigenvalues,
 self._eigenvalues[self.n_active_components :],
)
)
 # make sure that the eigenvalues are trimmed too
 self._eigenvalues = self._eigenvalues[:nac].copy()

[docs] def project_whitened(self, vector_instance):
 """
 Projects the `vector_instance` onto the whitened components,
 retrieving the whitened linear weightings.

 Parameters

 vector_instance : ``(n_features,)`` `ndarray`
 A novel vector.

 Returns

 projected : ``(n_features,)`` `ndarray`
 A vector of whitened linear weightings
 """
 whitened_components = self.whitened_components()
 return np.dot(vector_instance, whitened_components.T)

[docs] def orthonormalize_against_inplace(self, linear_model):
 r"""
 Enforces that the union of this model's components and another are
 both mutually orthonormal.

 Note that the model passed in is guaranteed to not have it's number
 of available components changed. This model, however, may loose some
 dimensionality due to reaching a degenerate state.

 The removed components will always be trimmed from the end of
 components (i.e. the components which capture the least variance).
 If trimming is performed, `n_components` and `n_available_components`
 would be altered - see :meth:`trim_components` for details.

 Parameters

 linear_model : :map:`LinearModel`
 A second linear model to orthonormalize this against.
 """
 # take the QR decomposition of the model components
 Q = (
 np.linalg.qr(np.hstack((linear_model._components.T, self._components.T)))[0]
).T
 # the model passed to us went first, so all it's components will
 # survive. Pull them off, and update the other model.
 linear_model.components = Q[: linear_model.n_components, :]
 # it's possible that all of our components didn't survive due to
 # degeneracy. We need to trim our components down before replacing
 # them to ensure the number of components is consistent (otherwise
 # the components setter will complain at us)
 n_available_components = Q.shape[0] - linear_model.n_components
 if n_available_components < self.n_components:
 # oh dear, we've lost some components from the end of our model.
 if self.n_active_components < n_available_components:
 # save the current number of active components
 n_active_components = self.n_active_components
 else:
 # save the current number of available components
 n_active_components = n_available_components
 # call trim_components to update our state.
 self.trim_components(n_components=n_available_components)
 if n_active_components < n_available_components:
 # reset the number of active components
 self.n_active_components = n_active_components

 # now we can set our own components with the updated orthogonal ones
 self.components = Q[linear_model.n_components :, :]

[docs] def increment(self, data, n_samples=None, forgetting_factor=1.0, verbose=False):
 r"""
 Update the eigenvectors, eigenvalues and mean vector of this model
 by performing incremental PCA on the given samples.

 Parameters

 samples : `list` of :map:`Vectorizable`
 List of new samples to update the model from.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a
 list (so we know how large the data matrix needs to be).
 forgetting_factor : ``[0.0, 1.0]`` `float`, optional
 Forgetting factor that weights the relative contribution of new
 samples vs old samples. If 1.0, all samples are weighted equally
 and, hence, the results is the exact same as performing batch
 PCA on the concatenated list of old and new simples. If <1.0,
 more emphasis is put on the new samples. See [1] for details.

 References

 .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang.
 "Incremental Learning for Robust Visual Tracking". IJCV, 2007.
 """
 data, n_new_samples = self._data_to_matrix(data, n_samples)

 # compute incremental pca
 e_vectors, e_values, m_vector = ipca(
 data,
 self._components,
 self._eigenvalues,
 self.n_samples,
 m_a=self._mean,
 f=forgetting_factor,
)

 # if the number of active components is the same as the total number
 # of components so it will be after this method is executed
 reset = self.n_active_components == self.n_components

 # update mean, components, eigenvalues and number of samples
 self._mean = m_vector
 self._components = e_vectors
 self._eigenvalues = e_values
 self.n_samples += n_new_samples

 # reset the number of active components to the total number of
 # components
 if reset:
 self.n_active_components = self.n_components

[docs] def plot_eigenvalues(
 self,
 figure_id=None,
 new_figure=False,
 render_lines=True,
 line_colour="b",
 line_style="-",
 line_width=2,
 render_markers=True,
 marker_style="o",
 marker_size=6,
 marker_face_colour="b",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 figure_size=(10, 6),
 render_grid=True,
 grid_line_style="--",
 grid_line_width=0.5,
):
 r"""
 Plot of the eigenvalues.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, the line will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers.
 Example options ::

 {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

 figure_size : (`float`, `float`) or ``None``, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Returns

 viewer : :map:`MatplotlibRenderer`
 The viewer object.
 """
 from menpo.visualize import plot_curve

 return plot_curve(
 range(self.n_active_components),
 [self.eigenvalues],
 figure_id=figure_id,
 new_figure=new_figure,
 legend_entries=None,
 title="Eigenvalues",
 x_label="Component Number",
 y_label="Eigenvalue",
 axes_x_limits=[0, self.n_active_components - 1],
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_legend=False,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 figure_size=figure_size,
 render_grid=render_grid,
 grid_line_style=grid_line_style,
 grid_line_width=grid_line_width,
)

[docs] def plot_eigenvalues_ratio(
 self,
 figure_id=None,
 new_figure=False,
 render_lines=True,
 line_colour="b",
 line_style="-",
 line_width=2,
 render_markers=True,
 marker_style="o",
 marker_size=6,
 marker_face_colour="b",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 figure_size=(10, 6),
 render_grid=True,
 grid_line_style="--",
 grid_line_width=0.5,
):
 r"""
 Plot of the variance ratio captured by the eigenvalues.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, the line will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers.
 Example options ::

 {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

 figure_size : (`float`, `float`) or `None`, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Returns

 viewer : :map:`MatplotlibRenderer`
 The viewer object.
 """
 from menpo.visualize import plot_curve

 return plot_curve(
 range(self.n_active_components),
 [self.eigenvalues_ratio()],
 figure_id=figure_id,
 new_figure=new_figure,
 legend_entries=None,
 title="Variance Ratio of Eigenvalues",
 x_label="Component Number",
 y_label="Variance Ratio",
 axes_x_limits=[0, self.n_active_components - 1],
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_legend=False,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 figure_size=figure_size,
 render_grid=render_grid,
 grid_line_style=grid_line_style,
 grid_line_width=grid_line_width,
)

[docs] def plot_eigenvalues_cumulative_ratio(
 self,
 figure_id=None,
 new_figure=False,
 render_lines=True,
 line_colour="b",
 line_style="-",
 line_width=2,
 render_markers=True,
 marker_style="o",
 marker_size=6,
 marker_face_colour="b",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 figure_size=(10, 6),
 render_grid=True,
 grid_line_style="--",
 grid_line_width=0.5,
):
 r"""
 Plot of the cumulative variance ratio captured by the eigenvalues.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, the line will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers.
 Example options ::

 {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``,
 ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``,
 ``1``, ``2``, ``3``, ``4``, ``8``}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of length ``3``

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {``serif``, ``sans-serif``, ``cursive``, ``fantasy``,
 ``monospace``}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {``ultralight``, ``light``, ``normal``, ``regular``,
 ``book``, ``medium``, ``roman``, ``semibold``,
 ``demibold``, ``demi``, ``bold``, ``heavy``,
 ``extra bold``, ``black``}

 figure_size : (`float`, `float`) or `None`, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Returns

 viewer : :map:`MatplotlibRenderer`
 The viewer object.
 """
 from menpo.visualize import plot_curve

 return plot_curve(
 range(self.n_active_components),
 [self.eigenvalues_cumulative_ratio()],
 figure_id=figure_id,
 new_figure=new_figure,
 legend_entries=None,
 title="Cumulative Variance Ratio of Eigenvalues",
 x_label="Component Number",
 y_label="Cumulative Variance Ratio",
 axes_x_limits=[0, self.n_active_components - 1],
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_legend=False,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 figure_size=figure_size,
 render_grid=render_grid,
 grid_line_style=grid_line_style,
 grid_line_width=grid_line_width,
)

 def __str__(self):
 str_out = (
 "PCA Vector Model \n"
 " - centred: {}\n"
 " - # features: {}\n"
 " - # active components: {}\n"
 " - kept variance: {:.2} {:.1%}\n"
 " - noise variance: {:.2} {:.1%}\n"
 " - total # components: {}\n"
 " - components shape: {}\n".format(
 self.centred,
 self.n_features,
 self.n_active_components,
 self.variance(),
 self.variance_ratio(),
 self.noise_variance(),
 self.noise_variance_ratio(),
 self.n_components,
 self.components.shape,
)
)
 return str_out

[docs]class PCAModel(VectorizableBackedModel, PCAVectorModel):
 r"""
 A :map:`MeanLinearModel` where components are Principal Components
 and the components are vectorized instances.

 Principal Component Analysis (PCA) by eigenvalue decomposition of the
 data's scatter matrix. For details of the implementation of PCA, see
 :map:`pca`.

 Parameters

 samples : `list` or `iterable` of :map:`Vectorizable`
 List or iterable of samples to build the model from.
 centre : `bool`, optional
 When ``True`` (default) PCA is performed after mean centering the data.
 If ``False`` the data is assumed to be centred, and the mean will be
 ``0``.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a `list` (so we
 know how large the data matrix needs to be).
 max_n_components : `int`, optional
 The maximum number of components to keep in the model. Any components
 above and beyond this one are discarded.
 inplace : `bool`, optional
 If ``True`` the data matrix is modified in place. Otherwise, the data
 matrix is copied.
 verbose : `bool`, optional
 Whether to print building information or not.
 """

 def __init__(
 self,
 samples,
 centre=True,
 n_samples=None,
 max_n_components=None,
 inplace=True,
 verbose=False,
):
 # build a data matrix from all the samples
 data, template = as_matrix(
 samples, length=n_samples, return_template=True, verbose=verbose
)
 n_samples = data.shape[0]

 PCAVectorModel.__init__(
 self,
 data,
 centre=centre,
 max_n_components=max_n_components,
 n_samples=n_samples,
 inplace=inplace,
)
 VectorizableBackedModel.__init__(self, template)

[docs] @classmethod
 def init_from_covariance_matrix(
 cls, C, mean, n_samples, centred=True, is_inverse=False, max_n_components=None
):
 r"""
 Build the Principal Component Analysis (PCA) by eigenvalue
 decomposition of the provided covariance/scatter matrix. For details
 of the implementation of PCA, see :map:`pcacov`.

 Parameters

 C : ``(n_features, n_features)`` `ndarray` or `scipy.sparse`
 The Covariance/Scatter matrix. If it is a precision matrix (inverse
 covariance), then set `is_inverse=True`.
 mean : :map:`Vectorizable`
 The mean instance. It must be a :map:`Vectorizable` and *not* an
 `ndarray`.
 n_samples : `int`
 The number of samples used to generate the covariance matrix.
 centred : `bool`, optional
 When ``True`` we assume that the data were centered before
 computing the covariance matrix.
 is_inverse : `bool`, optional
 It ``True``, then it is assumed that `C` is a precision matrix (
 inverse covariance). Thus, the eigenvalues will be inverted. If
 ``False``, then it is assumed that `C` is a covariance matrix.
 max_n_components : `int`, optional
 The maximum number of components to keep in the model. Any
 components above and beyond this one are discarded.
 """
 # Create new pca instance
 self_model = PCAVectorModel.__new__(cls)
 self_model.n_samples = n_samples

 # Compute pca on covariance
 e_vectors, e_values = pcacov(C, is_inverse=is_inverse)

 # The call to __init__ of MeanLinearModel is done in here
 self_model._constructor_helper(
 eigenvalues=e_values,
 eigenvectors=e_vectors,
 mean=mean.as_vector(),
 centred=centred,
 max_n_components=max_n_components,
)
 VectorizableBackedModel.__init__(self_model, mean)
 return self_model

[docs] @classmethod
 def init_from_components(
 cls, components, eigenvalues, mean, n_samples, centred, max_n_components=None
):
 r"""
 Build the Principal Component Analysis (PCA) using the provided
 components (eigenvectors) and eigenvalues.

 Parameters

 components : ``(n_components, n_features)`` `ndarray`
 The eigenvectors to be used.
 eigenvalues : ``(n_components,)`` `ndarray`
 The corresponding eigenvalues.
 mean : :map:`Vectorizable`
 The mean instance. It must be a :map:`Vectorizable` and *not* an
 `ndarray`.
 n_samples : `int`
 The number of samples used to generate the eigenvectors.
 centred : `bool`, optional
 When ``True`` we assume that the data were centered before
 computing the eigenvectors.
 max_n_components : `int`, optional
 The maximum number of components to keep in the model. Any
 components above and beyond this one are discarded.
 """
 # Create new pca instance
 self_model = PCAVectorModel.__new__(cls)
 self_model.n_samples = n_samples

 # The call to __init__ of MeanLinearModel is done in here
 self_model._constructor_helper(
 eigenvalues=eigenvalues,
 eigenvectors=components,
 mean=mean.as_vector(),
 centred=centred,
 max_n_components=max_n_components,
)
 VectorizableBackedModel.__init__(self_model, mean)
 return self_model

[docs] def mean(self):
 r"""
 Return the mean of the model.

 :type: :map:`Vectorizable`
 """
 return self.template_instance.from_vector(self._mean)

 @property
 def mean_vector(self):
 r"""
 Return the mean of the model as a 1D vector.

 :type: `ndarray`
 """
 return self._mean

[docs] @doc_inherit(name="project_out")
 def project_out_vector(self, instance_vector):
 return PCAVectorModel.project_out(self, instance_vector)

[docs] @doc_inherit(name="reconstruct")
 def reconstruct_vector(self, instance_vector):
 return PCAVectorModel.reconstruct(self, instance_vector)

[docs] @doc_inherit(name="project")
 def project_vector(self, instance_vector):
 return PCAVectorModel.project(self, instance_vector)

[docs] @doc_inherit(name="instance")
 def instance_vector(self, weights, normalized_weights=False):
 return PCAVectorModel.instance(
 self, weights, normalized_weights=normalized_weights
)

[docs] @doc_inherit(name="component")
 def component_vector(self, index, with_mean=True, scale=1.0):
 return PCAVectorModel.component(self, index, with_mean=with_mean, scale=scale)

[docs] @doc_inherit(name="project_whitened")
 def project_whitened_vector(self, vector_instance):
 return PCAVectorModel.project_whitened(self, vector_instance)

[docs] def component(self, index, with_mean=True, scale=1.0):
 r"""
 Return a particular component of the linear model.

 Parameters

 index : `int`
 The component that is to be returned
 with_mean: `bool`, optional
 If ``True``, the component will be blended with the mean vector
 before being returned. If not, the component is returned on it's
 own.
 scale : `float`, optional
 A scale factor that should be applied to the component. Only
 valid in the case where ``with_mean == True``. See
 :meth:`component_vector` for how this scale factor is interpreted.

 Returns

 component : `type(self.template_instance)`
 The requested component instance.
 """
 return self.template_instance.from_vector(
 self.component_vector(index, with_mean=with_mean, scale=scale)
)

[docs] def instance(self, weights, normalized_weights=False):
 """
 Creates a new instance of the model using the first ``len(weights)``
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 ``weights[i]`` is the linear contribution of the i'th component
 to the instance vector.
 normalized_weights : `bool`, optional
 If ``True``, the weights are assumed to be normalized w.r.t the
 eigenvalues. This can be easier to create unique instances by
 making the weights more interpretable.
 Raises

 ValueError
 If n_weights > n_components

 Returns

 instance : `type(self.template_instance)`
 An instance of the model.
 """
 v = self.instance_vector(weights, normalized_weights=normalized_weights)
 return self.template_instance.from_vector(v)

[docs] def project_whitened(self, instance):
 """
 Projects the `instance` onto the whitened components, retrieving the
 whitened linear weightings.

 Parameters

 instance : :map:`Vectorizable`
 A novel instance.

 Returns

 projected : (n_components,)
 A vector of whitened linear weightings
 """
 return self.project_whitened_vector(instance.as_vector())

[docs] def increment(self, samples, n_samples=None, forgetting_factor=1.0, verbose=False):
 r"""
 Update the eigenvectors, eigenvalues and mean vector of this model
 by performing incremental PCA on the given samples.

 Parameters

 samples : `list` of :map:`Vectorizable`
 List of new samples to update the model from.
 n_samples : `int`, optional
 If provided then ``samples`` must be an iterator that yields
 ``n_samples``. If not provided then samples has to be a
 list (so we know how large the data matrix needs to be).
 forgetting_factor : ``[0.0, 1.0]`` `float`, optional
 Forgetting factor that weights the relative contribution of new
 samples vs old samples. If 1.0, all samples are weighted equally
 and, hence, the results is the exact same as performing batch
 PCA on the concatenated list of old and new simples. If <1.0,
 more emphasis is put on the new samples. See [1] for details.

 References

 .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang.
 "Incremental Learning for Robust Visual Tracking". IJCV, 2007.
 """
 # build a data matrix from the new samples
 data = as_matrix(samples, length=n_samples, verbose=verbose)
 n_new_samples = data.shape[0]
 PCAVectorModel.increment(
 self,
 data,
 n_samples=n_new_samples,
 forgetting_factor=forgetting_factor,
 verbose=verbose,
)

 def __str__(self):
 str_out = (
 "PCA Model \n"
 " - instance class: {}\n"
 " - centred: {}\n"
 " - # features: {}\n"
 " - # active components: {}\n"
 " - kept variance: {:.2} {:.1%}\n"
 " - noise variance: {:.2} {:.1%}\n"
 " - total # components: {}\n"
 " - components shape: {}\n".format(
 name_of_callable(self.template_instance),
 self.centred,
 self.n_features,
 self.n_active_components,
 self.variance(),
 self.variance_ratio(),
 self.noise_variance(),
 self.noise_variance_ratio(),
 self.n_components,
 self.components.shape,
)
)
 return str_out

 menpo.model.vectorizable

 Source code for menpo.model.vectorizable

class VectorizableBackedModel(object):
 r"""
 Mixin for models constructed from a set of :map:`Vectorizable` objects.
 Supports models for which visualizing the meaning of a set of components
 is trivial.

 Requires that the following methods are implemented:

 1. `component_vector(index)`
 2. `instance_vector(weights)`
 3. `project_vector(vector)`
 4. `reconstruct_vector(vectors)`
 5. `project_out_vector(vector)`

 The constructor takes an instance of :map:`Vectorizable`. This is used for
 all conversions to and from numpy vectors and instances.

 Parameters

 template_instance : :map:`Vectorizable`
 The template instance.
 """

 def __init__(self, template_instance):
 self.template_instance = template_instance

 def component_vector(self, index):
 r"""
 A particular component of the model, in vectorized form.

 Parameters

 index : `int`
 The component that is to be returned.

 Returns

 component_vector : `ndarray`
 The component vector.
 """
 raise NotImplementedError()

 def component(self, index):
 r"""
 A particular component of the model.

 Parameters

 index : `int`
 The component that is to be returned.

 Returns

 component : `type(self.template_instance)`
 The component instance.
 """
 return self.template_instance.from_vector(self.component_vector(index))

 def instance_vector(self, weights):
 """
 Creates a new vector instance of the model using the first ``len(weights)``
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 ``weights[i]`` is the linear contribution of the i'th component
 to the instance vector.

 Raises

 ValueError
 If n_weights > n_components

 Returns

 instance_vector : `ndarray`
 An instance of the model, in vectorized form.
 """
 raise NotImplementedError()

 def instance(self, weights):
 """
 Creates a new instance of the model using the first ``len(weights)``
 components.

 Parameters

 weights : ``(n_weights,)`` `ndarray` or `list`
 ``weights[i]`` is the linear contribution of the i'th component
 to the instance vector.

 Raises

 ValueError
 If n_weights > n_components

 Returns

 instance : `type(self.template_instance)`
 An instance of the model.
 """
 return self.template_instance.from_vector(self.instance_vector(weights))

 def project_vector(self, instance_vector):
 """
 Projects the `instance_vector` onto the model, retrieving the optimal
 linear weightings.

 Parameters

 instance_vector : `ndarray`
 A novel instance vector.

 Returns

 projected_vector : ``(n_components,)`` `ndarray`
 A vector of optimal linear weightings.
 """
 raise NotImplementedError()

 def project(self, instance):
 """
 Projects the `instance` onto the model, retrieving the optimal
 linear weightings.

 Parameters

 instance : :map:`Vectorizable`
 A novel instance.

 Returns

 projected : ``(n_components,)`` `ndarray`
 A vector of optimal linear weightings.
 """
 return self.project_vector(instance.as_vector())

 def reconstruct_vector(self, instance_vector):
 """
 Projects an `instance_vector` onto the linear space and rebuilds from the
 weights found.

 Syntactic sugar for: ::

 instance_vector(project_vector(instance_vector))

 but faster, as it avoids the conversion that takes place each time.

 Parameters

 instance_vector : `ndarray`
 A novel instance vector.

 Returns

 reconstructed_vector : `ndarray`
 The reconstructed vector.
 """
 raise NotImplementedError()

 def reconstruct(self, instance):
 """
 Projects a `instance` onto the linear space and rebuilds from the
 weights found.

 Syntactic sugar for: ::

 instance(project(instance))

 but faster, as it avoids the conversion that takes place each time.

 Parameters

 instance : :class:`Vectorizable`
 A novel instance of :class:`Vectorizable`.

 Returns

 reconstructed : `self.instance_class`
 The reconstructed object.
 """
 reconstruction_vector = self.reconstruct_vector(instance.as_vector())
 return instance.from_vector(reconstruction_vector)

 def project_out_vector(self, instance_vector):
 """
 Returns a version of `instance_vector` where all the basis of the model
 have been projected out.

 Parameters

 instance_vector : `ndarray`
 A novel instance vector.

 Returns

 projected_out_vector : `ndarray`
 A copy of `instance_vector`, with all bases of the model projected out.
 """
 raise NotImplementedError()

 def project_out(self, instance):
 """
 Returns a version of `instance` where all the basis of the model
 have been projected out.

 Parameters

 instance : :class:`Vectorizable`
 A novel instance of :class:`Vectorizable`.

 Returns

 projected_out : `self.instance_class`
 A copy of `instance`, with all basis of the model projected out.
 """
 vector_instance = self.project_out_vector(instance.as_vector())
 return instance.from_vector(vector_instance)

 menpo.shape.base

 Source code for menpo.shape.base

from menpo.base import Vectorizable
from menpo.landmark import Landmarkable
from menpo.transform.base import Transformable
from menpo.visualize import LandmarkableViewable, Viewable

[docs]class Shape(Vectorizable, Transformable, Landmarkable, LandmarkableViewable, Viewable):
 """
 Abstract representation of shape. Shapes are :map:`Transformable`,
 :map:`Vectorizable`, :map:`Landmarkable`, :map:`LandmarkableViewable` and
 :map:`Viewable`. This base class handles transforming landmarks when the
 shape is transformed. Therefore, implementations of :map:`Shape` have to
 implement the abstract :meth:`_transform_self_inplace` method that handles
 transforming the :map:`Shape` itself.
 """

 def _transform_inplace(self, transform):
 """
 Transform the landmarks and the shape itself.

 Parameters

 transform : `function`
 A function to transform the spatial data with.

 Returns

 self : `type(self)`
 A pointer to `self` (the result of :meth:`_transform_self_inplace`).
 """
 if self.has_landmarks:
 self.landmarks._transform_inplace(transform)
 return self._transform_self_inplace(transform)

 def _transform_self_inplace(self, transform):
 """
 Implement this method to transform the concrete implementation of a
 shape. This is then called by the Shape's :meth:`_transform_inplace`
 method, which will have updated the landmarks beforehand.

 Parameters

 transform : `function`
 A function to transform the spatial data with.

 Returns

 self : `type(self)`
 A pointer to `self`.
 """
 pass

 menpo.shape.graph

 Source code for menpo.shape.graph

import numpy as np
from scipy.sparse import csgraph, csr_matrix, triu

from . import PointCloud

class Graph(object):
 r"""
 Abstract class for Graph definitions and manipulation.

 Parameters

 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices. The non-edges must
 be represented with zeros and the edges can have a weight value.

 The adjacency matrix of an undirected graph must be symmetric.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least one vertex.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.
 ValueError
 The adjacency matrix of an undirected graph must be symmetric.

 Examples

 The adjacency matrix of the following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 1, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0]])

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(
 ([1] * 14,
 ([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
 [1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),
 shape=(6, 6))

 The adjacency matrix of the following directed graph ::

 |-->0<--|
 | |
 | |
 1<----->2
 | |
 v v
 3------>4
 |
 v
 5

 can be represented as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],
 [0, 0, 2, 1, 3, 4, 4, 5])),
 shape=(6, 6))

 Finally, the adjacency matrix of the following graph with isolated
 vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],
 [2, 0, 4, 2, 4, 3])),
 shape=(6, 6))
 """

 def __init__(self, adjacency_matrix, copy=True, skip_checks=False):
 # check if adjacency_matrix is numpy.ndarray or scipy.sparse.csr_matrix
 if isinstance(adjacency_matrix, np.ndarray):
 # it is numpy.ndarray, thus convert it to scipy.sparse.csr_matrix
 adjacency_matrix = csr_matrix(adjacency_matrix)
 elif not (
 isinstance(adjacency_matrix, np.ndarray)
 or isinstance(adjacency_matrix, csr_matrix)
):
 raise ValueError(
 "adjacency_matrix must be either a numpy.ndarray"
 "or a scipy.sparse.csr_matrix."
)

 if not skip_checks:
 # check that adjacency_matrix has expected shape
 if adjacency_matrix.shape[0] == 0:
 raise ValueError("Graph must have at least one vertex.")
 elif adjacency_matrix.shape[0] != adjacency_matrix.shape[1]:
 raise ValueError(
 "adjacency_matrix must be square "
 "(n_vertices, n_vertices,), ({}, {}) given "
 "instead".format(
 adjacency_matrix.shape[0], adjacency_matrix.shape[1]
)
)

 # check if adjacency matrix of undirected graph is symmetric
 if not self._directed and not _is_symmetric(adjacency_matrix):
 raise ValueError(
 "The adjacency matrix of an undirected graph " "must be symmetric."
)

 # store adjacency_matrix
 if copy:
 self.adjacency_matrix = adjacency_matrix.copy()
 else:
 self.adjacency_matrix = adjacency_matrix

 @classmethod
 def init_from_edges(cls, edges, n_vertices, skip_checks=False):
 r"""
 Initialize graph from edges array.

 Parameters

 edges : ``(n_edges, 2,)`` `ndarray`
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 n_vertices : `int`
 The total number of vertices, assuming that the numbering of
 vertices starts from ``0``. ``edges`` and ``n_vertices`` can be
 defined in a way to set isolated vertices.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Examples

 The following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 from menpo.shape import UndirectedGraph
 import numpy as np
 edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
 graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

 The following directed graph ::

 |-->0<--|
 | |
 | |
 1<----->2
 | |
 v v
 3------>4
 |
 v
 5

 can be represented as ::

 from menpo.shape import DirectedGraph
 import numpy as np
 edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
 [3, 4], [3, 5]])
 graph = DirectedGraph.init_from_edges(edges, n_vertices=6)

 Finally, the following graph with isolated vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 from menpo.shape import UndirectedGraph
 import numpy as np
 edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
 graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

 """
 adjacency_matrix = _convert_edges_to_adjacency_matrix(edges, n_vertices)
 return cls(adjacency_matrix, copy=False, skip_checks=skip_checks)

 @property
 def vertices(self):
 r"""
 Returns the `list` of vertices.

 :type: `list`
 """
 return range(self.adjacency_matrix.shape[0])

 @property
 def n_vertices(self):
 r"""
 Returns the number of vertices.

 :type: `int`
 """
 return self.adjacency_matrix.shape[0]

 @property
 def edges(self):
 r"""
 Returns the `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.

 :type: ``(n_edges, 2,)`` `ndarray`
 """
 pass

 @property
 def n_edges(self):
 r"""
 Returns the number of edges.

 :type: `int`
 """
 return self.edges.shape[0]

 def isolated_vertices(self):
 r"""
 Returns the isolated vertices of the graph (if any), i.e. the vertices
 that have no edge connections.

 Returns

 isolated_vertices : `list`
 A `list` of the isolated vertices. If there aren't any, it returns
 an empty `list`.
 """
 return _isolated_vertices(self.adjacency_matrix)

 def has_isolated_vertices(self):
 r"""
 Whether the graph has any isolated vertices, i.e. vertices with no edge
 connections.

 Returns

 has_isolated_vertices : `bool`
 ``True`` if the graph has at least one isolated vertex.
 """
 return len(self.isolated_vertices()) > 0

 def get_adjacency_list(self):
 r"""
 Returns the adjacency list of the graph, i.e. a `list` of length
 ``n_vertices`` that for each vertex has a `list` of the vertex
 neighbours. If the graph is directed, the neighbours are children.

 Returns

 adjacency_list : `list` of `list` of length ``n_vertices``
 The adjacency list of the graph.
 """
 # initialize list with empty lists
 adjacency_list = [[] for _ in range(self.n_vertices)]

 # get rows/columns of edges
 rows, cols = self.adjacency_matrix.nonzero()

 # store them accordingly
 for i in range(rows.shape[0]):
 from_v = rows[i]
 to_v = cols[i]
 adjacency_list[from_v].append(to_v)
 return adjacency_list

 def is_edge(self, vertex_1, vertex_2, skip_checks=False):
 r"""
 Whether there is an edge between the provided vertices.

 Parameters

 vertex_1 : `int`
 The first selected vertex. Parent if the graph is directed.
 vertex_2 : `int`
 The second selected vertex. Child if the graph is directed.
 skip_checks : `bool`, optional
 If ``False``, the given vertices will be checked.

 Returns

 is_edge : `bool`
 ``True`` if there is an edge connecting ``vertex_1`` and
 ``vertex_2``.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 if not skip_checks:
 self._check_vertex(vertex_1)
 self._check_vertex(vertex_2)
 return self.adjacency_matrix[vertex_1, vertex_2] != 0

 def find_path(self, start, end, method="bfs", skip_checks=False):
 r"""
 Returns a `list` with the first path (without cycles) found from the
 ``start`` vertex to the ``end`` vertex. It can employ either depth-first
 search or breadth-first search.

 Parameters

 start : `int`
 The vertex from which the path starts.
 end : `int`
 The vertex to which the path ends.
 method : {``bfs``, ``dfs``}, optional
 The method to be used.
 skip_checks : `bool`, optional
 If ``True``, then input arguments won't pass through checks. Useful
 for efficiency.

 Returns

 path : `list`
 The path's vertices.

 Raises

 ValueError
 Method must be either bfs or dfs.
 """
 # checks
 if not skip_checks:
 self._check_vertex(start)
 self._check_vertex(end)

 # search
 if method == "bfs":
 nodes, predecessors = csgraph.breadth_first_order(
 self.adjacency_matrix,
 start,
 directed=self._directed,
 return_predecessors=True,
)
 elif method == "dfs":
 nodes, predecessors = csgraph.depth_first_order(
 self.adjacency_matrix,
 start,
 directed=self._directed,
 return_predecessors=True,
)
 else:
 raise ValueError("Method must be either bfs or dfs.")

 # get path
 if predecessors[end] == -9999:
 path = []
 else:
 path = [end]
 i = None
 while i != start:
 i = predecessors[path[-1]]
 path.append(i)
 path.reverse()
 return path

 def find_all_paths(self, start, end, path=[]):
 r"""
 Returns a list of lists with all the paths (without cycles) found from
 start vertex to end vertex.

 Parameters

 start : `int`
 The vertex from which the paths start.
 end : `int`
 The vertex from which the paths end.
 path : `list`, optional
 An existing path to append to.

 Returns

 paths : `list` of `list`
 The list containing all the paths from start to end.
 """
 if path is None:
 path = []
 path = path + [start]
 if start == end:
 return [path]
 if start > self.n_vertices - 1 or start < 0:
 return []
 paths = []
 for v in list(self.adjacency_matrix[start, :].nonzero()[1]):
 if v not in path:
 newpaths = self.find_all_paths(v, end, path)
 for newpath in newpaths:
 paths.append(newpath)
 return paths

 def n_paths(self, start, end):
 r"""
 Returns the number of all the paths (without cycles) existing from
 start vertex to end vertex.

 Parameters

 start : `int`
 The vertex from which the paths start.
 end : `int`
 The vertex from which the paths end.

 Returns

 paths : `int`
 The paths' numbers.
 """
 return len(self.find_all_paths(start, end))

 def find_all_shortest_paths(self, algorithm="auto", unweighted=False):
 r"""
 Returns the distances and predecessors arrays of the graph's shortest
 paths.

 Parameters

 algorithm : 'str', see below, optional
 The algorithm to be used. Possible options are:

 ================ ===
 'dijkstra' Dijkstra's algorithm with Fibonacci heaps
 'bellman-ford' Bellman-Ford algorithm
 'johnson' Johnson's algorithm
 'floyd-warshall' Floyd-Warshall algorithm
 'auto' Select the best among the above
 ================ ===

 unweighted : `bool`, optional
 If ``True``, then find unweighted distances. That is, rather than
 finding the path between each vertex such that the sum of weights is
 minimized, find the path such that the number of edges is minimized.

 Returns

 distances : ``(n_vertices, n_vertices,)`` `ndarray`
 The matrix of distances between all graph vertices.
 ``distances[i,j]`` gives the shortest distance from vertex ``i`` to
 vertex ``j`` along the graph.
 predecessors : ``(n_vertices, n_vertices,)`` `ndarray`
 The matrix of predecessors, which can be used to reconstruct the
 shortest paths. Each entry ``predecessors[i, j]`` gives the index of
 the previous vertex in the path from vertex ``i`` to vertex ``j``.
 If no path exists between vertices ``i`` and ``j``, then
 ``predecessors[i, j] = -9999``.
 """
 # find costs and predecessors of all shortest paths
 return csgraph.shortest_path(
 self.adjacency_matrix,
 directed=self._directed,
 method=algorithm,
 unweighted=unweighted,
 return_predecessors=True,
)

 def find_shortest_path(
 self, start, end, algorithm="auto", unweighted=False, skip_checks=False
):
 r"""
 Returns a `list` with the shortest path (without cycles) found from
 ``start`` vertex to ``end`` vertex.

 Parameters

 start : `int`
 The vertex from which the path starts.
 end : `int`
 The vertex to which the path ends.
 algorithm : 'str', see below, optional
 The algorithm to be used. Possible options are:

 ================ ===
 'dijkstra' Dijkstra's algorithm with Fibonacci heaps
 'bellman-ford' Bellman-Ford algorithm
 'johnson' Johnson's algorithm
 'floyd-warshall' Floyd-Warshall algorithm
 'auto' Select the best among the above
 ================ ===

 unweighted : `bool`, optional
 If ``True``, then find unweighted distances. That is, rather than
 finding the path such that the sum of weights is minimized, find
 the path such that the number of edges is minimized.
 skip_checks : `bool`, optional
 If ``True``, then input arguments won't pass through checks. Useful
 for efficiency.

 Returns

 path : `list`
 The shortest path's vertices, including ``start`` and ``end``. If
 there was not path connecting the vertices, then an empty `list` is
 returned.
 distance : `int` or `float`
 The distance (cost) of the path from ``start`` to ``end``.
 """
 # checks
 if not skip_checks:
 self._check_vertex(start)
 self._check_vertex(end)

 # find distances and predecessors of all shortest paths
 (distances, predecessors) = self.find_all_shortest_paths(
 algorithm=algorithm, unweighted=unweighted
)

 # retrieve shortest path and its distance
 if predecessors[start, end] < 0:
 path = []
 distance = np.inf
 else:
 path = [end]
 distance = 0
 i = None
 while i != start:
 i = predecessors[start, path[-1]]
 path.append(i)
 distance += distances[start, path[-1]]
 path.reverse()
 return path, distance

 def has_cycles(self):
 r"""
 Checks if the graph has at least one cycle.

 Returns

 has_cycles : `bool`
 ``True`` if the graph has cycles.
 """
 return _has_cycles(self.get_adjacency_list(), self._directed)

 def is_tree(self):
 r"""
 Checks if the graph is tree.

 Returns

 is_true : `bool`
 If the graph is a tree.
 """
 return not self.has_cycles() and self.n_edges == self.n_vertices - 1

 def _check_vertex(self, vertex):
 r"""
 Checks that a given vertex is valid.

 Parameters

 vertex : `int`
 Index of a given vertex.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 if vertex > self.n_vertices - 1 or vertex < 0:
 raise ValueError(
 "The vertex must be between " "0 and {}.".format(self.n_vertices - 1)
)

[docs]class UndirectedGraph(Graph):
 r"""
 Class for Undirected Graph definition and manipulation.

 Parameters

 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph. The non-edges must be represented
 with zeros and the edges can have a weight value.

 :Note: ``adjacency_matrix`` must be symmetric.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.
 ValueError
 The adjacency matrix of an undirected graph must be symmetric.

 Examples

 The following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 1, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0]])
 graph = UndirectedGraph(adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(
 ([1] * 14,
 ([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
 [1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),
 shape=(6, 6))
 graph = UndirectedGraph(adjacency_matrix)

 The adjacency matrix of the following graph with isolated vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])
 graph = UndirectedGraph(adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],
 [2, 0, 4, 2, 4, 3])),
 shape=(6, 6))
 graph = UndirectedGraph(adjacency_matrix)
 """

 def __init__(self, adjacency_matrix, copy=True, skip_checks=False):
 self._directed = False
 super(UndirectedGraph, self).__init__(
 adjacency_matrix, copy=copy, skip_checks=skip_checks
)

[docs] @classmethod
 def init_from_edges(cls, edges, n_vertices, skip_checks=False):
 r"""
 Initialize graph from edges array.

 Parameters

 edges : ``(n_edges, 2,)`` `ndarray`
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 n_vertices : `int`
 The total number of vertices, assuming that the numbering of
 vertices starts from ``0``. ``edges`` and ``n_vertices`` can be
 defined in a way to set isolated vertices.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Examples

 The following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 from menpo.shape import UndirectedGraph
 import numpy as np
 edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
 graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

 Finally, the following graph with isolated vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 from menpo.shape import UndirectedGraph
 import numpy as np
 edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
 graph = UndirectedGraph.init_from_edges(edges, n_vertices=6)

 """
 adjacency_matrix = _convert_edges_to_symmetric_adjacency_matrix(
 edges, n_vertices
)
 return cls(adjacency_matrix, copy=False, skip_checks=skip_checks)

 @property
 def edges(self):
 return np.vstack(triu(self.adjacency_matrix).nonzero()).T

[docs] def neighbours(self, vertex, skip_checks=False):
 r"""
 Returns the neighbours of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 neighbours : `list`
 The list of neighbours.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 # check given vertex
 if not skip_checks:
 self._check_vertex(vertex)
 return list(self.adjacency_matrix[vertex, :].nonzero()[1])

[docs] def n_neighbours(self, vertex, skip_checks=False):
 r"""
 Returns the number of neighbours of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 n_neighbours : `int`
 The number of neighbours.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 return len(self.neighbours(vertex, skip_checks=skip_checks))

[docs] def minimum_spanning_tree(self, root_vertex):
 r"""
 Returns the minimum spanning tree of the graph using Kruskal's
 algorithm.

 Parameters

 root_vertex : `int`
 The vertex that will be set as root in the output MST.

 Returns

 mst : :map:`Tree`
 The computed minimum spanning tree.

 Raises

 ValueError
 Cannot compute minimum spanning tree of a graph with isolated
 vertices
 """
 # check if graph has isolated vertices
 if self.has_isolated_vertices():
 raise ValueError(
 "Cannot compute minimum spanning tree of a graph "
 "with isolated vertices."
)
 # Compute MST. It returns an undirected graph.
 mst_adjacency = csgraph.minimum_spanning_tree(self.adjacency_matrix)
 # Get directed tree from the above undirected graph using DFS.
 mst_adjacency = csgraph.depth_first_tree(
 mst_adjacency, root_vertex, directed=False
)
 return Tree(mst_adjacency, root_vertex, skip_checks=True)

 def __str__(self):
 isolated = ""
 if self.has_isolated_vertices():
 isolated = " ({} isolated)".format(len(self.isolated_vertices()))
 return "Undirected graph of {} vertices{} and {} " "edges.".format(
 self.n_vertices, isolated, self.n_edges
)

[docs]class DirectedGraph(Graph):
 r"""
 Class for Directed Graph definition and manipulation.

 Parameters

 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices. The non-edges must
 be represented with zeros and the edges can have a weight value.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

 Examples

 The following directed graph ::

 |-->0<--|
 | |
 | |
 1<----->2
 | |
 v v
 3------>4
 |
 v
 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
 graph = DirectedGraph(adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],
 [0, 0, 2, 1, 3, 4, 4, 5])),
 shape=(6, 6))
 graph = DirectedGraph(adjacency_matrix)

 The following graph with isolated vertices ::

 0<--|
 |
 |
 1 2
 |
 v
 3------>4

 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
 graph = DirectedGraph(adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 3, ([2, 2, 3], [0, 4, 4])),
 shape=(6, 6))
 graph = DirectedGraph(adjacency_matrix)
 """

 def __init__(self, adjacency_matrix, copy=True, skip_checks=False):
 self._directed = True
 super(DirectedGraph, self).__init__(
 adjacency_matrix, copy=copy, skip_checks=skip_checks
)

 @property
 def edges(self):
 return np.vstack(self.adjacency_matrix.nonzero()).T

[docs] def children(self, vertex, skip_checks=False):
 r"""
 Returns the children of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 children : `list`
 The list of children.

 Raises

 ValueError
 The vertex must be between 0 and {n_vertices-1}.
 """
 if not skip_checks:
 self._check_vertex(vertex)
 return list(self.adjacency_matrix[vertex, :].nonzero()[1])

[docs] def n_children(self, vertex, skip_checks=False):
 r"""
 Returns the number of children of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.

 Returns

 n_children : `int`
 The number of children.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 return len(self.children(vertex, skip_checks=skip_checks))

[docs] def parents(self, vertex, skip_checks=False):
 r"""
 Returns the parents of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 parents : `list`
 The list of parents.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 if not skip_checks:
 self._check_vertex(vertex)
 return list(self.adjacency_matrix[:, vertex].nonzero()[0])

[docs] def n_parents(self, vertex, skip_checks=False):
 r"""
 Returns the number of parents of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 n_parents : `int`
 The number of parents.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 return len(self.parents(vertex, skip_checks=skip_checks))

 def __str__(self):
 isolated = ""
 if self.has_isolated_vertices():
 isolated = " ({} isolated)".format(len(self.isolated_vertices()))
 return "Directed graph of {} vertices{} and {} " "edges.".format(
 self.n_vertices, isolated, self.n_edges
)

[docs]class Tree(DirectedGraph):
 r"""
 Class for Tree definitions and manipulation.

 Parameters

 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the tree in which the rows represent parents
 and columns represent children. The non-edges must be represented with
 zeros and the edges can have a weight value.

 :Note: A tree must not have isolated vertices.
 root_vertex : `int`
 The vertex to be set as root.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.
 ValueError
 The provided edges do not represent a tree.
 ValueError
 The root_vertex must be in the range ``[0, n_vertices - 1]``.
 ValueError
 The combination of adjacency matrix and root vertex is not valid. BFS
 returns a different tree.

 Examples

 The following tree ::

 0
 |
 ___|___
 1 2
 | |
 | |
 3 4 5
 | | |
 | | |
 6 7 8

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0]])
 tree = Tree(adjacency_matrix, root_vertex=0)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 8, ([0, 0, 1, 1, 2, 3, 4, 5],
 [1, 2, 3, 4, 5, 6, 7, 8])),
 shape=(9, 9))
 tree = Tree(adjacency_matrix, root_vertex=0)
 """

 def __init__(self, adjacency_matrix, root_vertex, copy=True, skip_checks=False):
 super(Tree, self).__init__(adjacency_matrix, copy=copy, skip_checks=skip_checks)

 if not skip_checks:
 # check if the provided tree has isolated vertices
 if self.has_isolated_vertices():
 raise ValueError("A tree cannot have isolated vertices.")
 # check if provided adjacency_matrix represents a tree
 if not self.is_tree():
 raise ValueError("The provided edges do not represent a tree.")
 # check if root_vertex is valid
 self._check_vertex(root_vertex)
 # check if the tree is properly defined given the root
 if not np.allclose(
 csgraph.breadth_first_tree(
 self.adjacency_matrix, root_vertex, directed=True
).nonzero(),
 self.adjacency_matrix.nonzero(),
):
 raise ValueError(
 "The combination of adjacency matrix and root "
 "vertex is not valid. BFS returns a different "
 "tree."
)

 # store root and predecessors list
 self.root_vertex = root_vertex
 self.predecessors_list = self._get_predecessors_list()

[docs] @classmethod
 def init_from_edges(
 cls, edges, n_vertices, root_vertex, copy=True, skip_checks=False
):
 r"""
 Construct a :map:`Tree` from edges array.

 Parameters

 edges : ``(n_edges, 2,)`` `ndarray`
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 n_vertices : `int`
 The total number of vertices, assuming that the numbering of
 vertices starts from ``0``. ``edges`` and ``n_vertices`` can be
 defined in a way to set isolated vertices.
 root_vertex : `int`
 That vertex that will be set as root.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on
 assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Examples

 The following tree ::

 0
 |
 ___|___
 1 2
 | |
 | |
 3 4 5
 | | |
 | | |
 6 7 8

 can be defined as ::

 from menpo.shape import PointTree
 import numpy as np
 points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
 edges = np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
 [4, 7], [5, 8]])
 tree = PointTree.init_from_edges(points, edges, root_vertex=0)
 """
 adjacency_matrix = _convert_edges_to_adjacency_matrix(edges, n_vertices)
 return cls(
 adjacency_matrix,
 root_vertex=root_vertex,
 copy=copy,
 skip_checks=skip_checks,
)

 def _get_predecessors_list(self):
 r"""
 Returns the predecessors list of the tree, i.e. a `list` of length
 ``n_vertices`` that stores the parent for each vertex. The value of the
 root vertex is ``None``.

 :type: `list` of length ``n_vertices``
 """
 # initialize list with None
 predecessors_list = [None] * self.n_vertices

 # get rows/columns of edges
 parents, children = self.adjacency_matrix.nonzero()

 # store them accordingly
 for i in range(children.shape[0]):
 parent = parents[i]
 child = children[i]
 predecessors_list[child] = parent
 return predecessors_list

[docs] def depth_of_vertex(self, vertex, skip_checks=False):
 r"""
 Returns the depth of the specified vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 depth : `int`
 The depth of the selected vertex.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 if not skip_checks:
 self._check_vertex(vertex)
 parent = vertex
 depth = 0
 while not parent == self.root_vertex:
 current = parent
 parent = self.predecessors_list[current]
 depth += 1
 return depth

 @property
 def maximum_depth(self):
 r"""
 Returns the maximum depth of the tree.

 :type: `int`
 """
 all_depths = [self.depth_of_vertex(v) for v in range(self.n_vertices)]
 return np.max(all_depths)

[docs] def vertices_at_depth(self, depth):
 r"""
 Returns a list of vertices at the specified depth.

 Parameters

 depth : `int`
 The selected depth.

 Returns

 vertices : `list`
 The vertices that lie in the specified depth.
 """
 ver = []
 for v in range(self.n_vertices):
 if self.depth_of_vertex(v) == depth:
 ver.append(v)
 return ver

[docs] def n_vertices_at_depth(self, depth):
 r"""
 Returns the number of vertices at the specified depth.

 Parameters

 depth : `int`
 The selected depth.

 Returns

 n_vertices : `int`
 The number of vertices that lie in the specified depth.
 """
 n_ver = 0
 for v in range(self.n_vertices):
 if self.depth_of_vertex(v) == depth:
 n_ver += 1
 return n_ver

[docs] def is_leaf(self, vertex, skip_checks=False):
 r"""
 Whether the vertex is a leaf.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 is_leaf : `bool`
 If ``True``, then selected vertex is a leaf.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 if not skip_checks:
 self._check_vertex(vertex)
 return len(self.children(vertex)) == 0

 @property
 def leaves(self):
 r"""
 Returns a `list` with the all leaves of the tree.

 :type: `list`
 """
 leaves = []
 for v in range(self.n_vertices):
 if self.is_leaf(v):
 leaves.append(v)
 return leaves

 @property
 def n_leaves(self):
 r"""
 Returns the number of leaves of the tree.

 :type: `int`
 """
 return len(self.leaves)

[docs] def parent(self, vertex, skip_checks=False):
 r"""
 Returns the parent of the selected vertex.

 Parameters

 vertex : `int`
 The selected vertex.
 skip_checks : `bool`, optional
 If ``False``, the given vertex will be checked.

 Returns

 parent : `int`
 The parent vertex.

 Raises

 ValueError
 The vertex must be in the range ``[0, n_vertices - 1]``.
 """
 if not skip_checks:
 self._check_vertex(vertex)
 return self.predecessors_list[vertex]

 def __str__(self):
 return "Tree of depth {} with {} vertices and {} leaves.".format(
 self.maximum_depth, self.n_vertices, self.n_leaves
)

class PointGraph(Graph, PointCloud):
 r"""
 Class for defining a Graph with geometry.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 The array of point locations.
 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices. The non-edges must
 be represented with zeros and the edges can have a weight value.

 The adjacency matrix of an undirected graph must be symmetric.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.
 ValueError
 The adjacency matrix of an undirected graph must be symmetric.
 ValueError
 A point for each graph vertex needs to be passed. Got {} points instead
 of {}

 Examples

 The adjacency matrix of the following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 1, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0]])

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(
 ([1] * 14,
 ([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
 [1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),
 shape=(6, 6))

 The adjacency matrix of the following directed graph ::

 |-->0<--|
 | |
 | |
 1<----->2
 | |
 v v
 3------>4
 |
 v
 5

 can be represented as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],
 [0, 0, 2, 1, 3, 4, 4, 5])),
 shape=(6, 6))

 Finally, the adjacency matrix of the following graph with isolated
 vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],
 [2, 0, 4, 2, 4, 3])),
 shape=(6, 6))
 """

 def __init__(self, points, adjacency_matrix, copy=True, skip_checks=False):
 if not skip_checks:
 # check the number of points
 _check_n_points(points, adjacency_matrix)
 Graph.__init__(self, adjacency_matrix, copy=copy, skip_checks=skip_checks)
 PointCloud.__init__(self, points, copy=copy)

 @classmethod
 def init_from_edges(cls, points, edges, copy=True, skip_checks=False):
 r"""
 Construct a PointGraph from edges array.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 The array of point locations.
 edges : ``(n_edges, 2,)`` `ndarray`
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on
 assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Examples

 The following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 from menpo.shape import PointUndirectedGraph
 import numpy as np
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
 graph = PointUndirectedGraph.init_from_edges(points, edges)

 The following directed graph ::

 |-->0<--|
 | |
 | |
 1<----->2
 | |
 v v
 3------>4
 |
 v
 5

 can be represented as ::

 from menpo.shape import PointDirectedGraph
 import numpy as np
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 edges = np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
 [3, 4], [3, 5]])
 graph = PointDirectedGraph.init_from_edges(points, edges)

 Finally, the following graph with isolated vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 from menpo.shape import PointUndirectedGraph
 import numpy as np
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
 graph = PointUndirectedGraph.init_from_edges(points, edges)

 """
 adjacency_matrix = _convert_edges_to_adjacency_matrix(edges, points.shape[0])
 return cls(points, adjacency_matrix, copy=copy, skip_checks=skip_checks)

 @classmethod
 def init_2d_grid(
 cls, shape, spacing=None, adjacency_matrix=None, skip_checks=False
):
 r"""
 Create a PointGraph that exists on a regular 2D grid. The first
 dimension is the number of rows in the grid and the second dimension
 of the shape is the number of columns. ``spacing`` optionally allows
 the definition of the distance between points (uniform over points).
 The spacing may be different for rows and columns.

 If no adjacency matrix is provided, the default connectivity will
 be a 4-connected lattice.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.
 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`, optional
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices. The non-edges must
 be represented with zeros and the edges can have a weight value.

 The adjacency matrix of an undirected graph must be symmetric.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed. Only considered if no
 adjacency matrix is provided.

 Returns

 pgraph : PointGraph
 A pointgraph arranged in a grid.
 """
 from .graph_predefined import stencil_grid

 pc = PointCloud.init_2d_grid(shape, spacing=spacing)
 points = pc.points
 if adjacency_matrix is None:
 stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
 adjacency_matrix = stencil_grid(stencil, shape, format="csr")
 # Skip checks if we construct the adjacency.
 skip_checks = True
 else:
 adjacency_matrix = adjacency_matrix.copy()
 return cls(points, adjacency_matrix, copy=False, skip_checks=skip_checks)

 @classmethod
 def init_from_depth_image(
 cls, depth_image, spacing=None, adjacency_matrix=None, skip_checks=False
):
 r"""
 Return a 3D point graph from the given depth image. The depth image
 is assumed to represent height/depth values and the XY coordinates
 are assumed to unit spaced and represent image coordinates. This is
 particularly useful for visualising depth values that have been
 recovered from images.

 If no adjacency matrix is provided, the default connectivity will
 be a 4-connected lattice.

 Parameters

 depth_image : :map:`Image` or subclass
 A single channel image that contains depth values - as commonly
 returned by RGBD cameras, for example.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.
 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`, optional
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices. The non-edges must
 be represented with zeros and the edges can have a weight value.

 The adjacency matrix of an undirected graph must be symmetric.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed. Only considered if no
 adjacency matrix is provided.

 Returns

 depth_cloud : ``type(cls)``
 A new 3D PointGraph with unit XY coordinates and the given depth
 values as Z coordinates.
 """
 from menpo.image import MaskedImage

 new_pcloud = cls.init_2d_grid(
 depth_image.shape,
 spacing=spacing,
 adjacency_matrix=adjacency_matrix,
 skip_checks=skip_checks,
)
 if isinstance(depth_image, MaskedImage):
 new_pcloud = new_pcloud.from_mask(depth_image.mask.as_vector())
 return cls(
 np.hstack([new_pcloud.points, depth_image.as_vector(keep_channels=True).T]),
 new_pcloud.adjacency_matrix,
 copy=False,
 skip_checks=True,
)

 def tojson(self):
 r"""
 Convert this PointGraph to a dictionary representation suitable for
 inclusion in the LJSON landmark format.

 Returns

 json : `dict`
 Dictionary with ``points`` and ``connectivity`` keys.
 """
 json_dict = PointCloud.tojson(self)
 json_dict["landmarks"]["connectivity"] = self.edges.tolist()
 return json_dict

 def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1.0,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
 label=None,
 **kwargs,
):
 r"""
 Visualization of the PointGraph in 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointGraph will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{'-', '--', '-.', ':'}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the PointGraph as a percentage of the PointGraph's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the PointGraph as a percentage of the PointGraph's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.
 """
 from menpo.visualize import PointGraphViewer2d

 renderer = PointGraphViewer2d(figure_id, new_figure, self.points, self.edges)
 renderer.render(
 image_view=image_view,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
 label=label,
)
 return renderer

 def _view_landmarks_2d(
 self,
 group=None,
 with_labels=None,
 without_labels=None,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour="k",
 line_style="-",
 line_width=2,
 render_markers=True,
 marker_style="s",
 marker_size=7,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_lines_lms=True,
 line_colour_lms=None,
 line_style_lms="-",
 line_width_lms=1,
 render_markers_lms=True,
 marker_style_lms="o",
 marker_size_lms=5,
 marker_face_colour_lms=None,
 marker_edge_colour_lms=None,
 marker_edge_width_lms=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=False,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 """
 Visualize the landmarks. This method will appear on the `PointGraph` as
 ``view_landmarks``.

 Parameters

 group : `str` or``None`` optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointCloud will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_lines_lms : `bool`, optional
 If ``True``, the edges of the landmarks will be rendered.
 line_colour_lms : See Below, optional
 The colour of the lines of the landmarks.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style_lms : ``{-, --, -., :}``, optional
 The style of the lines of the landmarks.
 line_width_lms : `float`, optional
 The width of the lines of the landmarks.
 render_markers : `bool`, optional
 If ``True``, the markers of the landmarks will be rendered.
 marker_style : See Below, optional
 The style of the markers of the landmarks. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers of the landmarks in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers of the landmarks.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers of the landmarks.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge of the landmarks.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the PointCloud as a percentage of the PointCloud's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the PointCloud as a percentage of the PointCloud's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 if not self.has_landmarks:
 raise ValueError(
 "PointGraph does not have landmarks attached, "
 "unable to view landmarks."
)
 self_view = self.view(
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 figure_size=figure_size,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
)
 # correct group label in legend
 if group is None:
 group = self.landmarks.group_labels[0]
 landmark_view = self.landmarks[group].view(
 with_labels=with_labels,
 without_labels=without_labels,
 figure_id=self_view.figure_id,
 new_figure=False,
 group=group,
 image_view=image_view,
 render_lines=render_lines_lms,
 line_colour=line_colour_lms,
 line_style=line_style_lms,
 line_width=line_width_lms,
 render_markers=render_markers_lms,
 marker_style=marker_style_lms,
 marker_size=marker_size_lms,
 marker_face_colour=marker_face_colour_lms,
 marker_edge_colour=marker_edge_colour_lms,
 marker_edge_width=marker_edge_width_lms,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

 return landmark_view

 def _view_3d(
 self,
 figure_id=None,
 new_figure=True,
 render_lines=True,
 line_colour="r",
 line_width=2,
 render_markers=True,
 marker_style="sphere",
 marker_size=None,
 marker_colour="k",
 marker_resolution=8,
 step=None,
 alpha=1.0,
 render_numbering=False,
 numbers_colour="k",
 numbers_size=None,
):
 r"""
 Visualization of the PointGraph in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, then the lines will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, then the markers will be rendered.
 marker_style : `str`, optional
 The style of the markers.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically.
 marker_colour : See Below, optional
 The colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_resolution : `int`, optional
 The resolution of the markers. For spheres, for instance, this is
 the number of divisions along theta and phi.
 step : `int` or ``None``, optional
 If `int`, then one every `step` vertexes will be rendered.
 If ``None``, then all vertexes will be rendered.
 alpha : `float`, optional
 Defines the transparency (opacity) of the object.
 render_numbering : `bool`, optional
 If ``True``, the points will be numbered.
 numbers_colour : See Below, optional
 The colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 numbers_size : `float` or ``None``, optional
 The size of the numbers. This size can be seen as a scale factor
 applied to the numbers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal numbers size
 value will be set automatically.

 Returns

 renderer : `menpo3d.visualize.PointGraphViewer3d`
 The Menpo3D rendering object.
 """
 try:
 from menpo3d.visualize import PointGraphViewer3d

 renderer = PointGraphViewer3d(
 figure_id, new_figure, self.points, self.edges
)
 renderer.render(
 render_lines=render_lines,
 line_colour=line_colour,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_colour=marker_colour,
 marker_resolution=marker_resolution,
 step=step,
 alpha=alpha,
 render_numbering=render_numbering,
 numbers_colour=numbers_colour,
 numbers_size=numbers_size,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)

[docs]class PointUndirectedGraph(PointGraph, UndirectedGraph):
 r"""
 Class for defining an Undirected Graph with geometry.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 The array of point locations.
 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph. The non-edges must be represented
 with zeros and the edges can have a weight value.

 :Note: ``adjacency_matrix`` must be symmetric.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 A point for each graph vertex needs to be passed. Got ``n_points``
 points instead of ``n_vertices``.
 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.
 ValueError
 The adjacency matrix of an undirected graph must be symmetric.

 Examples

 The following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 1, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0]])
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointUndirectedGraph(points, adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(
 ([1] * 14,
 ([0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 3, 4, 3, 5],
 [1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 4, 3, 5, 3])),
 shape=(6, 6))
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointUndirectedGraph(points, adjacency_matrix)

 The adjacency matrix of the following graph with isolated vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointUndirectedGraph(points, adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 6, ([0, 2, 2, 4, 3, 4],
 [2, 0, 4, 2, 4, 3])),
 shape=(6, 6))
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointUndirectedGraph(points, adjacency_matrix)
 """

 def __init__(self, points, adjacency_matrix, copy=True, skip_checks=False):
 self._directed = False
 super(PointUndirectedGraph, self).__init__(
 points, adjacency_matrix, copy=copy, skip_checks=skip_checks
)

[docs] @classmethod
 def init_from_edges(cls, points, edges, copy=True, skip_checks=False):
 r"""
 Construct a :map:`PointUndirectedGraph` from edges array.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 The array of point locations.
 edges : ``(n_edges, 2,)`` `ndarray`
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on
 assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Examples

 The following undirected graph ::

 |---0---|
 | |
 | |
 1-------2
 | |
 | |
 3-------4
 |
 |
 5

 can be defined as ::

 from menpo.shape import PointUndirectedGraph
 import numpy as np
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 edges = np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
 [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
 [3, 5], [5, 3]])
 graph = PointUndirectedGraph.init_from_edges(points, edges)

 Finally, the following graph with isolated vertices ::

 0---|
 |
 |
 1 2
 |
 |
 3-------4

 5

 can be defined as ::

 from menpo.shape import PointUndirectedGraph
 import numpy as np
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 edges = np.array([[0, 2], [2, 0], [2, 4], [4, 2], [3, 4], [4, 3]])
 graph = PointUndirectedGraph.init_from_edges(points, edges)

 """
 adjacency_matrix = _convert_edges_to_symmetric_adjacency_matrix(
 edges, points.shape[0]
)
 return cls(points, adjacency_matrix, copy=copy, skip_checks=skip_checks)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the `PointUndirectedGraph`. This is then broadcast across
 the dimensions of the `PointUndirectedGraph` and returns a new
 `PointUndirectedGraph` containing only those points that were ``True``
 in the mask.

 Parameters

 mask : ``(n_vertices,)`` `ndarray`
 1D array of booleans

 Returns

 pointgraph : :map:`PointUndirectedGraph`
 A new pointgraph that has been masked.

 Raises

 ValueError
 Mask must be a 1D boolean array of the same number of entries as
 points in this PointUndirectedGraph.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this "
 "PointUndirectedGraph."
)

 if np.all(mask): # Shortcut for all true masks
 return PointUndirectedGraph(
 self.points, self.adjacency_matrix, copy=True, skip_checks=True
)
 else:
 # Get new adjacency_matrix and points
 (adjacency_matrix, points) = _mask_adjacency_matrix_and_points(
 mask, self.adjacency_matrix, self.points
)
 return PointUndirectedGraph(
 points, adjacency_matrix, copy=True, skip_checks=False
)

[docs] def minimum_spanning_tree(self, root_vertex):
 r"""
 Returns the minimum spanning tree of the graph using Kruskal's
 algorithm.

 Parameters

 root_vertex : `int`
 The vertex that will be set as root in the output MST.

 Returns

 mst : :map:`PointTree`
 The computed minimum spanning tree with the `points` of `self`.

 Raises

 ValueError
 Cannot compute minimum spanning tree of a graph with isolated
 vertices
 """
 # check if graph has isolated vertices
 if self.has_isolated_vertices():
 raise ValueError(
 "Cannot compute minimum spanning tree of a graph "
 "with isolated vertices."
)
 # Compute MST. It returns an undirected graph.
 mst_adjacency = csgraph.minimum_spanning_tree(self.adjacency_matrix)
 # Get directed tree from the above undirected graph using DFS.
 mst_adjacency = csgraph.depth_first_tree(
 mst_adjacency, root_vertex, directed=False
)
 # remove isolated vertices from the points
 return PointTree(
 self.points, mst_adjacency, root_vertex, copy=True, skip_checks=True
)

 def __str__(self):
 isolated = ""
 if self.has_isolated_vertices():
 isolated = " ({} isolated)".format(len(self.isolated_vertices()))
 return "{}D undirected graph of {} vertices{} and {} " "edges.".format(
 self.n_dims, self.n_vertices, isolated, self.n_edges
)

[docs]class PointDirectedGraph(PointGraph, DirectedGraph):
 r"""
 Class for defining a directed graph with geometry.

 Parameters

 points : ``(n_vertices, n_dims)`` `ndarray`
 The array representing the points.
 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices. The non-edges must
 be represented with zeros and the edges can have a weight value.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 A point for each graph vertex needs to be passed. Got {n_points} points
 instead of {n_vertices}.
 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.

 Examples

 The following directed graph ::

 |-->0<--|
 | |
 | |
 1<----->2
 | |
 v v
 3------>4
 |
 v
 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [1, 0, 1, 1, 0, 0],
 [1, 1, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointDirectedGraph(points, adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3],
 [0, 0, 2, 1, 3, 4, 4, 5])),
 shape=(6, 6))
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointDirectedGraph(points, adjacency_matrix)

 The following graph with isolated vertices ::

 0<--|
 |
 |
 1 2
 |
 v
 3------>4

 5

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointDirectedGraph(points, adjacency_matrix)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 3, ([2, 2, 3], [0, 4, 4])),
 shape=(6, 6))
 points = np.array([[10, 30], [0, 20], [20, 20], [0, 10], [20, 10],
 [0, 0]])
 graph = PointDirectedGraph(points, adjacency_matrix)
 """

 def __init__(self, points, adjacency_matrix, copy=True, skip_checks=False):
 self._directed = True
 super(PointDirectedGraph, self).__init__(
 points, adjacency_matrix, copy=copy, skip_checks=skip_checks
)

[docs] def relative_location_edge(self, parent, child):
 r"""
 Returns the relative location between the provided vertices. That is
 if vertex j is the parent and vertex i is its child and vector l
 denotes the coordinates of a vertex, then

 ::

 l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

 Parameters

 parent : `int`
 The first selected vertex which is considered as the parent.
 child : `int`
 The second selected vertex which is considered as the child.

 Returns

 relative_location : ``(2,)`` `ndarray`
 The relative location vector.

 Raises

 ValueError
 Vertices ``parent`` and ``child`` are not connected with an edge.
 """
 if not self.is_edge(parent, child):
 raise ValueError(
 "Vertices {} and {} are not connected "
 "with an edge.".format(parent, child)
)
 return self.points[child, ...] - self.points[parent, ...]

[docs] def relative_locations(self):
 r"""
 Returns the relative location between the vertices of each edge. If
 vertex j is the parent and vertex i is its child and vector l denotes
 the coordinates of a vertex, then:

 ::

 l_i - l_j = [[x_i], [y_i]] - [[x_j], [y_j]] =
 = [[x_i - x_j], [y_i - y_j]]

 Returns

 relative_locations : ``(n_vertexes, 2)`` `ndarray`
 The relative locations vector.
 """
 parents = list(self.adjacency_matrix.nonzero()[0])
 children = list(self.adjacency_matrix.nonzero()[1])
 return self.points[children] - self.points[parents]

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the `PointDirectedGraph`. This is then broadcast across the
 dimensions of the `PointDirectedGraph` and returns a new
 `PointDirectedGraph` containing only those points that were ``True`` in
 the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointgraph : :map:`PointDirectedGraph`
 A new pointgraph that has been masked.

 Raises

 ValueError
 Mask must be a 1D boolean array of the same number of entries as
 points in this PointDirectedGraph.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this "
 "PointDirectedGraph."
)

 if np.all(mask): # Shortcut for all true masks
 return self.copy()
 else:
 # Get new adjacency_matrix and points
 (adjacency_matrix, points) = _mask_adjacency_matrix_and_points(
 mask, self.adjacency_matrix, self.points
)
 return PointDirectedGraph(
 points, adjacency_matrix, copy=True, skip_checks=False
)

 def __str__(self):
 isolated = ""
 if self.has_isolated_vertices():
 isolated = " ({} isolated)".format(len(self.isolated_vertices()))
 return "{}D directed graph of {} vertices{} and {} " "edges.".format(
 self.n_dims, self.n_vertices, isolated, self.n_edges
)

[docs]class PointTree(PointDirectedGraph, Tree):
 r"""
 Class for defining a Tree with geometry.

 Parameters

 points : ``(n_vertices, n_dims)`` `ndarray`
 The array representing the points.
 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the tree in which the rows represent parents
 and columns represent children. The non-edges must be represented with
 zeros and the edges can have a weight value.

 :Note: A tree must not have isolated vertices.
 root_vertex : `int`
 The vertex to be set as root.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Raises

 ValueError
 A point for each graph vertex needs to be passed. Got {n_points} points
 instead of {n_vertices}.
 ValueError
 adjacency_matrix must be either a numpy.ndarray or a
 scipy.sparse.csr_matrix.
 ValueError
 Graph must have at least two vertices.
 ValueError
 adjacency_matrix must be square (n_vertices, n_vertices,),
 ({adjacency_matrix.shape[0]}, {adjacency_matrix.shape[1]}) given
 instead.
 ValueError
 The provided edges do not represent a tree.
 ValueError
 The root_vertex must be in the range ``[0, n_vertices - 1]``.
 ValueError
 The combination of adjacency matrix and root vertex is not valid. BFS
 returns a different tree.

 Examples

 The following tree ::

 0
 |
 ___|___
 1 2
 | |
 | |
 3 4 5
 | | |
 | | |
 6 7 8

 can be defined as ::

 import numpy as np
 adjacency_matrix = np.array([[0, 1, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0]])
 points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
 tree = PointTree(points, adjacency_matrix, root_vertex=0)

 or ::

 from scipy.sparse import csr_matrix
 adjacency_matrix = csr_matrix(([1] * 8, ([0, 0, 1, 1, 2, 3, 4, 5],
 [1, 2, 3, 4, 5, 6, 7, 8])),
 shape=(9, 9))
 points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
 tree = PointTree(points, adjacency_matrix, root_vertex=0)
 """

 def __init__(
 self, points, adjacency_matrix, root_vertex, copy=True, skip_checks=False
):
 super(PointTree, self).__init__(
 points, adjacency_matrix, copy=copy, skip_checks=skip_checks
)
 Tree.__init__(
 self, adjacency_matrix, root_vertex, copy=copy, skip_checks=skip_checks
)

[docs] @classmethod
 def init_from_edges(cls, points, edges, root_vertex, copy=True, skip_checks=False):
 r"""
 Construct a :map:`PointTree` from edges array.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 The array of point locations.
 edges : ``(n_edges, 2,)`` `ndarray`
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 root_vertex : `int`
 That vertex that will be set as root.
 copy : `bool`, optional
 If ``False``, the ``adjacency_matrix`` will not be copied on
 assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Examples

 The following tree ::

 0
 |
 ___|___
 1 2
 | |
 | |
 3 4 5
 | | |
 | | |
 6 7 8

 can be defined as ::

 from menpo.shape import PointTree
 import numpy as np
 points = np.array([[30, 30], [10, 20], [50, 20], [0, 10], [20, 10],
 [50, 10], [0, 0], [20, 0], [50, 0]])
 edges = np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
 [4, 7], [5, 8]])
 tree = PointTree.init_from_edges(points, edges, root_vertex=0)
 """
 adjacency_matrix = _convert_edges_to_adjacency_matrix(edges, points.shape[0])
 return cls(
 points, adjacency_matrix, root_vertex, copy=copy, skip_checks=skip_checks
)

[docs] @classmethod
 def init_2d_grid(
 cls,
 shape,
 spacing=None,
 adjacency_matrix=None,
 root_vertex=None,
 skip_checks=False,
):
 r"""
 Create a pointtree that exists on a regular 2D grid. The first
 dimension is the number of rows in the grid and the second dimension
 of the shape is the number of columns. ``spacing`` optionally allows
 the definition of the distance between points (uniform over points).
 The spacing may be different for rows and columns.

 The default connectivity is the minimum spanning tree formed from
 a triangulation of the grid. The default root will be the centre
 of the grid.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.
 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`, optional
 The adjacency matrix of the tree in which the rows represent parents
 and columns represent children. The non-edges must be represented with
 zeros and the edges can have a weight value.

 :Note: A tree must not have isolated vertices.
 root_vertex : `int`
 The vertex to be set as root.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed. Only considered if an
 adjacency matrix is provided.

 Returns

 shape_cls : `type(cls)`
 A PointCloud or subclass arranged in a grid.
 """
 if root_vertex is None:
 # Centre of the grid
 root_vertex = np.ravel_multi_index(np.array(shape) // 2, shape)
 if adjacency_matrix is None:
 # Default tree is a spanning tree. Create a triangular mesh
 # because it has a low average degree and is a connected graph.
 from .mesh.base import TriMesh

 tmesh = TriMesh.init_2d_grid(shape, spacing=spacing).as_pointgraph(
 copy=False, skip_checks=True
)
 return tmesh.minimum_spanning_tree(root_vertex)
 else:
 return cls(
 PointCloud.init_2d_grid(shape, spacing=spacing).points,
 adjacency_matrix.copy(),
 root_vertex,
 copy=False,
 skip_checks=skip_checks,
)

[docs] @classmethod
 def init_from_depth_image(
 cls,
 depth_image,
 spacing=None,
 adjacency_matrix=None,
 root_vertex=None,
 skip_checks=False,
):
 r"""
 Return a 3D point cloud from the given depth image. The depth image
 is assumed to represent height/depth values and the XY coordinates
 are assumed to unit spaced and represent image coordinates. This is
 particularly useful for visualising depth values that have been
 recovered from images.

 The default connectivity is the minimum spanning tree formed from
 a triangulation of the grid. The default root will be the centre
 of the grid (for an unmasked image), otherwise it will be the
 first pixel in the masked are of the image.

 Parameters

 depth_image : :map:`Image` or subclass
 A single channel image that contains depth values - as commonly
 returned by RGBD cameras, for example.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.
 adjacency_matrix : ``(n_vertices, n_vertices)`` `ndarray` or `csr_matrix`, optional
 The adjacency matrix of the tree in which the rows represent parents
 and columns represent children. The non-edges must be represented with
 zeros and the edges can have a weight value.

 :Note: A tree must not have isolated vertices.
 root_vertex : `int`
 The vertex to be set as root.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed. Only considered if an
 adjacency matrix is provided.

 Returns

 depth_cloud : ``type(cls)``
 A new 3D PointCloud with unit XY coordinates and the given depth
 values as Z coordinates.
 """
 from menpo.image import MaskedImage

 if root_vertex is None and isinstance(depth_image, MaskedImage):
 # If the image is masked then the masked area may not contain the
 # default 'centre' root vertex, so we choose the first pixel
 # in the masked area.
 root_vertex = np.ravel_multi_index(
 depth_image.indices()[0], depth_image.shape
)
 elif root_vertex is None:
 # Otherwise the default root is the centre of the image
 root_vertex = np.ravel_multi_index(
 np.array(depth_image.shape) // 2, depth_image.shape
)

 if adjacency_matrix is None:
 # Default tree is a spanning tree. Create a triangular mesh
 # because it has a low average degree and is a connected graph.
 from .mesh.base import TriMesh

 tmesh = TriMesh.init_2d_grid(depth_image.shape, spacing=spacing)
 tmesh = tmesh.as_pointgraph(copy=False, skip_checks=True)
 # Performing masking before spanning tree to ensure that the
 # spanning tree is valid
 if isinstance(depth_image, MaskedImage):
 tmesh = tmesh.from_mask(depth_image.mask.as_vector())
 # Reindex root vertex according to mask
 mask = depth_image.mask.mask.ravel()
 root_vertex = root_vertex - np.sum(~mask[:root_vertex])
 tree_2d = tmesh.minimum_spanning_tree(root_vertex)
 else:
 points = PointCloud.init_2d_grid(depth_image.shape, spacing=spacing).points
 tree_2d = cls(
 points,
 adjacency_matrix.copy(),
 root_vertex,
 copy=False,
 skip_checks=skip_checks,
)

 return cls(
 np.hstack([tree_2d.points, depth_image.as_vector(keep_channels=True).T]),
 tree_2d.adjacency_matrix,
 tree_2d.root_vertex,
 copy=False,
 skip_checks=True,
)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the `PointTree`. This is then broadcast across the dimensions
 of the `PointTree` and returns a new `PointTree` containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointtree : :map:`PointTree`
 A new pointtree that has been masked.

 Raises

 ValueError
 Mask must be a 1D boolean array of the same number of entries as
 points in this PointTree.
 ValueError
 Cannot remove root vertex.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this PointTree."
)

 if np.all(mask): # Shortcut for all true masks
 return self.copy()
 else:
 # Impossible to remove root vertex
 if not mask[self.root_vertex]:
 raise ValueError("Cannot remove root vertex.")
 # Get new adjacency_matrix and points
 (adjacency_matrix, points) = _mask_adjacency_matrix_and_points(
 mask, self.adjacency_matrix, self.points
)
 root_vertex = self.root_vertex - np.sum(~mask[: self.root_vertex])
 # iteratively find isolated vertices and remove them
 n_components, labels = csgraph.connected_components(
 adjacency_matrix, directed=True
)
 while n_components > 1:
 label_to_keep = labels[root_vertex]
 mask = labels == label_to_keep
 (adjacency_matrix, points) = _mask_adjacency_matrix_and_points(
 mask, adjacency_matrix, points
)
 root_vertex = root_vertex - np.sum(~mask[:root_vertex])
 n_components, labels = csgraph.connected_components(
 adjacency_matrix, directed=True
)
 return PointTree(
 points,
 adjacency_matrix,
 root_vertex=root_vertex,
 copy=True,
 skip_checks=False,
)

 def __str__(self):
 return "{}D tree of depth {} with {} vertices and {} leaves.".format(
 self.n_dims, self.maximum_depth, self.n_vertices, self.n_leaves
)

def _is_symmetric(array):
 r"""
 Check if an array is symmetric.

 Parameters

 array : `ndarray` or `scipy.sparse.csr_matrix`
 The array to check.

 Returns

 is_symmetric : `bool`
 ``True`` if the array is symmetric.
 """
 return np.allclose(array.transpose().nonzero(), array.nonzero())

def _check_n_points(points, adjacency_matrix):
 r"""
 Checks whether the ``points`` array and the ``adjacency_matrix`` have the
 same number of points.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 Points array.
 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray`
 The adjacency matrix.

 Raises

 ValueError
 A point for each graph vertex needs to be passed. Got {} points instead
 of {}
 """
 if not points.shape[0] == adjacency_matrix.shape[0]:
 raise ValueError(
 "A point for each graph vertex needs to be passed. "
 "Got {} points instead "
 "of {}".format(points.shape[0], adjacency_matrix.shape[0])
)

def _has_cycles(adjacency_list, directed):
 r"""
 Function that checks if the provided directed graph has cycles using a Depth
 First Search (DFS).

 Parameters

 adjacency_list : `list` of `list` of length ``n_vertices``
 The adjacency list of the graph.
 directed : `bool`
 Defines if the provided graph is directed or not.

 Returns

 has_cycles : `bool`
 Whether the graph has cycles.
 """

 def dfs(node, entered, exited, tree_edges, back_edges):
 if node not in entered:
 entered.add(node)
 for y in adjacency_list[node]:
 if y not in entered:
 tree_edges[y] = node
 elif (
 not directed
 and tree_edges.get(node, None) != y
 or directed
 and y not in exited
):
 back_edges.setdefault(y, set()).add(node)
 dfs(y, entered, exited, tree_edges, back_edges)
 exited.add(node)
 return tree_edges, back_edges

 for x in range(len(adjacency_list)):
 if dfs(x, entered=set(), exited=set(), tree_edges={}, back_edges={})[1]:
 return True
 else:
 return False

def _mask_adjacency_matrix_and_points(mask, adjacency_matrix, points):
 r"""
 Function that masks a provided adjacency matrix and points array.

 Parameters

 mask : ``(n_vertices,)`` `ndarray`
 1D array of booleans
 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray`
 The adjacency matrix.
 points : ``(n_vertices, n_dims)`` `ndarray`
 The array representing the points.

 Returns

 adjacency_matrix : `ndarray`
 The masked adjacency matrix.
 points : `ndarray`
 The masked points array.
 """
 # Find the indices that have been asked to be removed
 indices_to_keep = np.nonzero(mask)[0]
 # Remove rows and columns from adjacency matrix
 adjacency_matrix = adjacency_matrix[indices_to_keep, :]
 adjacency_matrix = adjacency_matrix[:, indices_to_keep]
 # remove rows from points
 points = points[mask, :]
 return adjacency_matrix, points

def _isolated_vertices(adjacency_matrix):
 all_vertices = set(range(adjacency_matrix.shape[0]))
 # find the set difference between {0, 1, ..., n_vertices} and the set
 # of rows (columns) that have at least one non-zero element.
 rows = all_vertices.difference(set(adjacency_matrix.nonzero()[0]))
 cols = all_vertices.difference(set(adjacency_matrix.nonzero()[1]))
 return list(rows.intersection(cols))

def _convert_edges_to_adjacency_matrix(edges, n_vertices):
 r"""
 Converts an edges array to an adjacency matrix.

 Parameters

 edges : ``(n_edges, 2,)`` `ndarray` or ``None``
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 n_vertices : `int`
 The total number of vertices, assuming that the numbering of
 vertices starts from ``0``. ``edges`` and ``n_vertices`` can be
 defined in a way to set isolated vertices.

 Returns

 adjacency_matrix : ``(n_vertices, n_vertices,)`` `csr_matrix`
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices.
 """
 if isinstance(edges, list):
 edges = np.array(edges)
 if edges is None or edges.shape[0] == 0:
 # create adjacency with zeros
 return csr_matrix((n_vertices, n_vertices), dtype=np.int)
 else:
 # create sparse adjacency
 return csr_matrix(
 ([1] * edges.shape[0], (edges[:, 0], edges[:, 1])),
 shape=(n_vertices, n_vertices),
)

def _convert_edges_to_symmetric_adjacency_matrix(edges, n_vertices):
 r"""
 Converts an edges array to an adjacency matrix.

 Parameters

 edges : ``(n_edges, 2,)`` `ndarray` or ``None``
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge.
 n_vertices : `int`
 The total number of vertices, assuming that the numbering of
 vertices starts from ``0``. ``edges`` and ``n_vertices`` can be
 defined in a way to set isolated vertices.

 Returns

 adjacency_matrix : ``(n_vertices, n_vertices,)`` `csr_matrix`
 The adjacency matrix of the graph in which the rows represent source
 vertices and columns represent destination vertices.
 """
 if isinstance(edges, list):
 edges = np.array(edges)
 if edges is None or edges.shape[0] == 0:
 # create adjacency with zeros
 adjacency_matrix = csr_matrix((n_vertices, n_vertices), dtype=np.int)
 else:
 rows = np.hstack((edges[:, 0], edges[:, 1]))
 cols = np.hstack((edges[:, 1], edges[:, 0]))
 adjacency_matrix = csr_matrix(
 ([1] * rows.shape[0], (rows, cols)), shape=(n_vertices, n_vertices)
)
 adjacency_matrix[adjacency_matrix.nonzero()] = 1
 return adjacency_matrix

 menpo.shape.graph_predefined

 Source code for menpo.shape.graph_predefined

import numpy as np
import scipy.sparse as sparse

from . import (
 PointCloud,
 UndirectedGraph,
 DirectedGraph,
 Tree,
 TriMesh,
 PointUndirectedGraph,
 PointDirectedGraph,
 PointTree,
)

[docs]def stencil_grid(stencil, shape, dtype=None, format=None):
 """Construct a sparse matrix form a local matrix stencil

 This function is useful for building sparse adjacency matrices according
 to a specific connectivity pattern.

 This function is borrowed from the PyAMG project, under the permission of
 the MIT license:

 The MIT License (MIT)

 Copyright (c) 2008-2015 PyAMG Developers

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to
 deal in the Software without restriction, including without limitation the
 rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 sell copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 IN THE SOFTWARE.

 The original version of this file can be found here:

 https://github.com/pyamg/pyamg/blob/621d63411895898660e5ea078840118905bec061/pyamg/gallery/stencil.py

 This file has been modified to fit the style standards of the Menpo
 project.

 Parameters

 S : `ndarray`
 Matrix stencil stored in N-d array
 grid : `tuple`
 Tuple containing the N shape dimensions (shape)
 dtype : `np.dtype`, optional
 Numpy data type of the result
 format : `str`, optional
 Sparse matrix format to return, e.g. "csr", "coo", etc.

 Returns

 A : sparse matrix
 Sparse matrix which represents the operator given by applying
 stencil stencil at each vertex of a regular shape with given dimensions.

 Notes

 The shape vertices are enumerated as ``arange(prod(shape)).reshape(shape)``.
 This implies that the last shape dimension cycles fastest, while the
 first dimension cycles slowest. For example, if ``shape=(2,3)`` then the
 shape vertices are ordered as ``(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)``.

 This coincides with the ordering used by the NumPy functions
 ``ndenumerate()`` and ``mgrid()``.

 Raises

 ValueError
 If the stencil shape is not odd.
 ValueError
 If the stencil dimension does not equal the number of shape dimensions
 ValueError
 If the shape dimensions are not all positive

 Examples

 >>> import numpy as np
 >>> from menpo.shape import stencil_grid
 >>> stencil = [[0,-1,0],[-1,4,-1],[0,-1,0]] # 2D Poisson stencil
 >>> shape = (3, 3) # 2D shape with shape 3x3
 >>> A = stencil_grid(stencil, shape, dtype=np.float, format='csr')
 >>> A.todense()
 matrix([[4., -1., 0., -1., 0., 0., 0., 0., 0.],
 [-1., 4., -1., 0., -1., 0., 0., 0., 0.],
 [0., -1., 4., 0., 0., -1., 0., 0., 0.],
 [-1., 0., 0., 4., -1., 0., -1., 0., 0.],
 [0., -1., 0., -1., 4., -1., 0., -1., 0.],
 [0., 0., -1., 0., -1., 4., 0., 0., -1.],
 [0., 0., 0., -1., 0., 0., 4., -1., 0.],
 [0., 0., 0., 0., -1., 0., -1., 4., -1.],
 [0., 0., 0., 0., 0., -1., 0., -1., 4.]])

 >>> stencil = [[0,1,0],[1,0,1],[0,1,0]] # 2D Lattice Connectivity
 >>> shape = (3, 3) # 2D shape with shape 3x3
 >>> A = stencil_grid(stencil, shape, dtype=np.float, format='csr')
 >>> A.todense()
 matrix([[0., 1., 0., 1., 0., 0., 0., 0., 0.],
 [1., 0., 1., 0., 1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0., 1., 0., 0., 0.],
 [1., 0., 0., 0., 1., 0., 1., 0., 0.],
 [0., 1., 0., 1., 0., 1., 0., 1., 0.],
 [0., 0., 1., 0., 1., 0., 0., 0., 1.],
 [0., 0., 0., 1., 0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1., 0., 1., 0., 1.],
 [0., 0., 0., 0., 0., 1., 0., 1., 0.]])

 """
 stencil = np.asarray(stencil, dtype=dtype)
 shape = tuple(shape)

 if not (np.asarray(stencil.shape) % 2 == 1).all():
 raise ValueError("all stencil dimensions must be odd")

 if len(shape) != np.ndim(stencil):
 raise ValueError(
 "stencil dimension must equal number of shape\
 dimensions"
)

 if min(shape) < 1:
 raise ValueError("shape dimensions must be positive")

 N_v = np.prod(shape) # number of vertices in the mesh
 N_s = (stencil != 0).sum() # number of nonzero stencil entries

 # diagonal offsets
 diags = np.zeros(N_s, dtype=int)

 # compute index offset of each dof within the stencil
 strides = np.cumprod([1] + list(reversed(shape)))[:-1]
 indices = tuple(i.copy() for i in stencil.nonzero())
 for i, s in zip(indices, stencil.shape):
 i -= s // 2
 # i = (i - s) // 2
 # i = i // 2
 # i = i - (s // 2)
 for stride, coords in zip(strides, reversed(indices)):
 diags += stride * coords

 data = stencil[stencil != 0].repeat(N_v).reshape(N_s, N_v)

 indices = np.vstack(indices).T

 # zero boundary connections
 for index, diag in zip(indices, data):
 diag = diag.reshape(shape)
 for n, i in enumerate(index):
 if i > 0:
 s = [slice(None)] * len(shape)
 s[n] = slice(0, i)
 diag[tuple(s)] = 0
 elif i < 0:
 s = [slice(None)] * len(shape)
 s[n] = slice(i, None)
 diag[tuple(s)] = 0

 # remove diagonals that lie outside matrix
 mask = abs(diags) < N_v
 if not mask.all():
 diags = diags[mask]
 data = data[mask]

 # sum duplicate diagonals
 if len(np.unique(diags)) != len(diags):
 new_diags = np.unique(diags)
 new_data = np.zeros((len(new_diags), data.shape[1]), dtype=data.dtype)

 for dia, dat in zip(diags, data):
 n = np.searchsorted(new_diags, dia)
 new_data[n, :] += dat

 diags = new_diags
 data = new_data

 return sparse.dia_matrix((data, diags), shape=(N_v, N_v)).asformat(format)

def _get_points_and_number_of_vertices(shape):
 if isinstance(shape, PointCloud):
 return shape.points, shape.n_points
 else:
 raise ValueError("shape must be PointCloud instance.")

def _get_star_graph_edges(vertices_list, root_vertex):
 edges = []
 for v in vertices_list:
 if v != root_vertex:
 edges.append([root_vertex, v])
 return edges

def _get_complete_graph_edges(vertices_list):
 n_vertices = len(vertices_list)
 edges = []
 for i in range(n_vertices - 1):
 k = i + 1
 for j in range(k, n_vertices, 1):
 v1 = vertices_list[i]
 v2 = vertices_list[j]
 edges.append([v1, v2])
 return edges

def _get_chain_graph_edges(vertices_list, closed):
 n_vertices = len(vertices_list)
 edges = []
 for i in range(n_vertices - 1):
 k = i + 1
 v1 = vertices_list[i]
 v2 = vertices_list[k]
 edges.append([v1, v2])
 if closed:
 v1 = vertices_list[-1]
 v2 = vertices_list[0]
 edges.append([v1, v2])
 return edges

[docs]def empty_graph(shape, return_pointgraph=True):
 r"""
 Returns an empty graph given the landmarks configuration of a shape
 instance.

 Parameters

 shape : :map:`PointCloud` or subclass
 The shape instance that defines the landmarks configuration based on
 which the graph will be created.
 return_pointgraph : `bool`, optional
 If ``True``, then a :map:`PointUndirectedGraph` instance will be
 returned. If ``False``, then an :map:`UndirectedGraph` instance will be
 returned.

 Returns

 graph : :map:`UndirectedGraph` or :map:`PointUndirectedGraph`
 The generated graph.
 """
 # get points and number of vertices
 points, n_vertices = _get_points_and_number_of_vertices(shape)

 # create empty edges
 edges = None

 # return graph
 if return_pointgraph:
 return PointUndirectedGraph.init_from_edges(
 points, edges, n_vertices, skip_checks=True
)
 else:
 return UndirectedGraph.init_from_edges(edges, n_vertices, skip_checks=True)

[docs]def star_graph(shape, root_vertex, graph_cls=PointTree):
 r"""
 Returns a star graph given the landmarks configuration of a shape instance.

 Parameters

 shape : :map:`PointCloud` or subclass
 The shape instance that defines the landmarks configuration based on
 which the graph will be created.
 root_vertex : `int`
 The root of the star tree.
 graph_cls : `Graph` or `PointGraph` subclass
 The output graph type.
 Possible options are ::

 {:map:`UndirectedGraph`, :map:`DirectedGraph`, :map:`Tree`,
 :map:`PointUndirectedGraph`, :map:`PointDirectedGraph`,
 :map:`PointTree`}

 Returns

 graph : `Graph` or `PointGraph` subclass
 The generated graph.

 Raises

 ValueError
 graph_cls must be UndirectedGraph, DirectedGraph, Tree,
 PointUndirectedGraph, PointDirectedGraph or PointTree.
 """
 # get points and number of vertices
 points, n_vertices = _get_points_and_number_of_vertices(shape)

 # create star graph edges
 edges = _get_star_graph_edges(range(n_vertices), root_vertex)

 # return graph
 if graph_cls == Tree:
 return graph_cls.init_from_edges(
 edges=edges,
 n_vertices=n_vertices,
 root_vertex=root_vertex,
 skip_checks=True,
)
 elif graph_cls == PointTree:
 return graph_cls.init_from_edges(
 points=points, edges=edges, root_vertex=root_vertex, skip_checks=True
)
 elif graph_cls == UndirectedGraph or graph_cls == DirectedGraph:
 return graph_cls.init_from_edges(
 edges=edges, n_vertices=n_vertices, skip_checks=True
)
 elif graph_cls == PointUndirectedGraph or graph_cls == PointDirectedGraph:
 return graph_cls.init_from_edges(points=points, edges=edges, skip_checks=True)
 else:
 raise ValueError(
 "graph_cls must be UndirectedGraph, DirectedGraph, "
 "Tree, PointUndirectedGraph, PointDirectedGraph or "
 "PointTree."
)

[docs]def complete_graph(shape, graph_cls=PointUndirectedGraph):
 r"""
 Returns a complete graph given the landmarks configuration of a shape
 instance.

 Parameters

 shape : :map:`PointCloud` or subclass
 The shape instance that defines the landmarks configuration based on
 which the graph will be created.
 graph_cls : `Graph` or `PointGraph` subclass
 The output graph type.
 Possible options are ::

 {:map:`UndirectedGraph`, :map:`DirectedGraph`,
 :map:`PointUndirectedGraph`, :map:`PointDirectedGraph`}

 Returns

 graph : `Graph` or `PointGraph` subclass
 The generated graph.

 Raises

 ValueError
 graph_cls must be UndirectedGraph, DirectedGraph, PointUndirectedGraph
 or PointDirectedGraph.
 """
 # get points and number of vertices
 points, n_vertices = _get_points_and_number_of_vertices(shape)

 # create complete graph edges
 edges = _get_complete_graph_edges(range(n_vertices))

 # return graph
 if graph_cls == UndirectedGraph or graph_cls == DirectedGraph:
 return graph_cls.init_from_edges(
 edges=edges, n_vertices=n_vertices, skip_checks=True
)
 elif graph_cls == PointUndirectedGraph or graph_cls == PointDirectedGraph:
 return graph_cls.init_from_edges(points=points, edges=edges, skip_checks=True)
 else:
 raise ValueError(
 "graph_cls must be UndirectedGraph, DirectedGraph, "
 "PointUndirectedGraph or PointDirectedGraph."
)

[docs]def chain_graph(shape, graph_cls=PointDirectedGraph, closed=False):
 r"""
 Returns a chain graph given the landmarks configuration of a shape instance.

 Parameters

 shape : :map:`PointCloud` or subclass
 The shape instance that defines the landmarks configuration based on
 which the graph will be created.
 graph_cls : `Graph` or `PointGraph` subclass
 The output graph type.
 Possible options are ::

 {:map:`UndirectedGraph`, :map:`DirectedGraph`, :map:`Tree`,
 :map:`PointUndirectedGraph`, :map:`PointDirectedGraph`,
 :map:`PointTree`}

 closed : `bool`, optional
 If ``True``, then the chain will be closed (i.e. edge between the
 first and last vertices).

 Returns

 graph : `Graph` or `PointGraph` subclass
 The generated graph.

 Raises

 ValueError
 A closed chain graph cannot be a Tree or PointTree instance.
 ValueError
 graph_cls must be UndirectedGraph, DirectedGraph, Tree,
 PointUndirectedGraph, PointDirectedGraph or PointTree.
 """
 # get points and number of vertices
 points, n_vertices = _get_points_and_number_of_vertices(shape)

 # create chain graph edges
 edges = _get_chain_graph_edges(range(n_vertices), closed=closed)

 # return graph
 if graph_cls == Tree:
 if closed:
 raise ValueError("A closed chain graph cannot be a Tree " "instance.")
 else:
 return graph_cls.init_from_edges(
 edges=edges, n_vertices=n_vertices, root_vertex=0, skip_checks=True
)
 elif graph_cls == PointTree:
 if closed:
 raise ValueError("A closed chain graph cannot be a PointTree " "instance.")
 else:
 return graph_cls.init_from_edges(
 points=points, edges=edges, root_vertex=0, skip_checks=True
)
 elif graph_cls == UndirectedGraph or graph_cls == DirectedGraph:
 return graph_cls.init_from_edges(
 edges=edges, n_vertices=n_vertices, skip_checks=True
)
 elif graph_cls == PointUndirectedGraph or graph_cls == PointDirectedGraph:
 return graph_cls.init_from_edges(points=points, edges=edges, skip_checks=True)
 else:
 raise ValueError(
 "graph_cls must be UndirectedGraph, DirectedGraph, "
 "Tree, PointUndirectedGraph, PointDirectedGraph or "
 "PointTree."
)

[docs]def delaunay_graph(shape, return_pointgraph=True):
 r"""
 Returns a graph with the edges being generated by Delaunay triangulation.

 Parameters

 shape : :map:`PointCloud` or subclass
 The shape instance that defines the landmarks configuration based on
 which the graph will be created.
 return_pointgraph : `bool`, optional
 If ``True``, then a :map:`PointUndirectedGraph` instance will be
 returned. If ``False``, then an :map:`UndirectedGraph` instance will be
 returned.

 Returns

 graph : :map:`UndirectedGraph` or :map:`PointUndirectedGraph`
 The generated graph.
 """
 # get TriMesh instance that estimates the Delaunay triangulation
 if isinstance(shape, PointCloud):
 trimesh = TriMesh(shape.points)
 n_vertices = shape.n_points
 points = shape.points
 else:
 raise ValueError("shape must be a PointCloud instance or subclass.")

 # get edges
 edges = trimesh.edge_indices()

 # return graph
 if return_pointgraph:
 return PointUndirectedGraph.init_from_edges(
 points=points, edges=edges, skip_checks=True
)
 else:
 return UndirectedGraph.init_from_edges(
 edges=edges, n_vertices=n_vertices, skip_checks=True
)

 menpo.shape.groupops

 Source code for menpo.shape.groupops

from menpo.shape import PointCloud

[docs]def mean_pointcloud(pointclouds):
 r"""
 Compute the mean of a `list` of :map:`PointCloud` or subclass objects.
 The list is assumed to be homogeneous i.e all elements of the list are
 assumed to belong to the same point cloud subclass just as all elements
 are also assumed to have the same number of points and represent
 semantically equivalent point clouds.

 Parameters

 pointclouds: `list` of :map:`PointCloud` or subclass
 List of point cloud or subclass objects from which we want to compute
 the mean.

 Returns

 mean_pointcloud : :map:`PointCloud` or subclass
 The mean point cloud or subclass.
 """
 # make a temporary PointCloud (with copy=False for low overhead)
 tmp_pc = PointCloud(
 sum(pc.points for pc in pointclouds) / len(pointclouds), copy=False
)
 # use the type of the first element in the list to rebuild from the vector
 return pointclouds[0].from_vector(tmp_pc.as_vector())

 menpo.shape.labelled

 Source code for menpo.shape.labelled

import warnings
from collections import OrderedDict

import numpy as np

from menpo.base import Copyable
from menpo.shape import PointCloud, PointUndirectedGraph, TriMesh
from menpo.shape.graph import PointGraph, _convert_edges_to_symmetric_adjacency_matrix

def indices_to_masks(labels_to_indices, n_points):
 r"""
 Take a dictionary of labels to indices and convert it to a dictionary
 that maps labels to masks. This dictionary is the correct format for
 constructing a :map:`LabelledPointUndirectedGraph`.

 Parameters

 labels_to_indices : `ordereddict` {`str` -> `int ndarray`}
 For each label, the indices in to the pointcloud that belong to the
 label.
 n_points : `int`
 Number of points in the pointcloud that is being masked.
 """
 if not isinstance(labels_to_indices, OrderedDict):
 raise ValueError(
 "Must provide an OrderedDict to maintain the "
 "semantic meaning of the labels."
)

 masks = OrderedDict()
 for label in labels_to_indices:
 indices = labels_to_indices[label]
 mask = np.zeros(n_points, dtype=np.bool)
 mask[indices] = True
 masks[label] = mask
 return masks

[docs]class LabelledPointUndirectedGraph(PointUndirectedGraph):
 r"""
 A subclass of :map:`PointUndirectedGraph` that allows the attaching
 of 'labels' associated with semantic parts of an object. For example,
 for a face the semantic parts might be the eyes, nose and mouth. These
 'labels' are defined as a dictionary of string keys that map to
 boolean mask arrays that define which of the underlying points belong
 to a given label.

 The labels to masks must be within an `OrderedDict` so that semantic
 ordering can be maintained.

 Parameters

 points : `ndarray`
 The points representing the landmarks.
 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph. The non-edges must be represented
 with zeros and the edges can have a weight value.

 :Note: ``adjacency_matrix`` must be symmetric.
 labels_to_masks : `ordereddict` {`str` -> `bool ndarray`}
 For each label, the mask that specifies the indices in to the
 points that belong to the label.
 copy : `bool`, optional
 If ``True``, a copy of the data is stored.

 Raises

 ValueError
 If `dict` passed instead of `OrderedDict`
 ValueError
 If no set of label masks is passed.
 ValueError
 If any of the label masks differs in size to the points.
 ValueError
 If there exists any point in the points that is not covered
 by a label.
 """

 def __init__(
 self, points, adjacency_matrix, labels_to_masks, copy=True, skip_checks=False
):
 PointUndirectedGraph.__init__(
 self, points, adjacency_matrix, copy=copy, skip_checks=skip_checks
)

 if not labels_to_masks:
 raise ValueError(
 "Labelled point graphs are designed to be "
 "immutable. Empty label sets are not permitted."
)
 if np.vstack(list(labels_to_masks.values())).shape[1] != points.shape[0]:
 raise ValueError(
 "Each mask must have the same number of points " "as the given points."
)
 if not isinstance(labels_to_masks, OrderedDict):
 raise ValueError(
 "Must provide an OrderedDict to maintain the "
 "semantic meaning of the labels."
)

 # Another sanity check
 self._labels_to_masks = labels_to_masks
 self._verify_all_labels_masked()

 if copy:
 self._labels_to_masks = OrderedDict(
 [(l, m.copy()) for l, m in labels_to_masks.items()]
)

[docs] @classmethod
 def init_with_all_label(cls, points, adjacency_matrix, copy=True):
 r"""
 Static constructor to create a :map:`LabelledPointUndirectedGraph` with
 a single default 'all' label that covers all points.

 Parameters

 points : `ndarray`
 The points representing the landmarks.
 adjacency_matrix : ``(n_vertices, n_vertices,)`` `ndarray` or `csr_matrix`
 The adjacency matrix of the graph. The non-edges must be represented
 with zeros and the edges can have a weight value.

 :Note: ``adjacency_matrix`` must be symmetric.
 copy : `bool`, optional
 If ``True``, a copy of data is stored on the group.

 Returns

 labelled_pointgraph : :map:`LabelledPointUndirectedGraph`
 Labelled pointgraph wrapping the given points with a single label
 called 'all' that is ``True`` for all points.
 """
 labels_to_masks = OrderedDict(
 [("all", np.ones(points.shape[0], dtype=np.bool))]
)
 return LabelledPointUndirectedGraph(
 points, adjacency_matrix, labels_to_masks, copy=copy
)

[docs] @classmethod
 def init_from_indices_mapping(cls, points, adjacency, labels_to_indices, copy=True):
 r"""
 Static constructor to create a :map:`LabelledPointUndirectedGraph` from
 an ordered dictionary that maps a set of indices .

 Parameters

 points : :map:`PointCloud`
 The points representing the landmarks.
 adjacency : ``(n_vertices, n_vertices,)`` `ndarray`, `csr_matrix` or `list` of edges
 The adjacency matrix of the graph, or a list of edges representing
 adjacency.
 labels_to_indices : `ordereddict` {`str` -> `int ndarray`}
 For each label, the indices in to the points that belong to the
 label.
 copy : `boolean`, optional
 If ``True``, a copy of the data is stored on the group.

 Returns

 labelled_pointgraph : :map:`LabelledPointUndirectedGraph`
 Labelled point undirected graph wrapping the given points with the
 given semantic labels applied.

 Raises

 ValueError
 If `dict` passed instead of `OrderedDict`
 ValueError
 If any of the label masks differs in size to the points.
 ValueError
 If there exists any point in the points that is not covered
 by a label.
 """
 adjacency = np.array(adjacency)
 if adjacency.shape[0] != adjacency.shape[1] and adjacency.shape[1] == 2:
 adjacency = _convert_edges_to_symmetric_adjacency_matrix(
 adjacency, points.shape[0]
)
 labels_to_masks = indices_to_masks(labels_to_indices, points.shape[0])
 return LabelledPointUndirectedGraph(
 points, adjacency, labels_to_masks, copy=copy
)

[docs] @classmethod
 def init_from_edges(
 cls, points, edges, labels_to_masks, copy=True, skip_checks=False
):
 r"""
 Construct a :map:`LabelledPointUndirectedGraph` from an edges array.

 See :map:`PointUndirectedGraph` for more information.

 Parameters

 points : ``(n_vertices, n_dims,)`` `ndarray`
 The array of point locations.
 edges : ``(n_edges, 2,)`` `ndarray` or ``None``
 The `ndarray` of edges, i.e. all the pairs of vertices that are
 connected with an edge. If ``None``, then an empty adjacency
 matrix is created.
 labels_to_masks : `ordereddict` `{str -> bool ndarray}`
 For each label, the mask that specifies the indices in to the
 points that belong to the label.
 copy : `bool`, optional
 If ``False``, the `adjacency_matrix` will not be copied on
 assignment.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.
 """
 adjacency_matrix = _convert_edges_to_symmetric_adjacency_matrix(
 edges, points.shape[0]
)
 return cls(
 points,
 adjacency_matrix,
 labels_to_masks,
 copy=copy,
 skip_checks=skip_checks,
)

 def __setstate__(self, state_dict):
 # TODO: Deprecate this - this handles importing old-style LandmarkGroup
 if "_pointcloud" in state_dict:
 from menpo.base import MenpoDeprecationWarning

 warnings.warn(
 "menpo.landmark.LandmarkGroup is now deprecated and "
 "has been moved to menpo.shape.LandmarkGroup.",
 MenpoDeprecationWarning,
)
 _pointcloud = state_dict.pop("_pointcloud")
 state_dict["points"] = _pointcloud.points

 # the shape on old landmarks *itself* was allowed to have landmarks
 # (of course it was very frequently None though, see
 # https://github.com/menpo/menpo/blob/v0.7.7/menpo/landmark/base.py#L24)
 # In the new word, self has the same behavior, so move the
 # landmarks across here.
 # In the vast majority of cases, this will simply be None.
 state_dict["_landmarks"] = _pointcloud._landmarks

 if type(_pointcloud) == PointCloud:
 adj_mat = _convert_edges_to_symmetric_adjacency_matrix(
 [], _pointcloud.n_points
)
 elif isinstance(_pointcloud, PointGraph):
 a = _pointcloud.adjacency_matrix
 # Ensure that the matrix is symmetric
 adj_mat = a.maximum(a.T)
 elif isinstance(_pointcloud, TriMesh):
 warnings.warn(
 "menpo.landmark.LandmarkGroup is now deprecated."
 "The underlying ._pointcloud was a "
 "menpo.shape.TriMesh and this has been cast down "
 "to an UndirectedPointGraph subclass."
)
 adj_mat = _pointcloud.as_pointgraph(copy=False).adjacency_matrix
 else:
 raise ValueError(
 "Unexpected PointCloud type ({})".format(type(_pointcloud))
)
 state_dict["adjacency_matrix"] = adj_mat

 self.__dict__.update(state_dict)

[docs] def copy(self):
 r"""
 Generate an efficient copy of this :map:`LabelledPointUndirectedGraph`.

 Returns

 ``type(self)``
 A copy of this object
 """
 new = Copyable.copy(self)
 for k, v in new._labels_to_masks.items():
 new._labels_to_masks[k] = v.copy()
 return new

[docs] def add_label(self, label, indices):
 """
 Add a new label by creating a new mask over the points. A new
 :map:`LabelledPointUndirectedGraph` is returned.

 Parameters

 label : `string`
 Label of landmark.
 indices : ``(K,)`` `ndarray`
 Array of indices in to the points. Each index implies
 membership to the label.

 Returns

 labelled_pointgraph : :map:`LabelledPointUndirectedGraph`
 A new labelled pointgraph with the new label specified by indices.
 """
 new = self.copy()
 mask = np.zeros(self.n_points, dtype=np.bool)
 mask[indices] = True
 new._labels_to_masks[label] = mask
 return new

[docs] def get_label(self, label):
 """
 Returns a new :map:`PointUndirectedGraph` that contains the subset of
 points that this label represents.

 Parameters

 label : `string`
 Label to filter on.

 Returns

 graph : :map:`PointUndirectedGraph`
 The PointUndirectedGraph containing the subset of points that this
 label masks. Will be a subset of the entire group's points.
 """
 mask = self._labels_to_masks[label]
 return PointUndirectedGraph.from_mask(self, mask)

[docs] def remove_label(self, label):
 """
 Returns a new :map:`LabelledPointUndirectedGraph` that does not contain
 the given label.

 .. note::

 You cannot delete a semantic label and leave the labelled point
 graph partially unlabelled. Labelled point graphs must contain
 labels for **every point**.

 Parameters

 label : `string`
 The label to remove.

 Raises

 ValueError
 If deleting the label would leave some points unlabelled.
 """
 new = self.copy()
 # Pop the value off, which is akin to deleting it (removes it from the
 # underlying dict). However, we keep it around so we can check if
 # removing it causes an unlabelled point
 new._labels_to_masks.pop(label)
 new._verify_all_labels_masked()
 return new

 @property
 def labels(self):
 """
 The list of labels that belong to this group.

 :type: `list` of `str`
 """
 # Convert to list so that we can index immediately, as keys()
 # is a view in Python 3
 return list(self._labels_to_masks.keys())

 @property
 def n_labels(self):
 """
 Number of labels in the group.

 :type: `int`
 """
 return len(self.labels)

 @property
 def n_landmarks(self):
 """
 The total number of points in the group.

 :type: `int`
 """
 from menpo.base import MenpoDeprecationWarning

 warnings.warn(
 "The .n_landmarks property is deprecated. LandmarkGroups "
 "are now LabelledPointUndirectedGraph which "
 "are subclasses of UndirectedPointGraph and thus may "
 "be used as such. Thus .n_landmarks is an alias for "
 ".n_points .",
 MenpoDeprecationWarning,
)
 return self.n_points

[docs] def with_labels(self, labels):
 """A new labelled point undirected graph that contains only the given
 labels.

 Parameters

 labels : `str` or `list` of `str`
 Label(s) that should be kept in the returned labelled point graph.

 Returns

 labelled_pointgraph : :map:`LabelledPointUndirectedGraph`
 A new labelled point undirected graph with the same group label but
 containing only the given label(s).
 """
 # Make it easier to use by accepting a single string as well as a list
 if isinstance(labels, str):
 labels = [labels]
 return self._new_group_with_only_labels(labels)

[docs] def without_labels(self, labels):
 """A new labelled point undirected graph that excludes certain labels.

 Parameters

 labels : `str` or `list` of `str`
 Label(s) that should be excluded in the returned labelled point
 graph.

 Returns

 labelled_pointgraph : :map:`LabelledPointUndirectedGraph`
 A new labelled point undirected graph with the same group label but
 containing all labels except the given label.
 """
 # Make it easier to use by accepting a single string as well as a list
 if isinstance(labels, str):
 labels = [labels]
 labels_to_keep = list(set(self.labels).difference(labels))
 return self._new_group_with_only_labels(labels_to_keep)

 def _verify_all_labels_masked(self):
 """
 Verify that every point in the pointcloud is associated with a label.
 If any one point is not covered by a label, then raise a
 ``ValueError``.
 """
 # values is a generator in Python 3, so convert to list
 labels_values = list(self._labels_to_masks.values())
 unlabelled_points = np.sum(labels_values, axis=0) == 0
 if np.any(unlabelled_points):
 nonzero = np.nonzero(unlabelled_points)
 raise ValueError(
 "Every point in the landmark pointcloud must be labelled. "
 "Points {0} were unlabelled.".format(nonzero)
)

 def _new_group_with_only_labels(self, labels):
 """
 Deal with changing indices when you add and remove points. In this case
 we only deal with building a new dataset that keeps masks.

 Parameters

 labels : list of `string`
 List of strings of the labels to keep

 Returns

 labelled_pointgraph : :map:`LabelledPointUndirectedGraph`
 The new labelled pointgraph with only the requested labels.
 """
 set_difference = set(labels).difference(self.labels)
 if len(set_difference) > 0:
 raise ValueError(
 "Labels {0} do not exist in the landmark "
 "group. Available labels are: {1}".format(
 list(set_difference), self.labels
)
)

 masks_to_keep = [
 self._labels_to_masks[l] for l in labels if l in self._labels_to_masks
]
 overlap = np.sum(masks_to_keep, axis=0) > 0
 masks_to_keep = [l[overlap] for l in masks_to_keep]

 new_graph = self.from_mask(overlap)
 return LabelledPointUndirectedGraph(
 new_graph.points,
 new_graph.adjacency_matrix,
 OrderedDict(zip(labels, masks_to_keep)),
)

[docs] def tojson(self):
 r"""
 Convert this `LabelledPointUndirectedGraph` to a dictionary JSON
 representation.

 Returns

 json : ``dict``
 Dictionary conforming to the LJSON v2 specification.
 """
 labels = [
 {"mask": mask.nonzero()[0].tolist(), "label": label}
 for label, mask in self._labels_to_masks.items()
]
 lms_dict = PointUndirectedGraph.tojson(self)
 lms_dict["labels"] = labels
 return lms_dict

[docs] def _view_2d(
 self,
 with_labels=None,
 without_labels=None,
 group="group",
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour=None,
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour=None,
 marker_edge_colour=None,
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=True,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(10, 8),
):
 """
 Visualize the labelled point undirected graph.

 Parameters

 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 group : `str` or `None`, optional
 The name of the labelled point undirected graph. It is used in
 the legend.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True``, the x and y axes are flipped.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 It can either be one of the above or a `list` of those defining a
 value per label.
 line_style : ``{'-', '--', '-.', ':'}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 It can either be one of the above or a `list` of those defining a
 value per label.
 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 It can either be one of the above or a `list` of those defining a
 value per label.
 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See Below, optional
 The font of the legend.
 Possible options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Possible options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ===
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ===

 legend_bbox_to_anchor : (`float`, `float`), optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the LabelledPointUndirectedGraph as a percentage
 of the LabelledPointUndirectedGraph's width. If `tuple` or `list`,
 then it defines the axis limits. If ``None``, then the limits are
 set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the LabelledPointUndirectedGraph as a percentage
 of the LabelledPointUndirectedGraph's height. If `tuple` or `list`,
 then it defines the axis limits. If ``None``, then the limits are
 set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) or `None`, optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 """
 from menpo.visualize import LandmarkViewer2d

 if with_labels is not None and without_labels is not None:
 raise ValueError(
 "You may only pass one of `with_labels` or " "`without_labels`."
)
 elif with_labels is not None:
 lmark_group = self.with_labels(with_labels)
 elif without_labels is not None:
 lmark_group = self.without_labels(without_labels)
 else:
 lmark_group = self # Fall through
 landmark_viewer = LandmarkViewer2d(figure_id, new_figure, group, lmark_group)
 return landmark_viewer.render(
 image_view=image_view,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

 def _view_3d(
 self,
 with_labels=None,
 without_labels=None,
 group="group",
 figure_id=None,
 new_figure=False,
 render_lines=True,
 line_colour=None,
 line_width=2,
 render_markers=True,
 marker_style="sphere",
 marker_size=None,
 marker_colour=None,
 marker_resolution=8,
 step=None,
 alpha=1.0,
 render_numbering=False,
 numbers_colour="k",
 numbers_size=None,
):
 try:
 from menpo3d.visualize import LandmarkViewer3d

 if with_labels is not None and without_labels is not None:
 raise ValueError(
 "You may only pass one of `with_labels` or " "`without_labels`."
)
 elif with_labels is not None:
 lmark_group = self.with_labels(with_labels)
 elif without_labels is not None:
 lmark_group = self.without_labels(without_labels)
 else:
 lmark_group = self # Fall through
 landmark_viewer = LandmarkViewer3d(
 figure_id, new_figure, group, lmark_group
)
 return landmark_viewer.render(
 render_lines=render_lines,
 line_colour=line_colour,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_colour=marker_colour,
 marker_resolution=marker_resolution,
 step=step,
 alpha=alpha,
 render_numbering=render_numbering,
 numbers_colour=numbers_colour,
 numbers_size=numbers_size,
)
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)

 def __str__(self):
 return "{}: n_labels: {}, n_points: {}, n_edges: {}".format(
 type(self).__name__, self.n_labels, self.n_points, self.n_edges
)

 menpo.shape.pointcloud

 Source code for menpo.shape.pointcloud

import collections.abc as collections_abc
import numbers
import warnings
from warnings import warn

import numpy as np
from scipy.sparse import csr_matrix
from scipy.spatial.distance import cdist

from menpo.transform import WithDims
from .base import Shape

[docs]def bounding_box(closest_to_origin, opposite_corner):
 r"""
 Return a bounding box from two corner points as a directed graph.
 The the first point (0) should be nearest the origin.
 In the case of an image, this ordering would appear as:

 ::

 0<--3
 | ^
 | |
 v |
 1-->2

 In the case of a pointcloud, the ordering will appear as:

 ::

 3<--2
 | ^
 | |
 v |
 0-->1

 Parameters

 closest_to_origin : (`float`, `float`)
 Two floats representing the coordinates closest to the origin.
 Represented by (0) in the graph above. For an image, this will
 be the top left. For a pointcloud, this will be the bottom left.
 opposite_corner : (`float`, `float`)
 Two floats representing the coordinates opposite the corner closest
 to the origin.
 Represented by (2) in the graph above. For an image, this will
 be the bottom right. For a pointcloud, this will be the top right.

 Returns

 bounding_box : :map:`PointDirectedGraph`
 The axis aligned bounding box from the two given corners.
 """
 from .graph import PointDirectedGraph

 if len(closest_to_origin) != 2 or len(opposite_corner) != 2:
 raise ValueError("Only 2D bounding boxes can be created.")

 adjacency_matrix = csr_matrix(([1] * 4, ([0, 1, 2, 3], [1, 2, 3, 0])), shape=(4, 4))
 box = np.array(
 [
 closest_to_origin,
 [opposite_corner[0], closest_to_origin[1]],
 opposite_corner,
 [closest_to_origin[0], opposite_corner[1]],
],
 dtype=np.float,
)
 return PointDirectedGraph(box, adjacency_matrix, copy=False)

[docs]def bounding_cuboid(near_closest_to_origin, far_opposite_corner):
 r"""
 Return a bounding cuboid from the near closest and far opposite
 corners as a directed graph.

 Parameters

 near_closest_to_origin : (`float`, `float`, `float`)
 Three floats representing the coordinates of the near corner closest to
 the origin.
 far_opposite_corner : (`float`, `float`, `float`)
 Three floats representing the coordinates of the far opposite corner
 compared to near_closest_to_origin.

 Returns

 bounding_box : :map:`PointDirectedGraph`
 The axis aligned bounding cuboid from the two given corners.
 """
 from .graph import PointDirectedGraph

 if len(near_closest_to_origin) != 3 or len(far_opposite_corner) != 3:
 raise ValueError("Only 3D bounding cuboids can be created.")

 adjacency_matrix = csr_matrix(
 (
 [1] * 12,
 (
 [0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7],
 [1, 2, 3, 0, 4, 5, 6, 7, 5, 6, 7, 4],
),
),
 shape=(8, 8),
)
 cuboid = np.array(
 [
 near_closest_to_origin,
 [
 far_opposite_corner[0],
 near_closest_to_origin[1],
 near_closest_to_origin[2],
],
 [far_opposite_corner[0], far_opposite_corner[1], near_closest_to_origin[2]],
 [
 near_closest_to_origin[0],
 far_opposite_corner[1],
 near_closest_to_origin[2],
],
 [
 near_closest_to_origin[0],
 near_closest_to_origin[1],
 far_opposite_corner[2],
],
 [far_opposite_corner[0], near_closest_to_origin[1], far_opposite_corner[2]],
 far_opposite_corner,
 [near_closest_to_origin[0], far_opposite_corner[1], far_opposite_corner[2]],
],
 dtype=np.float,
)
 return PointDirectedGraph(cuboid, adjacency_matrix, copy=False)

[docs]class PointCloud(Shape):
 r"""
 An N-dimensional point cloud. This is internally represented as an `ndarray`
 of shape ``(n_points, n_dims)``. This class is important for dealing
 with complex functionality such as viewing and representing metadata such
 as landmarks.

 Currently only 2D and 3D pointclouds are viewable.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 copy : `bool`, optional
 If ``False``, the points will not be copied on assignment. Note that
 this will miss out on additional checks. Further note that we still
 demand that the array is C-contiguous - if it isn't, a copy will be
 generated anyway.
 In general this should only be used if you know what you are doing.
 """

 def __init__(self, points, copy=True):
 super(PointCloud, self).__init__()
 if not copy:
 if not points.flags.c_contiguous:
 warn(
 "The copy flag was NOT honoured. A copy HAS been made. "
 "Please ensure the data you pass is C-contiguous."
)
 points = np.array(points, copy=True, order="C")
 else:
 points = np.array(points, copy=True, order="C")
 self.points = points

[docs] @classmethod
 def init_2d_grid(cls, shape, spacing=None):
 r"""
 Create a pointcloud that exists on a regular 2D grid. The first
 dimension is the number of rows in the grid and the second dimension
 of the shape is the number of columns. ``spacing`` optionally allows
 the definition of the distance between points (uniform over points).
 The spacing may be different for rows and columns.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.

 Returns

 shape_cls : `type(cls)`
 A PointCloud or subclass arranged in a grid.
 """
 if len(shape) != 2:
 raise ValueError("shape must be 2D.")

 grid = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij")
 points = np.require(
 np.concatenate(grid).reshape([2, -1]).T,
 dtype=np.float64,
 requirements=["C"],
)

 if spacing is not None:
 if not (
 isinstance(spacing, numbers.Number)
 or isinstance(spacing, collections_abc.Sequence)
):
 raise ValueError(
 "spacing must be either a single number "
 "to be applied over each dimension, or a 2D "
 "sequence of numbers."
)
 if isinstance(spacing, collections_abc.Sequence) and len(spacing) != 2:
 raise ValueError("spacing must be 2D.")

 points *= np.asarray(spacing, dtype=np.float64)
 return cls(points, copy=False)

[docs] @classmethod
 def init_from_depth_image(cls, depth_image):
 r"""
 Return a 3D point cloud from the given depth image. The depth image
 is assumed to represent height/depth values and the XY coordinates
 are assumed to unit spaced and represent image coordinates. This is
 particularly useful for visualising depth values that have been
 recovered from images.

 Parameters

 depth_image : :map:`Image` or subclass
 A single channel image that contains depth values - as commonly
 returned by RGBD cameras, for example.

 Returns

 depth_cloud : ``type(cls)``
 A new 3D PointCloud with unit XY coordinates and the given depth
 values as Z coordinates.
 """
 from menpo.image import MaskedImage

 new_pcloud = cls.init_2d_grid(depth_image.shape)
 if isinstance(depth_image, MaskedImage):
 new_pcloud = new_pcloud.from_mask(depth_image.mask.as_vector())
 return cls(
 np.hstack([new_pcloud.points, depth_image.as_vector(keep_channels=True).T]),
 copy=False,
)

[docs] def with_dims(self, dims):
 r"""
 Return a copy of this shape with only particular dimensions retained.

 Parameters

 dims : valid numpy array slice
 The slice that will be used on the dimensionality axis of the shape
 under transform. For example, to go from a 3D shape to a 2D one,
 [0, 1] could be provided or np.array([True, True, False]).

 Returns

 copy of self, with only the requested dims
 """
 return WithDims(dims).apply(self)

 @property
 def lms(self):
 """Deprecated.
 Maintained for compatibility, will be removed in a future version.
 Returns a copy of this object, which previously would have held
 the 'underlying' :map:`PointCloud` subclass.

 :type: self
 """
 from menpo.base import MenpoDeprecationWarning

 warnings.warn(
 "The .lms property is deprecated. LandmarkGroups are "
 "now shapes themselves - so you can use them directly "
 "anywhere you previously used .lms."
 'Simply remove ".lms" from your code and things '
 "will work as expected (and this warning will go away)",
 MenpoDeprecationWarning,
)
 return self.copy()

 @property
 def n_points(self):
 r"""
 The number of points in the pointcloud.

 :type: `int`
 """
 return self.points.shape[0]

 @property
 def n_dims(self):
 r"""
 The number of dimensions in the pointcloud.

 :type: `int`
 """
 return self.points.shape[1]

[docs] def h_points(self):
 r"""
 Convert poincloud to a homogeneous array: ``(n_dims + 1, n_points)``

 :type: ``type(self)``
 """
 return np.concatenate(
 (self.points.T, np.ones(self.n_points, dtype=self.points.dtype)[None, :])
)

[docs] def centre(self):
 r"""
 The mean of all the points in this PointCloud (centre of mass).

 Returns

 centre : ``(n_dims)`` `ndarray`
 The mean of this PointCloud's points.
 """
 return np.mean(self.points, axis=0)

[docs] def centre_of_bounds(self):
 r"""
 The centre of the absolute bounds of this PointCloud. Contrast with
 :meth:`centre`, which is the mean point position.

 Returns

 centre : ``n_dims`` `ndarray`
 The centre of the bounds of this PointCloud.
 """
 min_b, max_b = self.bounds()
 return (min_b + max_b) / 2.0

 def _as_vector(self):
 r"""
 Returns a flattened representation of the pointcloud.
 Note that the flattened representation is of the form
 ``[x0, y0, x1, y1,, xn, yn]`` for 2D.

 Returns

 flattened : ``(n_points,)`` `ndarray`
 The flattened points.
 """
 return self.points.ravel()

[docs] def tojson(self):
 r"""
 Convert this :map:`PointCloud` to a dictionary representation suitable
 for inclusion in the LJSON landmark format.

 Returns

 json : `dict`
 Dictionary with ``points`` keys.
 """
 return {"labels": [], "landmarks": {"points": self.points.tolist()}}

 def _from_vector_inplace(self, vector):
 r"""
 Updates the points of this PointCloud in-place with the reshaped points
 from the provided vector. Note that the vector should have the form
 ``[x0, y0, x1, y1,, xn, yn]`` for 2D.

 Parameters

 vector : ``(n_points,)`` `ndarray`
 The vector from which to create the points' array.
 """
 self.points = vector.reshape([-1, self.n_dims])

 def __str__(self):
 return "{}: n_points: {}, n_dims: {}".format(
 type(self).__name__, self.n_points, self.n_dims
)

[docs] def bounds(self, boundary=0):
 r"""
 The minimum to maximum extent of the PointCloud. An optional boundary
 argument can be provided to expand the bounds by a constant margin.

 Parameters

 boundary : `float`
 A optional padding distance that is added to the bounds. Default
 is ``0``, meaning the max/min of tightest possible containing
 square/cube/hypercube is returned.

 Returns

 min_b : ``(n_dims,)`` `ndarray`
 The minimum extent of the :map:`PointCloud` and boundary along
 each dimension
 max_b : ``(n_dims,)`` `ndarray`
 The maximum extent of the :map:`PointCloud` and boundary along
 each dimension
 """
 min_b = np.min(self.points, axis=0) - boundary
 max_b = np.max(self.points, axis=0) + boundary
 return min_b, max_b

[docs] def range(self, boundary=0):
 r"""
 The range of the extent of the PointCloud.

 Parameters

 boundary : `float`
 A optional padding distance that is used to extend the bounds
 from which the range is computed. Default is ``0``, no extension
 is performed.

 Returns

 range : ``(n_dims,)`` `ndarray`
 The range of the :map:`PointCloud` extent in each dimension.
 """
 min_b, max_b = self.bounds(boundary)
 return max_b - min_b

[docs] def bounding_box(self):
 r"""
 Return a bounding box from two corner points as a directed graph.
 In the case of a 2D pointcloud, first point (0) should be nearest the
 origin. In the case of an image, this ordering would appear as:

 ::

 0<--3
 | ^
 | |
 v |
 1-->2

 In the case of a pointcloud, the ordering will appear as:

 ::

 3<--2
 | ^
 | |
 v |
 0-->1

 In the case of a 3D pointcloud, the first point (0) should be the
 near closest to the origin and the second point is the far opposite
 corner.

 Returns

 bounding_box : :map:`PointDirectedGraph`
 The axis aligned bounding box of the PointCloud.
 """
 if self.n_dims != 2 and self.n_dims != 3:
 raise ValueError(
 "Bounding boxes are only supported for 2D or 3D " "pointclouds."
)
 min_p, max_p = self.bounds()
 if self.n_dims == 2:
 return bounding_box(min_p, max_p)
 elif self.n_dims == 3:
 return bounding_cuboid(min_p, max_p)

[docs] def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="r",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
 label=None,
 **kwargs,
):
 r"""
 Visualization of the PointCloud in 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointCloud will be viewed as if it is in the image
 coordinate system.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the PointCloud as a percentage of the PointCloud's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the PointCloud as a percentage of the PointCloud's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.
 """
 from menpo.visualize.base import PointGraphViewer2d

 adjacency_array = np.empty(0)
 renderer = PointGraphViewer2d(
 figure_id, new_figure, self.points, adjacency_array
)
 renderer.render(
 image_view=image_view,
 render_lines=False,
 line_colour="b",
 line_style="-",
 line_width=1.0,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
 label=label,
)
 return renderer

[docs] def _view_landmarks_2d(
 self,
 group=None,
 with_labels=None,
 without_labels=None,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_markers=True,
 marker_style="s",
 marker_size=7,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_lines_lms=True,
 line_colour_lms=None,
 line_style_lms="-",
 line_width_lms=1,
 render_markers_lms=True,
 marker_style_lms="o",
 marker_size_lms=5,
 marker_face_colour_lms=None,
 marker_edge_colour_lms=None,
 marker_edge_width_lms=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=False,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 """
 Visualize the landmarks. This method will appear on the `PointCloud` as
 ``view_landmarks``.

 Parameters

 group : `str` or``None`` optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointCloud will be viewed as if it is in the image
 coordinate system.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_lines_lms : `bool`, optional
 If ``True``, the edges of the landmarks will be rendered.
 line_colour_lms : See Below, optional
 The colour of the lines of the landmarks.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style_lms : ``{-, --, -., :}``, optional
 The style of the lines of the landmarks.
 line_width_lms : `float`, optional
 The width of the lines of the landmarks.
 render_markers : `bool`, optional
 If ``True``, the markers of the landmarks will be rendered.
 marker_style : See Below, optional
 The style of the markers of the landmarks. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers of the landmarks in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers of the landmarks.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers of the landmarks.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge of the landmarks.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the PointCloud as a percentage of the PointCloud's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the PointCloud as a percentage of the PointCloud's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 if not self.has_landmarks:
 raise ValueError(
 "PointCloud does not have landmarks attached, "
 "unable to view landmarks."
)
 self_view = self.view(
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 figure_size=figure_size,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
)
 # correct group label in legend
 if group is None:
 group = self.landmarks.group_labels[0]
 landmark_view = self.landmarks[group].view(
 with_labels=with_labels,
 without_labels=without_labels,
 figure_id=self_view.figure_id,
 new_figure=False,
 group=group,
 image_view=image_view,
 render_lines=render_lines_lms,
 line_colour=line_colour_lms,
 line_style=line_style_lms,
 line_width=line_width_lms,
 render_markers=render_markers_lms,
 marker_style=marker_style_lms,
 marker_size=marker_size_lms,
 marker_face_colour=marker_face_colour_lms,
 marker_edge_colour=marker_edge_colour_lms,
 marker_edge_width=marker_edge_width_lms,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

 return landmark_view

 def _view_3d(
 self,
 figure_id=None,
 new_figure=True,
 render_markers=True,
 marker_style="sphere",
 marker_size=None,
 marker_colour="r",
 marker_resolution=8,
 step=None,
 alpha=1.0,
 render_numbering=False,
 numbers_colour="k",
 numbers_size=None,
 **kwargs,
):
 r"""
 Visualization of the PointCloud in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : `str`, optional
 The style of the markers.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically.
 marker_colour : See Below, optional
 The colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_resolution : `int`, optional
 The resolution of the markers. For spheres, for instance, this is
 the number of divisions along theta and phi.
 step : `int` or ``None``, optional
 If `int`, then one every `step` vertexes will be rendered.
 If ``None``, then all vertexes will be rendered.
 alpha : `float`, optional
 Defines the transparency (opacity) of the object.
 render_numbering : `bool`, optional
 If ``True``, the points will be numbered.
 numbers_colour : See Below, optional
 The colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 numbers_size : `float` or ``None``, optional
 The size of the numbers. This size can be seen as a scale factor
 applied to the numbers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal numbers size
 value will be set automatically.

 Returns

 renderer : `menpo3d.visualize.PointGraphViewer3d`
 The Menpo3D rendering object.
 """
 try:
 from menpo3d.visualize import PointGraphViewer3d

 edges = np.empty(0)
 renderer = PointGraphViewer3d(figure_id, new_figure, self.points, edges)
 renderer.render(
 render_lines=False,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_colour=marker_colour,
 marker_resolution=marker_resolution,
 step=step,
 alpha=alpha,
 render_numbering=render_numbering,
 numbers_colour=numbers_colour,
 numbers_size=numbers_size,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)

 def _view_landmarks_3d(
 self,
 group=None,
 with_labels=None,
 without_labels=None,
 figure_id=None,
 new_figure=True,
 render_lines=True,
 line_colour=None,
 line_width=4,
 render_markers=True,
 marker_style="sphere",
 marker_size=None,
 marker_colour=None,
 marker_resolution=8,
 step=None,
 alpha=1.0,
 render_numbering=False,
 numbers_colour="k",
 numbers_size=None,
):
 r"""
 Visualization of the PointCloud landmarks in 3D.

 Parameters

 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 group : `str` or `None`, optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_lines : `bool`, optional
 If ``True``, then the lines will be rendered.
 line_colour : See Below, optional
 The colour of the lines. If ``None``, a different colour will be
 automatically selected for each label.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray
 or
 None

 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, then the markers will be rendered.
 marker_style : `str`, optional
 The style of the markers.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically.
 marker_colour : See Below, optional
 The colour of the markers. If ``None``, a different colour will be
 automatically selected for each label.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray
 or
 None

 marker_resolution : `int`, optional
 The resolution of the markers. For spheres, for instance, this is
 the number of divisions along theta and phi.
 step : `int` or ``None``, optional
 If `int`, then one every `step` vertexes will be rendered.
 If ``None``, then all vertexes will be rendered.
 alpha : `float`, optional
 Defines the transparency (opacity) of the object.
 render_numbering : `bool`, optional
 If ``True``, the points will be numbered.
 numbers_colour : See Below, optional
 The colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 numbers_size : `float` or ``None``, optional
 The size of the numbers. This size can be seen as a scale factor
 applied to the numbers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal numbers size
 value will be set automatically.

 Returns

 renderer : `menpo3d.visualize.LandmarkViewer3d`
 The Menpo3D rendering object.
 """
 if not self.has_landmarks:
 raise ValueError(
 "PointCloud does not have landmarks attached, "
 "unable to view landmarks."
)
 self_view = self.view(figure_id=figure_id, new_figure=new_figure)
 landmark_view = self.landmarks[group].view(
 with_labels=with_labels,
 without_labels=without_labels,
 figure_id=self_view.figure_id,
 new_figure=False,
 render_lines=render_lines,
 line_colour=line_colour,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_colour=marker_colour,
 marker_resolution=marker_resolution,
 step=step,
 alpha=alpha,
 render_numbering=render_numbering,
 numbers_colour=numbers_colour,
 numbers_size=numbers_size,
)

 return landmark_view

 def _transform_self_inplace(self, transform):
 self.points = transform(self.points)
 return self

[docs] def distance_to(self, pointcloud, **kwargs):
 r"""
 Returns a distance matrix between this PointCloud and another.
 By default the Euclidean distance is calculated - see
 `scipy.spatial.distance.cdist` for valid kwargs to change the metric
 and other properties.

 Parameters

 pointcloud : :map:`PointCloud`
 The second pointcloud to compute distances between. This must be
 of the same dimension as this PointCloud.

 Returns

 distance_matrix: ``(n_points, n_points)`` `ndarray`
 The symmetric pairwise distance matrix between the two PointClouds
 s.t. ``distance_matrix[i, j]`` is the distance between the i'th
 point of this PointCloud and the j'th point of the input
 PointCloud.
 """
 if self.n_dims != pointcloud.n_dims:
 raise ValueError(
 "The two PointClouds must be of the same " "dimensionality."
)
 return cdist(self.points, pointcloud.points, **kwargs)

[docs] def norm(self, **kwargs):
 r"""
 Returns the norm of this PointCloud. This is a translation and
 rotation invariant measure of the point cloud's intrinsic size - in
 other words, it is always taken around the point cloud's centre.

 By default, the Frobenius norm is taken, but this can be changed by
 setting kwargs - see ``numpy.linalg.norm`` for valid options.

 Returns

 norm : `float`
 The norm of this :map:`PointCloud`
 """
 return np.linalg.norm(self.points - self.centre(), **kwargs)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the PointCloud. This is then broadcast across the dimensions
 of the PointCloud and returns a new PointCloud containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 pointcloud : :map:`PointCloud`
 A new pointcloud that has been masked.

 Raises

 ValueError
 Mask must have same number of points as pointcloud.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this PointCloud."
)
 pc = self.copy()
 pc.points = pc.points[mask, :]
 return pc

[docs] def constrain_to_bounds(self, bounds):
 r"""
 Returns a copy of this PointCloud, constrained to lie exactly within
 the given bounds. Any points outside the bounds will be 'snapped'
 to lie *exactly* on the boundary.

 Parameters

 bounds : ``(n_dims, n_dims)`` tuple of scalars
 The bounds to constrain this pointcloud within.

 Returns

 constrained : :map:`PointCloud`
 The constrained pointcloud.
 """
 pc = self.copy()
 for k in range(pc.n_dims):
 tmp = pc.points[:, k]
 tmp[tmp < bounds[0][k]] = bounds[0][k]
 tmp[tmp > bounds[1][k]] = bounds[1][k]
 pc.points[:, k] = tmp
 return pc

 menpo.shape.mesh.base

 Source code for menpo.shape.mesh.base

coding=utf-8
from warnings import warn

import numpy as np

from .normals import compute_face_normals, compute_vertex_normals
from .. import PointCloud
from ..adjacency import mask_adjacency_array, reindex_adjacency_array

def grid_tcoords(shape):
 r"""
 Return texture coordinates laid out on a grid. This is useful for creating
 a textured version of an image whereby the underlying mesh maps
 1-1 with a texture. Therefore, the provided shape should be the shape
 of the texture.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.

 Returns

 tcoords : ``(M, 2)`` `ndarray`
 The texture coordinates of a uniform grid. The origin will be
 at the image origin (appropriate for viewing texture mapped planes
 such as viewing image height maps).
 """
 # Default tcoords are just a grid, which assumes the input texture
 # is an image the same size as the input grid. The meshgrid is made in
 # an ordering that attempts to reduce the amount of copying required but
 # places the texture coordinates in the correct arrangement.
 tcoords = np.meshgrid(
 np.linspace(0, 1, num=shape[1]), np.linspace(1, 0, num=shape[0]), indexing="xy"
)
 tcoords = np.stack(tcoords, axis=2).reshape([-1, 2])
 tcoords = np.require(tcoords, requirements=["C"])
 return tcoords

def trilist_to_adjacency_array(trilist):
 r"""
 Turn an ``(M, 3)`` trilist into an adjacency array suitable for building
 graphs.

 Parameters

 trilist : ``(M, 3)`` `ndarray`
 The trilist to transform into an adjacency array

 Returns

 adj_array : ``(M * 3, 2)`` `ndarray`
 The adjacency array including the edges that complete the triangle
 which are implicit in a trilist.
 """
 wrap_around_adj = np.hstack([trilist[:, -1][..., None], trilist[:, 0][..., None]])
 # Build the array of all pairs
 return np.concatenate([trilist[:, :2], trilist[:, 1:], wrap_around_adj])

def subsampled_grid_triangulation(shape, subsampling=1):
 r"""
 Create a triangulation based on a regular grid. This will be a right
 handed triangulation with the separating triangle edge going from
 the top left of a grid point to the bottom right.

 Optionally, the triangulation can be subsampled which has the effect
 of skipping points. This is useful for subsampling a dense pointcloud.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to assume, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 subsampling : `int`, optional
 Will be used to index into the implicit grid and has the effect
 of subsampling the grid (every subsampling'th vertex is chosen).

 Returns

 trilist : ``(M, 3)`` `ndarray`
 The triangle list created on an implicit regular grid.
 """
 # Quickly create the indices in a grid
 indices_grid = np.zeros(shape)
 flat_vals_grid = indices_grid.ravel()
 flat_vals_grid[:] = np.arange(np.prod(shape))

 # Subsample the grid if necessary - useful for making very dense grids
 # much sparser
 indices_grid = indices_grid[::subsampling, ::subsampling]

 # Bottom-left triangles (right handed)
 tri_down_left = np.concatenate(
 [
 indices_grid[:-1, :-1].ravel()[..., None],
 indices_grid[1:, :-1].ravel()[..., None],
 indices_grid[1:, 1:].ravel()[..., None],
],
 axis=-1,
)

 # Top-right triangles (right handed)
 tri_up_right = np.concatenate(
 [
 indices_grid[:-1, :-1].ravel()[..., None],
 indices_grid[1:, 1:].ravel()[..., None],
 indices_grid[:-1, 1:].ravel()[..., None],
],
 axis=-1,
)

 return np.vstack([tri_down_left, tri_up_right]).astype(np.uint32)

[docs]class TriMesh(PointCloud):
 r"""
 A :map:`PointCloud` with a connectivity defined by a triangle list. These
 are designed to be explicitly 2D or 3D.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 trilist : ``(M, 3)`` `ndarray` or ``None``, optional
 The triangle list. If `None`, a Delaunay triangulation of
 the points will be used instead.
 copy: `bool`, optional
 If ``False``, the points will not be copied on assignment.
 Any trilist will also not be copied.
 In general this should only be used if you know what you are doing.
 """

 def __init__(self, points, trilist=None, copy=True):
 super(TriMesh, self).__init__(points, copy=copy)
 if trilist is None:
 from scipy.spatial import Delaunay # expensive import

 trilist = Delaunay(points).simplices
 if not copy:
 if not trilist.flags.c_contiguous:
 warn(
 "The copy flag was NOT honoured. A copy HAS been made. "
 "Please ensure the data you pass is C-contiguous."
)
 trilist = np.array(trilist, copy=True, order="C")
 else:
 trilist = np.array(trilist, copy=True, order="C")
 self.trilist = trilist

[docs] @classmethod
 def init_2d_grid(cls, shape, spacing=None):
 r"""
 Create a TriMesh that exists on a regular 2D grid. The first
 dimension is the number of rows in the grid and the second dimension
 of the shape is the number of columns. ``spacing`` optionally allows
 the definition of the distance between points (uniform over points).
 The spacing may be different for rows and columns.

 The triangulation will be right-handed and the diagonal will go from
 the top left to the bottom right of a square on the grid.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.

 Returns

 trimesh : :map:`TriMesh`
 A TriMesh arranged in a grid.
 """
 pc = PointCloud.init_2d_grid(shape, spacing=spacing)
 points = pc.points
 return cls(
 points,
 trilist=subsampled_grid_triangulation(shape, subsampling=1),
 copy=False,
)

[docs] @classmethod
 def init_from_depth_image(cls, depth_image):
 r"""
 Return a 3D triangular mesh from the given depth image. The depth image
 is assumed to represent height/depth values and the XY coordinates
 are assumed to unit spaced and represent image coordinates. This is
 particularly useful for visualising depth values that have been
 recovered from images.

 Parameters

 depth_image : :map:`Image` or subclass
 A single channel image that contains depth values - as commonly
 returned by RGBD cameras, for example.

 Returns

 depth_cloud : ``type(cls)``
 A new 3D TriMesh with unit XY coordinates and the given depth
 values as Z coordinates. The trilist is constructed as in
 :meth:`init_2d_grid`.
 """
 from menpo.image import MaskedImage

 new_tmesh = cls.init_2d_grid(depth_image.shape)
 if isinstance(depth_image, MaskedImage):
 new_tmesh = new_tmesh.from_mask(depth_image.mask.as_vector())
 return cls(
 np.hstack([new_tmesh.points, depth_image.as_vector(keep_channels=True).T]),
 trilist=new_tmesh.trilist,
 copy=False,
)

 def __str__(self):
 return "{}, n_tris: {}".format(PointCloud.__str__(self), self.n_tris)

 @property
 def n_tris(self):
 r"""
 The number of triangles in the triangle list.

 :type: `int`
 """
 return len(self.trilist)

[docs] def tojson(self):
 r"""
 Convert this :map:`TriMesh` to a dictionary representation suitable
 for inclusion in the LJSON landmark format. Note that this enforces a
 simpler representation, and as such is not suitable for
 a permanent serialization of a :map:`TriMesh` (to be clear,
 :map:`TriMesh`'s serialized as part of a landmark set will be rebuilt
 as a :map:`PointUndirectedGraph`).

 Returns

 json : `dict`
 Dictionary with ``points`` and ``connectivity`` keys.
 """
 return self.as_pointgraph().tojson()

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the TriMesh. This is then broadcast across the dimensions
 of the mesh and returns a new mesh containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`TriMesh`
 A new mesh that has been masked.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this TriMesh."
)

 tm = self.copy()
 if np.all(mask): # Fast path for all true
 return tm
 else:
 # Recalculate the mask to remove isolated vertices
 isolated_mask = self._isolated_mask(mask)
 # Recreate the adjacency array with the updated mask
 masked_adj = mask_adjacency_array(isolated_mask, self.trilist)
 tm.trilist = reindex_adjacency_array(masked_adj)
 tm.points = tm.points[isolated_mask, :]
 return tm

[docs] def from_tri_mask(self, tri_mask):
 """
 A 1D boolean array with the same number of elements as the number of
 triangles in the TriMesh. This is then broadcast across the dimensions
 of the mesh and returns a new mesh containing only those
 triangles that were ``True`` in the mask.

 Parameters

 mask : ``(n_tris,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`TriMesh`
 A new mesh that has been masked by triangles.
 """
 # start with an all False point mask.
 point_mask = np.zeros(self.n_points, dtype=np.bool)
 # find all points that are involved in the triangles we wish to
 # retain and set their mask to True.
 point_mask[np.unique(self.trilist[tri_mask].ravel())] = True
 return self.from_mask(point_mask)

 def _isolated_mask(self, mask):
 # Find the triangles we need to keep
 masked_adj = mask_adjacency_array(mask, self.trilist)
 # Find isolated vertices (vertices that don't exist in valid
 # triangles)
 isolated_indices = np.setdiff1d(np.nonzero(mask)[0], masked_adj)

 # Create a 'new mask' that contains the points the use asked
 # for MINUS the points that we can't create triangles for
 new_mask = mask.copy()
 new_mask[isolated_indices] = False
 return new_mask

[docs] def as_pointgraph(self, copy=True, skip_checks=False):
 """
 Converts the TriMesh to a :map:`PointUndirectedGraph`.

 Parameters

 copy : `bool`, optional
 If ``True``, the graph will be a copy.
 skip_checks : `bool`, optional
 If ``True``, no checks will be performed.

 Returns

 pointgraph : :map:`PointUndirectedGraph`
 The point graph.
 """
 from .. import PointUndirectedGraph
 from ..graph import _convert_edges_to_symmetric_adjacency_matrix

 # Since we have triangles we need the last connection
 # that 'completes' the triangle
 adjacency_matrix = _convert_edges_to_symmetric_adjacency_matrix(
 trilist_to_adjacency_array(self.trilist), self.points.shape[0]
)
 pg = PointUndirectedGraph(
 self.points, adjacency_matrix, copy=copy, skip_checks=skip_checks
)
 # This is always a copy
 pg.landmarks = self.landmarks
 return pg

[docs] def vertex_normals(self):
 r"""
 Compute the per-vertex normals from the current set of points and
 triangle list. Only valid for 3D dimensional meshes.

 Returns

 normals : ``(n_points, 3)`` `ndarray`
 Normal at each point.

 Raises

 ValueError
 If mesh is not 3D
 """
 if self.n_dims != 3:
 raise ValueError("Normals are only valid for 3D meshes")
 return compute_vertex_normals(self.points, self.trilist)

[docs] def tri_normals(self):
 r"""
 Compute the triangle face normals from the current set of points and
 triangle list. Only valid for 3D dimensional meshes.

 Returns

 normals : ``(n_tris, 3)`` `ndarray`
 Normal at each triangle face.

 Raises

 ValueError
 If mesh is not 3D
 """
 if self.n_dims != 3:
 raise ValueError("Normals are only valid for 3D meshes")
 return compute_face_normals(self.points, self.trilist)

[docs] def tri_areas(self):
 r"""The area of each triangle face.

 Returns

 areas : ``(n_tris,)`` `ndarray`
 Area of each triangle, ordered as the trilist is

 Raises

 ValueError
 If mesh is not 2D or 3D
 """
 t = self.points[self.trilist]
 ij, ik = t[:, 1] - t[:, 0], t[:, 2] - t[:, 0]
 if self.n_dims == 2:
 return np.abs(np.cross(ij, ik) * 0.5)
 elif self.n_dims == 3:
 return np.linalg.norm(np.cross(ij, ik), axis=1) * 0.5
 else:
 raise ValueError("tri_areas can only be calculated on a 2D or " "3D mesh")

[docs] def mean_tri_area(self):
 r"""The mean area of each triangle face in this :map:`TriMesh`.

 Returns

 mean_tri_area : ``float``
 The mean area of each triangle face in this :map:`TriMesh`

 Raises

 ValueError
 If mesh is not 3D
 """
 return np.mean(self.tri_areas())

[docs] def boundary_tri_index(self):
 r"""Boolean index into triangles that are at the edge of the TriMesh.
 The boundary vertices can be visualized as follows
 ::

 tri_mask = mesh.boundary_tri_index()
 boundary_points = mesh.points[mesh.trilist[tri_mask].ravel()]
 pc = menpo.shape.PointCloud(boundary_points)
 pc.view()

 Returns

 boundary_tri_index : ``(n_tris,)`` `ndarray`
 For each triangle (ABC), returns whether any of it's edges is not
 also an edge of another triangle (and so this triangle exists on
 the boundary of the TriMesh)
 """
 # Compute the edge indices so that we can find duplicated edges
 edge_indices = self.edge_indices()
 # Compute the triangle indices and repeat them so that when we loop
 # over the edges we get the correct triangle index per edge
 # (e.g. [0, 0, 0, 1, 1, 1, ...])
 tri_indices = np.arange(self.trilist.shape[0]).repeat(3)

 # Loop over the edges to find the "lonely" triangles that have an edge
 # that isn't shared with another triangle. Due to the definition of a
 # triangle and the careful ordering chosen above, each edge will be
 # seen either exactly once or exactly twice.
 # Note that some triangles may appear more than once as it's possible
 # for a triangle to only share one edge with the rest of the mesh (so
 # it would have two "lonely" edges
 lonely_triangles = {}
 for edge, t_i in zip(edge_indices, tri_indices):
 # Sorted the edge indices since we may see an edge (0, 1) and then
 # see it again as (1, 0) when in fact that is the same edge
 sorted_edge = tuple(sorted(edge))
 if sorted_edge not in lonely_triangles:
 lonely_triangles[sorted_edge] = t_i
 else:
 # If we've already seen the edge the we will never see it again
 # so we can just remove it from the candidate set
 del lonely_triangles[sorted_edge]

 mask = np.zeros(self.n_tris, dtype=np.bool)
 mask[np.array(list(lonely_triangles.values()))] = True
 return mask

[docs] def edge_vectors(self):
 r"""A vector of edges of each triangle face.

 Note that there will be two edges present in cases where two triangles
 'share' an edge. Consider :meth:`unique_edge_vectors` for a
 single vector for each physical edge on the :map:`TriMesh`.

 Returns

 edges : ``(n_tris * 3, n_dims)`` `ndarray`
 For each triangle (ABC), returns the edge vectors AB, BC, CA. All
 edges are concatenated for a total of ``n_tris * 3`` edges.
 The ordering is done so that each triangle is returned in order
 e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, ...]
 """
 t = self.points[self.trilist]
 return np.hstack(
 (t[:, 1] - t[:, 0], t[:, 2] - t[:, 1], t[:, 2] - t[:, 0])
).reshape(-1, 2)

[docs] def edge_indices(self):
 r"""An unordered index into points that rebuilds the edges of this
 :map:`TriMesh`.

 Note that there will be two edges present in cases where two triangles
 'share' an edge. Consider :meth:`unique_edge_indices` for a single index
 for each physical edge on the :map:`TriMesh`.

 Returns

 edge_indices : ``(n_tris * 3, 2)`` `ndarray`
 For each triangle (ABC), returns the pair of point indices that
 rebuild AB, BC, CA. All edge indices are concatenated for a total
 of ``n_tris * 3`` edge_indices. The ordering is done so that each
 triangle is returned in order
 e.g. [AB_1, BC_1, CA_1, AB_2, BC_2, CA_2, ...]
 """
 tl = self.trilist
 return np.hstack((tl[:, [0, 1]], tl[:, [1, 2]], tl[:, [2, 0]])).reshape(-1, 2)

[docs] def unique_edge_indices(self):
 r"""An unordered index into points that rebuilds the unique edges of
 this :map:`TriMesh`.

 Note that each physical edge will only be counted once in this method
 (i.e. edges shared between neighbouring triangles are only counted once
 not twice). The ordering should be considered random.

 Returns

 unique_edge_indices : ``(n_unique_edges, 2)`` `ndarray`
 Return a point index that rebuilds all edges present in this
 :map:`TriMesh` only once.
 """
 # Get a sorted list of edge pairs. sort ensures that each edge is
 # ordered from lowest index to highest.
 edge_pairs = np.sort(self.edge_indices())

 # We want to remove duplicates - this is a little hairy: basically we
 # get a view on the array where each pair is considered by numpy to be
 # one item
 edge_pair_view = np.ascontiguousarray(edge_pairs).view(
 np.dtype((np.void, edge_pairs.dtype.itemsize * edge_pairs.shape[1]))
)
 # Now we can use this view to ask for only unique edges...
 unique_edge_index = np.unique(edge_pair_view, return_index=True)[1]
 # And use that to filter our original list down
 return edge_pairs[unique_edge_index]

[docs] def unique_edge_vectors(self):
 r"""An unordered vector of unique edges for the whole :map:`TriMesh`.

 Note that each physical edge will only be counted once in this method
 (i.e. edges shared between neighbouring triangles are only counted once
 not twice). The ordering should be considered random.

 Returns

 unique_edge_vectors : ``(n_unique_edges, n_dims)`` `ndarray`
 Vectors for each unique edge in this :map:`TriMesh`.
 """
 x = self.points[self.unique_edge_indices()]
 return x[:, 1] - x[:, 0]

[docs] def edge_lengths(self):
 r"""The length of each edge in this :map:`TriMesh`.

 Note that there will be two edges present in cases where two triangles
 'share' an edge. Consider :meth:`unique_edge_indices` for a single
 index for each physical edge on the :map:`TriMesh`. The ordering
 matches the case for edges and edge_indices.

 Returns

 edge_lengths : ``(n_tris * 3,)`` `ndarray`
 Scalar euclidean lengths for each edge in this :map:`TriMesh`.
 """
 return np.linalg.norm(self.edge_vectors(), axis=1)

[docs] def unique_edge_lengths(self):
 r"""The length of each edge in this :map:`TriMesh`.

 Note that each physical edge will only be counted once in this method
 (i.e. edges shared between neighbouring triangles are only counted once
 not twice). The ordering should be considered random.

 Returns

 edge_lengths : ``(n_tris * 3,)`` `ndarray`
 Scalar euclidean lengths for each edge in this :map:`TriMesh`.
 """
 return np.linalg.norm(self.unique_edge_vectors(), axis=1)

[docs] def mean_edge_length(self, unique=True):
 r"""The mean length of each edge in this :map:`TriMesh`.

 Parameters

 unique : `bool`, optional
 If ``True``, each shared edge will only be counted once towards
 the average. If false, shared edges will be counted twice.

 Returns

 mean_edge_length : ``float``
 The mean length of each edge in this :map:`TriMesh`
 """
 return np.mean(self.unique_edge_lengths() if unique else self.edge_lengths())

[docs] def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1.0,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
 label=None,
 **kwargs,
):
 r"""
 Visualization of the TriMesh in 2D.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the TriMesh will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the TriMesh as a percentage of the TriMesh's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the TriMesh as a percentage of the TriMesh's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.
 """
 from menpo.visualize import PointGraphViewer2d

 return PointGraphViewer2d(
 figure_id, new_figure, self.points, trilist_to_adjacency_array(self.trilist)
).render(
 image_view=image_view,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
 label=label,
)

[docs] def _view_landmarks_2d(
 self,
 group=None,
 with_labels=None,
 without_labels=None,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour="k",
 line_style="-",
 line_width=2,
 render_markers=True,
 marker_style="s",
 marker_size=7,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_lines_lms=True,
 line_colour_lms=None,
 line_style_lms="-",
 line_width_lms=1,
 render_markers_lms=True,
 marker_style_lms="o",
 marker_size_lms=5,
 marker_face_colour_lms=None,
 marker_edge_colour_lms=None,
 marker_edge_width_lms=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=False,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 """
 Visualize the landmarks. This method will appear on the `TriMesh` as
 ``view_landmarks``.

 Parameters

 group : `str` or``None`` optional
 The landmark group to be visualized. If ``None`` and there are more
 than one landmark groups, an error is raised.
 with_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, only show the given label(s). Should **not** be
 used with the ``without_labels`` kwarg.
 without_labels : ``None`` or `str` or `list` of `str`, optional
 If not ``None``, show all except the given label(s). Should **not**
 be used with the ``with_labels`` kwarg.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the PointCloud will be viewed as if it is in the image
 coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_lines_lms : `bool`, optional
 If ``True``, the edges of the landmarks will be rendered.
 line_colour_lms : See Below, optional
 The colour of the lines of the landmarks.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style_lms : ``{-, --, -., :}``, optional
 The style of the lines of the landmarks.
 line_width_lms : `float`, optional
 The width of the lines of the landmarks.
 render_markers : `bool`, optional
 If ``True``, the markers of the landmarks will be rendered.
 marker_style : See Below, optional
 The style of the markers of the landmarks. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers of the landmarks in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers of the landmarks.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers of the landmarks.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge of the landmarks.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 legend_font_style : ``{normal, italic, oblique}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See Below, optional
 The font weight of the legend.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ==
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ==

 legend_bbox_to_anchor : (`float`, `float`) `tuple`, optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the PointCloud as a percentage of the PointCloud's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the PointCloud as a percentage of the PointCloud's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Raises

 ValueError
 If both ``with_labels`` and ``without_labels`` are passed.
 ValueError
 If the landmark manager doesn't contain the provided group label.
 """
 if not self.has_landmarks:
 raise ValueError(
 "PointGraph does not have landmarks attached, "
 "unable to view landmarks."
)
 self_view = self.view(
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 figure_size=figure_size,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
)
 # correct group label in legend
 if group is None:
 group = self.landmarks.group_labels[0]
 landmark_view = self.landmarks[group].view(
 with_labels=with_labels,
 without_labels=without_labels,
 figure_id=self_view.figure_id,
 new_figure=False,
 group=group,
 image_view=image_view,
 render_lines=render_lines_lms,
 line_colour=line_colour_lms,
 line_style=line_style_lms,
 line_width=line_width_lms,
 render_markers=render_markers_lms,
 marker_style=marker_style_lms,
 marker_size=marker_size_lms,
 marker_face_colour=marker_face_colour_lms,
 marker_edge_colour=marker_edge_colour_lms,
 marker_edge_width=marker_edge_width_lms,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

 return landmark_view

 def _view_3d(
 self,
 figure_id=None,
 new_figure=True,
 mesh_type="wireframe",
 line_width=2,
 colour="r",
 marker_style="sphere",
 marker_size=None,
 marker_resolution=8,
 normals=None,
 normals_colour="k",
 normals_line_width=2,
 normals_marker_style="2darrow",
 normals_marker_resolution=8,
 normals_marker_size=None,
 step=None,
 alpha=1.0,
):
 r"""
 Visualization of the TriMesh in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 mesh_type : `str`, optional
 The representation type to be used for the mesh.
 Example options ::

 {surface, wireframe, points, mesh, fancymesh}

 line_width : `float`, optional
 The width of the lines, if there are any.
 colour : See Below, optional
 The colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_style : `str`, optional
 The style of the markers.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically. It only applies for the
 'fancymesh'.
 marker_resolution : `int`, optional
 The resolution of the markers. For spheres, for instance, this is
 the number of divisions along theta and phi. It only applies for
 the 'fancymesh'.
 normals : ``(n_points, 3)`` `ndarray` or ``None``, optional
 If ``None``, then the normals will not be rendered. If `ndarray`,
 then the provided normals will be rendered as well. Note that a
 normal must be provided for each point in the TriMesh.
 normals_colour : See Below, optional
 The colour of the normals.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 normals_line_width : `float`, optional
 The width of the lines of the normals. It only applies if `normals`
 is not ``None``.
 normals_marker_style : `str`, optional
 The style of the markers of the normals. It only applies if `normals`
 is not ``None``.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 normals_marker_resolution : `int`, optional
 The resolution of the markers of the normals. For spheres, for
 instance, this is the number of divisions along theta and phi. It
 only applies if `normals` is not ``None``.
 normals_marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically. It only applies if `normals` is not
 ``None``.
 step : `int` or ``None``, optional
 If `int`, then one every `step` markers will be rendered.
 If ``None``, then all vertexes will be rendered. It only applies for
 the 'fancymesh' and if `normals` is not ``None``.
 alpha : `float`, optional
 Defines the transparency (opacity) of the object.

 Returns

 renderer : `menpo3d.visualize.TriMeshViewer3D`
 The Menpo3D rendering object.
 """
 try:
 from menpo3d.visualize import TriMeshViewer3d

 renderer = TriMeshViewer3d(figure_id, new_figure, self.points, self.trilist)
 renderer.render(
 mesh_type=mesh_type,
 line_width=line_width,
 colour=colour,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_resolution=marker_resolution,
 normals=normals,
 normals_colour=normals_colour,
 normals_line_width=normals_line_width,
 normals_marker_style=normals_marker_style,
 normals_marker_resolution=normals_marker_resolution,
 normals_marker_size=normals_marker_size,
 step=step,
 alpha=alpha,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)

 menpo.shape.mesh.coloured

 Source code for menpo.shape.mesh.coloured

import numpy as np

from ..adjacency import mask_adjacency_array, reindex_adjacency_array
from .base import TriMesh

[docs]class ColouredTriMesh(TriMesh):
 r"""
 Combines a :map:`TriMesh` with a colour per vertex.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 trilist : ``(M, 3)`` `ndarray` or ``None``, optional
 The triangle list. If `None`, a Delaunay triangulation of
 the points will be used instead.
 colours : ``(N, 3)`` `ndarray`, optional
 The floating point RGB colour per vertex. If not given, grey will be
 assigned to each vertex.
 copy: `bool`, optional
 If ``False``, the points, trilist and colours will not be copied on
 assignment.
 In general this should only be used if you know what you are doing.

 Raises

 ValueError
 If the number of colour values does not match the number of vertices.
 """

 def __init__(self, points, trilist=None, colours=None, copy=True):
 TriMesh.__init__(self, points, trilist=trilist, copy=copy)
 # Handle the settings of colours, either be provided a default grey
 # set of colours, or copy the given array if necessary
 if colours is None:
 # default to grey
 colours_handle = np.ones_like(points, dtype=np.float) * 0.5
 elif not copy:
 colours_handle = colours
 else:
 colours_handle = colours.copy()

 if points.shape[0] != colours_handle.shape[0]:
 raise ValueError("Must provide a colour per-vertex.")
 self.colours = colours_handle

[docs] @classmethod
 def init_2d_grid(cls, shape, spacing=None, colours=None):
 r"""
 Create a ColouredTriMesh that exists on a regular 2D grid. The first
 dimension is the number of rows in the grid and the second dimension
 of the shape is the number of columns. ``spacing`` optionally allows
 the definition of the distance between points (uniform over points).
 The spacing may be different for rows and columns.

 The triangulation will be right-handed and the diagonal will go from
 the top left to the bottom right of a square on the grid.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.
 colours : ``(N, 3)`` `ndarray`, optional
 The floating point RGB colour per vertex. If not given, grey will be
 assigned to each vertex.

 Returns

 trimesh : :map:`TriMesh`
 A TriMesh arranged in a grid.
 """
 pc = TriMesh.init_2d_grid(shape, spacing=spacing)
 points = pc.points
 trilist = pc.trilist
 # Ensure that the colours are copied
 if colours is not None:
 colours = colours.copy()
 return ColouredTriMesh(points, trilist=trilist, colours=colours, copy=False)

[docs] @classmethod
 def init_from_depth_image(cls, depth_image, colours=None):
 r"""
 Return a 3D textured triangular mesh from the given depth image. The
 depth image is assumed to represent height/depth values and the XY
 coordinates are assumed to unit spaced and represent image coordinates.
 This is particularly useful for visualising depth values that have been
 recovered from images.

 The optionally passed texture will be textured mapped onto the planar
 surface using the correct texture coordinates for an image of the
 same shape as ``depth_image``.

 Parameters

 depth_image : :map:`Image` or subclass
 A single channel image that contains depth values - as commonly
 returned by RGBD cameras, for example.
 colours : ``(N, 3)`` `ndarray`, optional
 The floating point RGB colour per vertex. If not given, grey will be
 assigned to each vertex.

 Returns

 depth_cloud : ``type(cls)``
 A new 3D TriMesh with unit XY coordinates and the given depth
 values as Z coordinates. The trilist is constructed as in
 :meth:`init_2d_grid`.
 """
 from menpo.image import MaskedImage

 new_tmesh = cls.init_2d_grid(depth_image.shape, colours=colours)
 if isinstance(depth_image, MaskedImage):
 new_tmesh = new_tmesh.from_mask(depth_image.mask.as_vector())
 return cls(
 np.hstack([new_tmesh.points, depth_image.as_vector(keep_channels=True).T]),
 colours=new_tmesh.colours,
 trilist=new_tmesh.trilist,
 copy=False,
)

 @property
 def n_channels(self):
 r"""
 The number of channels of colour used (e.g. 3 for RGB).

 :type: `int`
 """
 return self.colours.shape[1]

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the ColouredTriMesh. This is then broadcast across the
 dimensions of the mesh and returns a new mesh containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`ColouredTriMesh`
 A new mesh that has been masked.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this "
 "ColouredTriMesh."
)

 ctm = self.copy()
 if np.all(mask): # Fast path for all true
 return ctm
 else:
 # Recalculate the mask to remove isolated vertices
 isolated_mask = self._isolated_mask(mask)
 # Recreate the adjacency array with the updated mask
 masked_adj = mask_adjacency_array(isolated_mask, self.trilist)
 ctm.trilist = reindex_adjacency_array(masked_adj)
 ctm.points = ctm.points[isolated_mask, :]
 ctm.colours = ctm.colours[isolated_mask, :]
 return ctm

[docs] def clip_texture(self, range=(0.0, 1.0)):
 """
 Method that returns a copy of the object with the coloured values
 clipped in range ``(0, 1)``.

 Parameters

 range : ``(float, float)``, optional
 The clipping range.

 Returns

 self : :map:`ColouredTriMesh`
 A copy of self with its texture clipped.
 """
 instance = self.copy()
 instance.colours = np.clip(self.colours, *range)
 return instance

[docs] def rescale_texture(self, minimum, maximum, per_channel=True):
 r"""
 A copy of this mesh with colours linearly rescaled to fit a range.

 Parameters

 minimum: `float`
 The minimal value of the rescaled colours
 maximum: `float`
 The maximal value of the rescaled colours
 per_channel: `boolean`, optional
 If ``True``, each channel will be rescaled independently. If
 ``False``, the scaling will be over all channels.

 Returns

 coloured_mesh : ``type(self)``
 A copy of this mesh with colours linearly rescaled to fit in the
 range provided.
 """
 instance = self.copy()
 colours = instance.colours
 if per_channel:
 min_, max_ = colours.min(axis=0), colours.max(axis=0)
 else:
 min_, max_ = colours.min(), colours.max()
 sf = (maximum - minimum) / (max_ - min_)
 instance.colours = ((colours - min_) * sf) + minimum
 return instance

 def _view_3d(
 self,
 figure_id=None,
 new_figure=True,
 render_texture=True,
 mesh_type="surface",
 ambient_light=0.0,
 specular_light=0.0,
 colour="r",
 line_width=2,
 normals=None,
 normals_colour="k",
 normals_line_width=2,
 normals_marker_style="2darrow",
 normals_marker_resolution=8,
 normals_marker_size=None,
 step=None,
 alpha=1.0,
):
 r"""
 Visualize the Coloured TriMesh in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_texture : `bool`, optional
 If ``True``, then the texture is rendered. If ``False``, then only
 the TriMesh is rendered with the specified `colour`.
 mesh_type : ``{'surface', 'wireframe'}``, optional
 The representation type to be used for the mesh.
 ambient_light : `float`, optional
 The ambient light intensity. It must be in range ``[0., 1.]``.
 specular_light : `float`, optional
 The specular light intensity. It must be in range ``[0., 1.]``.
 colour : See Below, optional
 The colour of the mesh if `render_texture` is ``False``.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_width : `float`, optional
 The width of the lines, if there are any.
 normals : ``(n_points, 3)`` `ndarray` or ``None``, optional
 If ``None``, then the normals will not be rendered. If `ndarray`,
 then the provided normals will be rendered as well. Note that a
 normal must be provided for each point in the TriMesh.
 normals_colour : See Below, optional
 The colour of the normals.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 normals_line_width : `float`, optional
 The width of the lines of the normals. It only applies if `normals`
 is not ``None``.
 normals_marker_style : `str`, optional
 The style of the markers of the normals. It only applies if `normals`
 is not ``None``.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 normals_marker_resolution : `int`, optional
 The resolution of the markers of the normals. For spheres, for
 instance, this is the number of divisions along theta and phi. It
 only applies if `normals` is not ``None``.
 normals_marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically. It only applies if `normals` is not
 ``None``.
 step : `int` or ``None``, optional
 If `int`, then one every `step` normals will be rendered.
 If ``None``, then all vertexes will be rendered. It only applies if
 `normals` is not ``None``.
 alpha : `float`, optional
 Defines the transparency (opacity) of the object.

 Returns

 renderer : `menpo3d.visualize.ColouredTriMeshViewer3D`
 The Menpo3D rendering object.
 """
 if render_texture:
 try:
 from menpo3d.visualize import ColouredTriMeshViewer3d

 renderer = ColouredTriMeshViewer3d(
 figure_id, new_figure, self.points, self.trilist, self.colours
)
 renderer.render(
 mesh_type=mesh_type,
 ambient_light=ambient_light,
 specular_light=specular_light,
 normals=normals,
 normals_colour=normals_colour,
 normals_line_width=normals_line_width,
 normals_marker_style=normals_marker_style,
 normals_marker_resolution=normals_marker_resolution,
 normals_marker_size=normals_marker_size,
 step=step,
 alpha=alpha,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)
 else:
 try:
 from menpo3d.visualize import TriMeshViewer3d

 renderer = TriMeshViewer3d(
 figure_id, new_figure, self.points, self.trilist
)
 renderer.render(
 mesh_type=mesh_type,
 line_width=line_width,
 colour=colour,
 normals=normals,
 normals_colour=normals_colour,
 normals_line_width=normals_line_width,
 normals_marker_style=normals_marker_style,
 normals_marker_resolution=normals_marker_resolution,
 normals_marker_size=normals_marker_size,
 step=step,
 alpha=alpha,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)

[docs] def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1.0,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
 label=None,
 **kwargs,
):
 r"""
 Visualization of the TriMesh in 2D. Currently, explicit coloured TriMesh
 viewing is not supported, and therefore viewing falls back to uncoloured
 2D TriMesh viewing.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the ColouredTriMesh will be viewed as if it is in the
 image coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the TriMesh as a percentage of the TriMesh's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the TriMesh as a percentage of the TriMesh's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.

 Raises

 warning
 2D Viewing of Coloured TriMeshes is not supported, automatically
 falls back to 2D :map:`TriMesh` viewing.
 """
 import warnings

 warnings.warn(
 Warning(
 "2D Viewing of Coloured TriMeshes is not "
 "supported, falling back to TriMesh viewing."
)
)
 return TriMesh._view_2d(
 self,
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
 label=label,
)

 menpo.shape.mesh.textured

 Source code for menpo.shape.mesh.textured

import numpy as np

from menpo.shape import PointCloud
from menpo.transform import tcoords_to_image_coords

from ..adjacency import mask_adjacency_array, reindex_adjacency_array
from .base import TriMesh, grid_tcoords

[docs]class TexturedTriMesh(TriMesh):
 r"""
 Combines a :map:`TriMesh` with a texture. Also encapsulates the texture
 coordinates required to render the texture on the mesh.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 The array representing the points.
 tcoords : ``(N, 2)`` `ndarray`
 The texture coordinates for the mesh.
 texture : :map:`Image`
 The texture for the mesh.
 trilist : ``(M, 3)`` `ndarray` or ``None``, optional
 The triangle list. If ``None``, a Delaunay triangulation of
 the points will be used instead.
 copy: `bool`, optional
 If ``False``, the points, trilist and texture will not be copied on
 assignment.
 In general this should only be used if you know what you are doing.
 """

 def __init__(self, points, tcoords, texture, trilist=None, copy=True):
 super(TexturedTriMesh, self).__init__(points, trilist=trilist, copy=copy)
 self.tcoords = PointCloud(tcoords, copy=copy)

 if not copy:
 self.texture = texture
 else:
 self.texture = texture.copy()

 @property
 def n_channels(self):
 r"""
 The number of channels of colour used (e.g. 3 for RGB).

 :type: `int`
 """
 return self.texture.n_channels

[docs] @classmethod
 def init_2d_grid(cls, shape, spacing=None, tcoords=None, texture=None):
 r"""
 Create a TexturedTriMesh that exists on a regular 2D grid. The first
 dimension is the number of rows in the grid and the second dimension
 of the shape is the number of columns. ``spacing`` optionally allows
 the definition of the distance between points (uniform over points).
 The spacing may be different for rows and columns.

 The triangulation will be right-handed and the diagonal will go from
 the top left to the bottom right of a square on the grid.

 If no texture is passed a blank (black) texture is attached with
 correct texture coordinates for texture mapping an image of the same
 size as ``shape``.

 Parameters

 shape : `tuple` of 2 `int`
 The size of the grid to create, this defines the number of points
 across each dimension in the grid. The first element is the number
 of rows and the second is the number of columns.
 spacing : `int` or `tuple` of 2 `int`, optional
 The spacing between points. If a single `int` is provided, this
 is applied uniformly across each dimension. If a `tuple` is
 provided, the spacing is applied non-uniformly as defined e.g.
 ``(2, 3)`` gives a spacing of 2 for the rows and 3 for the
 columns.
 tcoords : ``(N, 2)`` `ndarray`, optional
 The texture coordinates for the mesh.
 texture : :map:`Image`, optional
 The texture for the mesh.

 Returns

 trimesh : :map:`TriMesh`
 A TriMesh arranged in a grid.
 """
 pc = TriMesh.init_2d_grid(shape, spacing=spacing)
 points = pc.points
 trilist = pc.trilist
 # Ensure that the tcoords and texture are copied
 if tcoords is not None:
 tcoords = tcoords.copy()
 else:
 tcoords = grid_tcoords(shape)
 if texture is not None:
 texture = texture.copy()
 else:
 from menpo.image import Image

 # Default texture is all black
 texture = Image.init_blank(shape)
 return TexturedTriMesh(points, tcoords, texture, trilist=trilist, copy=False)

[docs] @classmethod
 def init_from_depth_image(cls, depth_image, tcoords=None, texture=None):
 r"""
 Return a 3D textured triangular mesh from the given depth image. The
 depth image is assumed to represent height/depth values and the XY
 coordinates are assumed to unit spaced and represent image coordinates.
 This is particularly useful for visualising depth values that have been
 recovered from images.

 The optionally passed texture will be textured mapped onto the planar
 surface using the correct texture coordinates for an image of the
 same shape as ``depth_image``.

 Parameters

 depth_image : :map:`Image` or subclass
 A single channel image that contains depth values - as commonly
 returned by RGBD cameras, for example.
 tcoords : ``(N, 2)`` `ndarray`, optional
 The texture coordinates for the mesh.
 texture : :map:`Image`, optional
 The texture for the mesh.

 Returns

 depth_cloud : ``type(cls)``
 A new 3D TriMesh with unit XY coordinates and the given depth
 values as Z coordinates. The trilist is constructed as in
 :meth:`init_2d_grid`.
 """
 from menpo.image import MaskedImage

 new_tmesh = cls.init_2d_grid(
 depth_image.shape, tcoords=tcoords, texture=texture
)
 if isinstance(depth_image, MaskedImage):
 new_tmesh = new_tmesh.from_mask(depth_image.mask.as_vector())
 return cls(
 np.hstack([new_tmesh.points, depth_image.as_vector(keep_channels=True).T]),
 new_tmesh.tcoords.points,
 new_tmesh.texture,
 trilist=new_tmesh.trilist,
 copy=False,
)

[docs] def tcoords_pixel_scaled(self):
 r"""
 Returns a :map:`PointCloud` that is modified to be suitable for directly
 indexing into the pixels of the texture (e.g. for manual mapping
 operations). The resulting tcoords behave just like image landmarks
 do.

 The operations that are performed are:

 - Flipping the origin from bottom-left to top-left
 - Scaling the tcoords by the image shape (denormalising them)
 - Permuting the axis so that

 Returns

 tcoords_scaled : :map:`PointCloud`
 A copy of the tcoords that behave like :map:`Image` landmarks

 Examples

 Recovering pixel values for every texture coordinate:

 >>> texture = texturedtrimesh.texture
 >>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
 >>> pixel_values_at_tcs = texture.sample(tc_ps)
 """
 return tcoords_to_image_coords(self.texture.shape).apply(self.tcoords)

[docs] def from_vector(self, flattened):
 r"""
 Builds a new :class:`TexturedTriMesh` given the `flattened` 1D vector.
 Note that the trilist, texture, and tcoords will be drawn from self.

 Parameters

 flattened : ``(N,)`` `ndarray`
 Vector representing a set of points.

 Returns

 trimesh : :map:`TriMesh`
 A new trimesh created from the vector with ``self`` trilist.
 """
 return TexturedTriMesh(
 flattened.reshape([-1, self.n_dims]),
 self.tcoords.points,
 self.texture,
 trilist=self.trilist,
)

[docs] def from_mask(self, mask):
 """
 A 1D boolean array with the same number of elements as the number of
 points in the TexturedTriMesh. This is then broadcast across the
 dimensions of the mesh and returns a new mesh containing only those
 points that were ``True`` in the mask.

 Parameters

 mask : ``(n_points,)`` `ndarray`
 1D array of booleans

 Returns

 mesh : :map:`TexturedTriMesh`
 A new mesh that has been masked.
 """
 if mask.shape[0] != self.n_points:
 raise ValueError(
 "Mask must be a 1D boolean array of the same "
 "number of entries as points in this "
 "TexturedTriMesh."
)

 ttm = self.copy()
 if np.all(mask): # Fast path for all true
 return ttm
 else:
 # Recalculate the mask to remove isolated vertices
 isolated_mask = self._isolated_mask(mask)
 # Recreate the adjacency array with the updated mask
 masked_adj = mask_adjacency_array(isolated_mask, self.trilist)
 ttm.trilist = reindex_adjacency_array(masked_adj)
 ttm.points = ttm.points[isolated_mask, :]
 ttm.tcoords.points = ttm.tcoords.points[isolated_mask, :]
 return ttm

[docs] def clip_texture(self, range=(0.0, 1.0)):
 """
 Method that returns a copy of the object with the texture values
 clipped in range ``(0, 1)``.

 Parameters

 range : ``(float, float)``, optional
 The clipping range.

 Returns

 self : :map:`ColouredTriMesh`
 A copy of self with its texture clipped.
 """
 instance = self.copy()
 instance.texture.pixels = np.clip(self.texture.pixels, *range)
 return instance

[docs] def rescale_texture(self, minimum, maximum, per_channel=True):
 r"""
 A copy of this mesh with texture linearly rescaled to fit a range.

 Parameters

 minimum: `float`
 The minimal value of the rescaled colours
 maximum: `float`
 The maximal value of the rescaled colours
 per_channel: `boolean`, optional
 If ``True``, each channel will be rescaled independently. If
 ``False``, the scaling will be over all channels.

 Returns

 textured_mesh : ``type(self)``
 A copy of this mesh with texture linearly rescaled to fit in the
 range provided.
 """
 instance = self.copy()
 instance.texture = instance.texture.rescale_pixels(
 minimum, maximum, per_channel=per_channel
)
 return instance

 def _view_3d(
 self,
 figure_id=None,
 new_figure=True,
 render_texture=True,
 mesh_type="surface",
 ambient_light=0.0,
 specular_light=0.0,
 colour="r",
 line_width=2,
 normals=None,
 normals_colour="k",
 normals_line_width=2,
 normals_marker_style="2darrow",
 normals_marker_resolution=8,
 normals_marker_size=None,
 step=None,
 alpha=1.0,
):
 r"""
 Visualize the Textured TriMesh in 3D.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 render_texture : `bool`, optional
 If ``True``, then the texture is rendered. If ``False``, then only
 the TriMesh is rendered with the specified `colour`.
 mesh_type : ``{'surface', 'wireframe'}``, optional
 The representation type to be used for the mesh.
 ambient_light : `float`, optional
 The ambient light intensity. It must be in range ``[0., 1.]``.
 specular_light : `float`, optional
 The specular light intensity. It must be in range ``[0., 1.]``.
 colour : See Below, optional
 The colour of the mesh if `render_texture` is ``False``.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_width : `float`, optional
 The width of the lines, if there are any.
 normals : ``(n_points, 3)`` `ndarray` or ``None``, optional
 If ``None``, then the normals will not be rendered. If `ndarray`,
 then the provided normals will be rendered as well. Note that a
 normal must be provided for each point in the TriMesh.
 normals_colour : See Below, optional
 The colour of the normals.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 normals_line_width : `float`, optional
 The width of the lines of the normals. It only applies if `normals`
 is not ``None``.
 normals_marker_style : `str`, optional
 The style of the markers of the normals. It only applies if `normals`
 is not ``None``.
 Example options ::

 {2darrow, 2dcircle, 2dcross, 2ddash, 2ddiamond, 2dhooked_arrow,
 2dsquare, 2dthick_arrow, 2dthick_cross, 2dtriangle, 2dvertex,
 arrow, axes, cone, cube, cylinder, point, sphere}

 normals_marker_resolution : `int`, optional
 The resolution of the markers of the normals. For spheres, for
 instance, this is the number of divisions along theta and phi. It
 only applies if `normals` is not ``None``.
 normals_marker_size : `float` or ``None``, optional
 The size of the markers. This size can be seen as a scale factor
 applied to the size markers, which is by default calculated from
 the inter-marker spacing. If ``None``, then an optimal marker size
 value will be set automatically. It only applies if `normals` is not
 ``None``.
 step : `int` or ``None``, optional
 If `int`, then one every `step` normals will be rendered.
 If ``None``, then all vertexes will be rendered. It only applies if
 `normals` is not ``None``.
 alpha : `float`, optional
 Defines the transparency (opacity) of the object.

 Returns

 renderer : `menpo3d.visualize.TexturedTriMeshViewer3D`
 The Menpo3D rendering object.
 """
 if render_texture:
 try:
 from menpo3d.visualize import TexturedTriMeshViewer3d

 renderer = TexturedTriMeshViewer3d(
 figure_id,
 new_figure,
 self.points,
 self.trilist,
 self.texture,
 self.tcoords.points,
)
 renderer.render(
 mesh_type=mesh_type,
 ambient_light=ambient_light,
 specular_light=specular_light,
 normals=normals,
 normals_colour=normals_colour,
 normals_line_width=normals_line_width,
 normals_marker_style=normals_marker_style,
 normals_marker_resolution=normals_marker_resolution,
 normals_marker_size=normals_marker_size,
 step=step,
 alpha=alpha,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)
 else:
 try:
 from menpo3d.visualize import TriMeshViewer3d

 renderer = TriMeshViewer3d(
 figure_id, new_figure, self.points, self.trilist
)
 renderer.render(
 mesh_type=mesh_type,
 line_width=line_width,
 colour=colour,
 normals=normals,
 normals_colour=normals_colour,
 normals_line_width=normals_line_width,
 normals_marker_style=normals_marker_style,
 normals_marker_resolution=normals_marker_resolution,
 normals_marker_size=normals_marker_size,
 step=step,
 alpha=alpha,
)
 return renderer
 except ImportError as e:
 from menpo.visualize import Menpo3dMissingError

 raise Menpo3dMissingError(e)

[docs] def _view_2d(
 self,
 figure_id=None,
 new_figure=False,
 image_view=True,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1.0,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="k",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
 label=None,
 **kwargs,
):
 r"""
 Visualization of the TriMesh in 2D. Currently, explicit textured TriMesh
 viewing is not supported, and therefore viewing falls back to untextured
 2D TriMesh viewing.

 Returns

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the TexturedTriMesh will be viewed as if it is in the
 image coordinate system.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes.
 Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : {``normal``, ``italic``, ``oblique``}, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the TriMesh as a percentage of the TriMesh's
 width. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_y_limits : (`float`, `float`) `tuple` or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the TriMesh as a percentage of the TriMesh's
 height. If `tuple` or `list`, then it defines the axis limits. If
 ``None``, then the limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None``, optional
 The size of the figure in inches.
 label : `str`, optional
 The name entry in case of a legend.

 Returns

 viewer : :map:`PointGraphViewer2d`
 The viewer object.

 Raises

 warning
 2D Viewing of Coloured TriMeshes is not supported, automatically
 falls back to 2D :map:`TriMesh` viewing.
 """
 import warnings

 warnings.warn(
 Warning(
 "2D Viewing of Textured TriMeshes is not "
 "supported, falling back to TriMesh viewing."
)
)
 return TriMesh._view_2d(
 self,
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
 label=label,
)

 def __str__(self):
 return "{}\ntexture_shape: {}, n_texture_channels: {}".format(
 TriMesh.__str__(self), self.texture.shape, self.texture.n_channels
)

 menpo.transform.base

 Source code for menpo.transform.base

import warnings
import numpy as np

from menpo.base import Copyable, MenpoDeprecationWarning

[docs]class Transform(Copyable):
 r"""
 Abstract representation of any spatial transform.

 Provides a unified interface to apply the transform with
 :meth:`apply_inplace` and :meth:`apply`.

 All Transforms support basic composition to form a :map:`TransformChain`.

 There are two useful forms of composition. Firstly, the mathematical
 composition symbol `o` has the following definition::

 Let a(x) and b(x) be two transforms on x.
 (a o b)(x) == a(b(x))

 This functionality is provided by the :meth:`compose_after` family of
 methods: ::

 (a.compose_after(b)).apply(x) == a.apply(b.apply(x))

 Equally useful is an inversion the order of composition - so that over
 time a large chain of transforms can be built to do a useful job, and
 composing on this chain adds another transform to the end (after all other
 preceding transforms have been performed).

 For instance, let's say we want to rescale a :map:`PointCloud` ``p`` around
 its mean, and then translate it some place else. It would be nice to be able
 to do something like::

 t = Translation(-p.centre) # translate to centre
 s = Scale(2.0) # rescale
 move = Translate([10, 0 ,0]) # budge along the x axis
 t.compose(s).compose(-t).compose(move)

 In Menpo, this functionality is provided by the :meth:`compose_before()`
 family of methods::

 (a.compose_before(b)).apply(x) == b.apply(a.apply(x))

 For native composition, see the :map:`ComposableTransform` subclass and
 the :map:`VComposable` mix-in.

 For inversion, see the :map:`Invertible` and :map:`VInvertible` mix-ins.

 For alignment, see the :map:`Alignment` mix-in.
 """

 @property
 def n_dims(self):
 r"""
 The dimensionality of the data the transform operates on.

 ``None`` if the transform is not dimension specific.

 :type: `int` or ``None``
 """
 return None

 @property
 def n_dims_output(self):
 r"""
 The output of the data from the transform.

 ``None`` if the output of the transform is not dimension specific.

 :type: `int` or ``None``
 """
 # most Transforms don't change the dimensionality of their input.
 return self.n_dims

 def _apply(self, x, **kwargs):
 r"""
 Applies the transform to the array ``x``, returning the result.

 This method does the actual work of transforming the data, and is the
 one that subclasses must implement. :meth:`apply` and
 :meth:`apply_inplace` both call this method to do that actual work.

 Parameters

 x : ``(n_points, n_dims)`` `ndarray`
 The array to be transformed.
 kwargs : `dict`
 Subclasses may need these in their ``_apply`` methods.

 Returns

 transformed : ``(n_points, n_dims_output)`` `ndarray`
 The transformed array
 """
 raise NotImplementedError()

[docs] def apply_inplace(self, *args, **kwargs):
 r"""
 Deprecated as public supported API, use the non-mutating `apply()`
 instead.

 For internal performance-specific uses, see `_apply_inplace()`.

 """
 warnings.warn(
 "the public API for inplace operations is deprecated "
 "and will be removed in a future version of Menpo. "
 "Use .apply() instead.",
 MenpoDeprecationWarning,
)
 return self._apply_inplace(*args, **kwargs)

 def _apply_inplace(self, x, **kwargs):
 r"""
 Applies this transform to a :map:`Transformable` ``x`` destructively.

 Any ``kwargs`` will be passed to the specific transform :meth:`_apply`
 method.

 Note that this is an inplace operation that should be used sparingly,
 by internal API's where creating a copy of the transformed object is
 expensive. It does not return anything, as the operation is inplace.

 Parameters

 x : :map:`Transformable`
 The :map:`Transformable` object to be transformed.
 kwargs : `dict`
 Passed through to :meth:`_apply`.
 """

 def transform(x_):
 """
 Local closure which calls the :meth:`_apply` method with the
 `kwargs` attached.
 """
 return self._apply(x_, **kwargs)

 try:
 x._transform_inplace(transform)
 except AttributeError:
 raise ValueError(
 "apply_inplace can only be used on Transformable" " objects."
)

[docs] def apply(self, x, batch_size=None, **kwargs):
 r"""
 Applies this transform to ``x``.

 If ``x`` is :map:`Transformable`, ``x`` will be handed this transform
 object to transform itself non-destructively (a transformed copy of the
 object will be returned).

 If not, ``x`` is assumed to be an `ndarray`. The transformation will be
 non-destructive, returning the transformed version.

 Any ``kwargs`` will be passed to the specific transform :meth:`_apply`
 method.

 Parameters

 x : :map:`Transformable` or ``(n_points, n_dims)`` `ndarray`
 The array or object to be transformed.
 batch_size : `int`, optional
 If not ``None``, this determines how many items from the numpy
 array will be passed through the transform at a time. This is
 useful for operations that require large intermediate matrices
 to be computed.
 kwargs : `dict`
 Passed through to :meth:`_apply`.

 Returns

 transformed : ``type(x)``
 The transformed object or array
 """

 def transform(x_):
 """
 Local closure which calls the :meth:`_apply` method with the
 `kwargs` attached.
 """
 return self._apply_batched(x_, batch_size, **kwargs)

 try:
 return x._transform(transform)
 except AttributeError:
 return self._apply_batched(x, batch_size, **kwargs)

 def _apply_batched(self, x, batch_size, **kwargs):
 if batch_size is None:
 return self._apply(x, **kwargs)
 else:
 outputs = []
 n_points = x.shape[0]
 for lo_ind in range(0, n_points, batch_size):
 hi_ind = lo_ind + batch_size
 outputs.append(self._apply(x[lo_ind:hi_ind], **kwargs))
 return np.vstack(outputs)

[docs] def compose_before(self, transform):
 r"""
 Returns a :map:`TransformChain` that represents **this** transform
 composed **before** the given transform::

 c = a.compose_before(b)
 c.apply(p) == b.apply(a.apply(p))

 ``a`` and ``b`` are left unchanged.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **after** self

 Returns

 transform : :map:`TransformChain`
 The resulting transform chain.
 """
 return TransformChain([self, transform])

[docs] def compose_after(self, transform):
 r"""
 Returns a :map:`TransformChain` that represents **this** transform
 composed **after** the given transform::

 c = a.compose_after(b)
 c.apply(p) == a.apply(b.apply(p))

 ``a`` and ``b`` are left unchanged.

 This corresponds to the usual mathematical formalism for the compose
 operator, `o`.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **before** self

 Returns

 transform : :map:`TransformChain`
 The resulting transform chain.
 """
 return TransformChain([transform, self])

[docs]class Transformable(Copyable):
 r"""
 Interface for objects that know how to be transformed by the
 :map:`Transform` interface.

 When ``Transform.apply_inplace`` is called on an object, the
 :meth:`_transform_inplace` method is called, passing in the transforms'
 :meth:`_apply` function.

 This allows for the object to define how it should transform itself.
 """

[docs] def _transform_inplace(self, transform):
 r"""
 Apply the given transform function to ``self`` inplace.

 Parameters

 transform : `function`
 Function that applies a transformation to the transformable object.

 Returns

 transformed : ``type(self)``
 The transformed object, having been transformed in place.
 """
 raise NotImplementedError()

 def _transform(self, transform):
 r"""
 Apply the :map:`Transform` given in a non destructive manner -
 returning the transformed object and leaving this object as it was.

 Parameters

 transform : `function`
 Function that applies a transformation to the transformable object.

 Returns

 transformed : ``type(self)``
 A copy of the object, transformed.
 """
 copy_of_self = self.copy()
 # transform the copy destructively
 copy_of_self._transform_inplace(transform)
 return copy_of_self

from .alignment import Alignment
from .composable import TransformChain, ComposableTransform, VComposable
from .invertible import Invertible, VInvertible

 menpo.transform.compositions

 Source code for menpo.transform.compositions

from functools import reduce

from .homogeneous import Translation, UniformScale, Rotation, Affine, Homogeneous

[docs]def transform_about_centre(obj, transform):
 r"""
 Return a Transform that implements transforming an object about
 its centre. The given object must be transformable and must implement
 a method to provide the object centre. More precisely, the object will be
 translated to the origin (according to it's centre), transformed, and then
 translated back to it's previous position.

 Parameters

 obj : :map:`Transformable`
 A transformable object that has the ``centre`` method.
 transform : :map:`ComposableTransform`
 A composable transform.

 Returns

 transform : :map:`Homogeneous`
 A homogeneous transform that implements the scaling.
 """
 to_origin = Translation(-obj.centre(), skip_checks=True)
 back_to_centre = Translation(obj.centre(), skip_checks=True)

 # Fast path - compose in-place in order to ensure only a single matrix
 # is returned
 if isinstance(transform, Homogeneous):
 # Translate to origin, transform, then translate back
 return to_origin.compose_before(transform).compose_before(back_to_centre)
 else: # Fallback to transform chain
 return reduce(
 lambda a, b: a.compose_before(b), [to_origin, transform, back_to_centre]
)

[docs]def scale_about_centre(obj, scale):
 r"""
 Return a Homogeneous Transform that implements scaling an object about
 its centre. The given object must be transformable and must implement
 a method to provide the object centre.

 Parameters

 obj : :map:`Transformable`
 A transformable object that has the ``centre`` method.
 scale : `float` or ``(n_dims,)`` `ndarray`
 The scale factor as defined in the :map:`Scale` documentation.

 Returns

 transform : :map:`Homogeneous`
 A homogeneous transform that implements the scaling.
 """
 s = UniformScale(scale, obj.n_dims, skip_checks=True)
 return transform_about_centre(obj, s)

[docs]def rotate_ccw_about_centre(obj, theta, degrees=True):
 r"""
 Return a Homogeneous Transform that implements rotating an object
 counter-clockwise about its centre. The given object must be transformable
 and must implement a method to provide the object centre.

 Parameters

 obj : :map:`Transformable`
 A transformable object that has the ``centre`` method.
 theta : `float`
 The angle of rotation clockwise about the origin.
 degrees : `bool`, optional
 If ``True`` theta is interpreted as degrees. If ``False``, theta is
 interpreted as radians.

 Returns

 transform : :map:`Homogeneous`
 A homogeneous transform that implements the rotation.
 """
 if obj.n_dims != 2:
 raise ValueError("CCW rotation is currently only supported for " "2D objects")
 r = Rotation.init_from_2d_ccw_angle(theta, degrees=degrees)
 return transform_about_centre(obj, r)

[docs]def shear_about_centre(obj, phi, psi, degrees=True):
 r"""
 Return an affine transform that implements shearing (distorting) an
 object about its centre. The given object must be transformable and must
 implement a method to provide the object centre.

 Parameters

 obj : :map:`Transformable`
 A transformable object that has the ``centre`` method.
 phi : `float`
 The angle of shearing in the X direction.
 psi : `float`
 The angle of shearing in the Y direction.
 degrees : `bool`, optional
 If ``True``, then phi and psi are interpreted as degrees. If ``False``
 they are interpreted as radians.

 Returns

 transform : :map:`Affine`
 An affine transform that implements the shearing.

 Raises

 ValueError
 Shearing can only be applied on 2D objects
 """
 if obj.n_dims != 2:
 raise ValueError("Shearing is currently only supported for 2D objects")
 s = Affine.init_from_2d_shear(phi, psi, degrees=degrees)
 return transform_about_centre(obj, s)

 menpo.transform.rbf

 Source code for menpo.transform.rbf

import numpy as np
from scipy.spatial.distance import cdist
from .base import Transform

class RadialBasisFunction(Transform):
 r"""
 Radial Basis Functions are a class of transform that is used by
 :map:`ThinPlateSplines`. They have to be able to take their own radial
 derivative for :map:`ThinPlateSplines` to be able to take its own total
 derivative.

 Parameters

 c : ``(n_centres, n_dims)`` `ndarray`
 The set of centers that make the basis. Usually represents a set of
 source landmarks.
 """

 def __init__(self, c):
 self.c = c

 @property
 def n_centres(self):
 r"""
 The number of centres.

 :type: `int`
 """
 return self.c.shape[0]

 @property
 def n_dims(self):
 r"""
 The RBF can only be applied on points with the same dimensionality as
 the centres.

 :type: `int`
 """
 return self.c.shape[1]

 @property
 def n_dims_output(self):
 r"""
 The result of the transform has a dimension (weight) for every centre.

 :type: `int`
 """
 return self.n_centres

[docs]class R2LogR2RBF(RadialBasisFunction):
 r"""
 The :math:`r^2 \log{r^2}` basis function.

 The derivative of this function is :math:`2 r (\log{r^2} + 1)`.

 .. note::

 :math:`r = \lVert x - c \rVert`

 Parameters

 c : ``(n_centres, n_dims)`` `ndarray`
 The set of centers that make the basis. Usually represents a set of
 source landmarks.
 """

 def __init__(self, c):
 super(R2LogR2RBF, self).__init__(c)

 def _apply(self, x, **kwargs):
 r"""
 Apply the basis function.

 .. note::

 :math:`r^2 \log{r^2} === r^2 2 \log{r}`

 Parameters

 x : ``(n_points, n_dims)`` `ndarray`
 Set of points to apply the basis to.

 Returns

 u : ``(n_points, n_centres)`` `ndarray`
 The basis function applied to each distance,
 :math:`\lVert x - c \rVert`.
 """
 euclidean_distance = cdist(x, self.c)
 mask = euclidean_distance == 0
 with np.errstate(divide="ignore", invalid="ignore"):
 u = euclidean_distance ** 2 * (2 * np.log(euclidean_distance))
 # reset singularities to 0
 u[mask] = 0
 return u

[docs]class R2LogRRBF(RadialBasisFunction):
 r"""
 Calculates the :math:`r^2 \log{r}` basis function.

 The derivative of this function is :math:`r (1 + 2 \log{r})`.

 .. note::

 :math:`r = \lVert x - c \rVert`

 Parameters

 c : ``(n_centres, n_dims)`` `ndarray`
 The set of centers that make the basis. Usually represents a set of
 source landmarks.
 """

 def __init__(self, c):
 super(R2LogRRBF, self).__init__(c)

 def _apply(self, points, **kwargs):
 r"""
 Apply the basis function :math:`r^2 \log{r}`.

 Parameters

 points : ``(n_points, n_dims)`` `ndarray`
 Set of points to apply the basis to.

 Returns

 u : ``(n_points, n_centres)`` `ndarray`
 The basis function applied to each distance,
 :math:`\lVert points - c \rVert`.
 """
 euclidean_distance = cdist(points, self.c)
 mask = euclidean_distance == 0
 with np.errstate(divide="ignore", invalid="ignore"):
 u = euclidean_distance ** 2 * np.log(euclidean_distance)
 # reset singularities to 0
 u[mask] = 0
 return u

 menpo.transform.thinplatesplines

 Source code for menpo.transform.thinplatesplines

import numpy as np
from .base import Transform, Alignment, Invertible
from .rbf import R2LogR2RBF

Note we inherit from Alignment first to get it's n_dims behavior
[docs]class ThinPlateSplines(Alignment, Transform, Invertible):
 r"""
 The thin plate splines (TPS) alignment between 2D `source` and `target`
 landmarks.

 ``kernel`` can be used to specify an alternative kernel function. If
 ``None`` is supplied, the :class:`R2LogR2RBF` kernel will be used.

 Parameters

 source : ``(N, 2)`` `ndarray`
 The source points to apply the tps from
 target : ``(N, 2)`` `ndarray`
 The target points to apply the tps to
 kernel : :class:`menpo.transform.rbf.RadialBasisFunction`, optional
 The kernel to apply.
 min_singular_val : `float`, optional
 If the target has points that are nearly coincident, the coefficients
 matrix is rank deficient, and therefore not invertible. Therefore, we
 only take the inverse on the full-rank matrix and drop any singular
 values that are less than this value (close to zero).

 Raises

 ValueError
 TPS is only with on 2-dimensional data
 """

 def __init__(self, source, target, kernel=None, min_singular_val=1e-4):
 Alignment.__init__(self, source, target)
 if self.n_dims != 2:
 raise ValueError("TPS can only be used on 2D data.")
 if kernel is None:
 kernel = R2LogR2RBF(source.points)
 self.min_singular_val = min_singular_val
 self.kernel = kernel
 # k[i, j] is the rbf weighting between source i and j
 # (of course, k is thus symmetrical and it's diagonal nil)
 self.k = self.kernel.apply(self.source.points)
 # p is a homogeneous version of the source points
 self.p = np.concatenate(
 [np.ones([self.n_points, 1]), self.source.points], axis=1
)
 o = np.zeros([3, 3])
 top_l = np.concatenate([self.k, self.p], axis=1)
 bot_l = np.concatenate([self.p.T, o], axis=1)
 self.l = np.concatenate([top_l, bot_l], axis=0)
 self.v, self.y, self.coefficients = None, None, None
 self._build_coefficients()

 def _build_coefficients(self):
 self.v = self.target.points.T.copy()
 self.y = np.hstack([self.v, np.zeros([2, 3])])

 # If two points are coincident, or very close to being so, then the
 # matrix is rank deficient and thus not-invertible. Therefore,
 # only take the inverse on the full-rank set of indices.
 _u, _s, _v = np.linalg.svd(self.l)
 keep = _s.shape[0] - sum(_s < self.min_singular_val)
 inv_l = _u[:, :keep].dot(1.0 / _s[:keep, None] * _v[:keep, :])
 self.coefficients = inv_l.dot(self.y.T)

 def _sync_state_from_target(self):
 # now the target is updated, we only have to rebuild the
 # coefficients.
 self._build_coefficients()

 def _apply(self, points, **kwargs):
 r"""
 Performs a TPS transform on the given points.

 Parameters

 points : ``(N, D)`` `ndarray`
 The points to transform.

 Returns

 f : ``(N, D)`` `ndarray`
 The transformed points

 Raises

 ValueError
 TPS can only be applied to 2D data.
 """
 if points.shape[1] != self.n_dims:
 raise ValueError("TPS can only be applied to 2D data.")
 x = points[..., 0][:, None]
 y = points[..., 1][:, None]
 # calculate the affine coefficients of the warp
 # (C = Constant component, then X, Y respectively)
 c_affine_c = self.coefficients[-3]
 c_affine_x = self.coefficients[-2]
 c_affine_y = self.coefficients[-1]
 # the affine warp component
 f_affine = c_affine_c + c_affine_x * x + c_affine_y * y
 # calculate a distance matrix (for L2 Norm) between every source
 # and the target
 kernel_dist = self.kernel.apply(points)
 # grab the affine free components of the warp
 c_affine_free = self.coefficients[:-3]
 # build the affine free warp component
 f_affine_free = kernel_dist.dot(c_affine_free)
 return f_affine + f_affine_free

 @property
 def has_true_inverse(self):
 r"""
 :type: ``False``
 """
 return False

[docs] def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping `source` and `target`, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 :type: ``type(self)``
 """
 return ThinPlateSplines(self.target, self.source, kernel=self.kernel)

 menpo.transform.base.alignment

 Source code for menpo.transform.base.alignment

import numpy as np

from menpo.base import Targetable
from menpo.visualize.base import Viewable

[docs]class Alignment(Targetable, Viewable):
 r"""
 Mix-in for :map:`Transform` that have been constructed from an optimisation
 aligning a source :map:`PointCloud` to a target :map:`PointCloud`.

 This is naturally an extension of the :map:`Targetable` interface - we just
 augment :map:`Targetable` with the concept of a source, and related methods
 to construct alignments between a source and a target.

 Note that to inherit from :map:`Alignment`, you have to be a
 :map:`Transform` subclass first.

 Parameters

 source : :map:`PointCloud`
 A PointCloud that the alignment will be based from
 target : :map:`PointCloud`
 A PointCloud that the alignment is targeted towards
 """

 def __init__(self, source, target):
 self._verify_source_and_target(source, target)
 self._source = source
 self._target = target

 @staticmethod
 def _verify_source_and_target(source, target):
 r"""
 Checks that the dimensions and number of points match up of the source
 and the target.

 Parameters

 source : :map:`PointCloud`
 A PointCloud that the alignment will be based from
 target : :map:`PointCloud`
 A PointCloud that the alignment is targeted towards

 Raises

 ValueError
 Source and target must have the same dimensionality
 ValueError
 Source and target must have the same number of points
 """
 if source.n_dims != target.n_dims:
 raise ValueError("Source and target must have the same " "dimensionality")
 elif source.n_points != target.n_points:
 raise ValueError("Source and target must have the same number of" " points")

 @property
 def source(self):
 r"""
 The source :map:`PointCloud` that is used in the alignment.

 The source is not mutable.

 :type: :map:`PointCloud`
 """
 return self._source

[docs] def aligned_source(self):
 r"""
 The result of applying ``self`` to :attr:`source`

 :type: :map:`PointCloud`
 """
 # Note that here we have the dependency that we are a Transform
 return self.apply(self.source)

[docs] def alignment_error(self):
 r"""
 The Frobenius Norm of the difference between the target and the aligned
 source.

 :type: `float`
 """
 return np.linalg.norm(self.target.points - self.aligned_source().points)

 @property
 def target(self):
 r"""
 The current :map:`PointCloud` that this object produces.

 To change the target, use :meth:`set_target`.

 :type: :map:`PointCloud`
 """
 return self._target

 def _target_setter(self, new_target):
 r"""
 Fulfils the :map:`Targetable` `_target_setter` interface for all
 Alignments. This method should purely set the target - we know how to do
 that for all :map:`Alignment` instances.

 Parameters

 new_target : :map:`PointCloud`
 The new PointCloud target
 """
 self._target = new_target

 def _new_target_from_state(self):
 r"""
 Fulfils the :map:`Targetable` :meth:`_new_target_from_state` interface
 for all Alignments.

 This method should purely return the new target to be set - for all
 :map:`Alignment` instances this is just the aligned source.
 """
 return self.aligned_source()

 def _view_2d(self, figure_id=None, new_figure=False, **kwargs):
 r"""
 Plots the source points and vectors that represent the shift from
 source to target.

 Parameters

 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 kwargs : `dict`
 The options passed to the rendered
 """
 from menpo.visualize import AlignmentViewer2d

 return AlignmentViewer2d(figure_id, new_figure, self).render(**kwargs)

 menpo.transform.base.composable

 Source code for menpo.transform.base.composable

from menpo.transform.base import Transform
from functools import reduce

[docs]class ComposableTransform(Transform):
 r"""
 :map:`Transform` subclass that enables native composition, such that the
 behavior of multiple :map:`Transform` s is composed together in a natural
 way.
 """

 @property
 def composes_inplace_with(self):
 r"""
 The :map:`Transform` s that this transform composes inplace with
 natively (i.e. no :map:`TransformChain` will be produced).

 An attempt to compose inplace against any type that is not an instance
 of this property on this class will result in an `Exception`.

 :type: :map:`Transform` or `tuple` of :map:`Transform` s
 """
 raise NotImplementedError()

 @property
 def composes_with(self):
 r"""
 The :map:`Transform` s that this transform composes with **natively**
 (i.e. no :map:`TransformChain` will be produced).

 If native composition is not possible, falls back to producing a
 :map:`TransformChain`.

 By default, this is the same list as :attr:`composes_inplace_with`.

 :type: :map:`Transform` or `tuple` of :map:`Transform` s
 """
 return self.composes_inplace_with

[docs] def compose_before(self, transform):
 r"""
 A :map:`Transform` that represents **this** transform composed
 before the given transform::

 c = a.compose_before(b)
 c.apply(p) == b.apply(a.apply(p))

 ``a`` and ``b`` are left unchanged.

 An attempt is made to perform native composition, but will fall back
 to a :map:`TransformChain` as a last resort. See :attr:`composes_with`
 for a description of how the mode of composition is decided.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **after** ``self``

 Returns

 transform : :map:`Transform` or :map:`TransformChain`
 If the composition was native, a single new :map:`Transform` will
 be returned. If not, a :map:`TransformChain` is returned instead.
 """
 if isinstance(transform, self.composes_with):
 return self._compose_before(transform)
 else:
 # best we can do is a TransformChain, let Transform handle that.
 return Transform.compose_before(self, transform)

[docs] def compose_after(self, transform):
 r"""
 A :map:`Transform` that represents **this** transform
 composed **after** the given transform::

 c = a.compose_after(b)
 c.apply(p) == a.apply(b.apply(p))

 ``a`` and ``b`` are left unchanged.

 This corresponds to the usual mathematical formalism for the compose
 operator, ``o``.

 An attempt is made to perform native composition, but will fall back
 to a :map:`TransformChain` as a last resort. See :attr:`composes_with`
 for a description of how the mode of composition is decided.

 Parameters

 transform : :map:`Transform`
 Transform to be applied **before** ``self``

 Returns

 transform : :map:`Transform` or :map:`TransformChain`
 If the composition was native, a single new :map:`Transform` will
 be returned. If not, a :map:`TransformChain` is returned instead.
 """
 if isinstance(transform, self.composes_with):
 return self._compose_after(transform)
 else:
 # best we can do is a TransformChain, let Transform handle that.
 return Transform.compose_after(self, transform)

[docs] def compose_before_inplace(self, transform):
 r"""
 Update ``self`` so that it represents **this** transform composed
 before the given transform::

 a_orig = a.copy()
 a.compose_before_inplace(b)
 a.apply(p) == b.apply(a_orig.apply(p))

 ``a`` is permanently altered to be the result of the composition.
 ``b`` is left unchanged.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **after** ``self``

 Raises

 ValueError
 If ``transform`` isn't an instance of :attr:`composes_inplace_with`
 """
 if isinstance(transform, self.composes_inplace_with):
 self._compose_before_inplace(transform)
 else:
 raise ValueError(
 "{} can only compose inplace with {} - not "
 "{}".format(type(self), self.composes_inplace_with, type(transform))
)

[docs] def compose_after_inplace(self, transform):
 r"""
 Update ``self`` so that it represents **this** transform composed
 after the given transform::

 a_orig = a.copy()
 a.compose_after_inplace(b)
 a.apply(p) == a_orig.apply(b.apply(p))

 ``a`` is permanently altered to be the result of the composition. ``b``
 is left unchanged.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **before** ``self``

 Raises

 ValueError
 If ``transform`` isn't an instance of :attr:`composes_inplace_with`
 """
 if isinstance(transform, self.composes_inplace_with):
 self._compose_after_inplace(transform)
 else:
 raise ValueError(
 "{} can only compose inplace with {} - not "
 "{}".format(type(self), self.composes_inplace_with, type(transform))
)

 def _compose_before(self, transform):
 r"""
 Naive implementation of composition, ``self.copy()`` and then
 :meth:``compose_before_inplace``. Apply this transform **first**.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **after** ``self``

 Returns

 transform : :map:`ComposableTransform`
 The resulting transform.
 """
 # naive approach - copy followed by the inplace operation
 self_copy = self.copy()
 self_copy._compose_before_inplace(transform)
 return self_copy

 def _compose_after(self, transform):
 r"""
 Naive implementation of composition, ``self.copy()`` and then
 :meth:``compose_after_inplace``. Apply this transform **second**.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **before** ``self``

 Returns

 transform : :map:`ComposableTransform`
 The resulting transform.
 """
 # naive approach - copy followed by the inplace operation
 self_copy = self.copy()
 self_copy._compose_after_inplace(transform)
 return self_copy

[docs] def _compose_before_inplace(self, transform):
 r"""
 Specialised inplace composition. This should be overridden to provide
 specific cases of composition as defined in
 :attr:`composes_inplace_with`.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **after** ``self``
 """
 raise NotImplementedError()

[docs] def _compose_after_inplace(self, transform):
 r"""
 Specialised inplace composition. This should be overridden to provide
 specific cases of composition as defined in
 :attr:`composes_inplace_with`.

 Parameters

 transform : :attr:`composes_inplace_with`
 Transform to be applied **before** ``self``
 """
 raise NotImplementedError()

[docs]class VComposable(object):
 r"""
 Mix-in for :map:`Vectorizable` :map:`ComposableTransform` s.

 Use this mix-in with :map:`ComposableTransform` if the
 :map:`ComposableTransform` in question is :map:`Vectorizable` as this adds
 :meth:`from_vector` variants to the :map:`ComposableTransform` interface.

 These can be tuned for performance.
 """

[docs] def compose_after_from_vector_inplace(self, vector):
 r"""
 Specialised inplace composition with a vector. This should be
 overridden to provide specific cases of composition whereby the current
 state of the transform can be derived purely from the provided vector.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Vector to update the transform state with.
 """
 raise NotImplementedError()

[docs]class TransformChain(ComposableTransform):
 r"""
 A chain of transforms that can be efficiently applied one after the other.

 This class is the natural product of composition. Note that objects may
 know how to compose themselves more efficiently - such objects implement
 the :map:`ComposableTransform` or :map:`VComposable` interfaces.

 Parameters

 transforms : `list` of :map:`Transform`
 The `list` of transforms to be applied. Note that the first transform
 will be applied first - the result of which is fed into the second
 transform and so on until the chain is exhausted.
 """

 def __init__(self, transforms):
 # TODO Should TransformChain copy on input?
 self.transforms = transforms

 def _apply(self, x, **kwargs):
 r"""
 Applies each of the transforms to the array ``x``, in order.

 Parameters

 x : ``(n_points, n_dims)`` `ndarray`
 The array to transform.

 Returns

 transformed : ``(n_points, n_dims_output)`` `ndarray`
 Transformed array having passed through the chain of transforms.
 """
 return reduce(lambda x_i, tr: tr._apply(x_i), self.transforms, x)

 @property
 def composes_inplace_with(self):
 r"""
 The :map:`Transform` s that this transform composes inplace with
 natively (i.e. no :map:`TransformChain` will be produced).

 An attempt to compose inplace against any type that is not an instance
 of this property on this class will result in an `Exception`.

 :type: :map:`Transform` or `tuple` of :map:`Transform` s
 """
 return Transform

 def _compose_before_inplace(self, transform):
 r"""
 Specialised inplace composition. In this case we merely keep a `list`
 of :map:`Transform` s to apply in order.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **after** ``self``
 """
 self.transforms.append(transform)

 def _compose_after_inplace(self, transform):
 r"""
 Specialised inplace composition. In this case we merely keep a `list`
 of :map:`Transform`s to apply in order.

 Parameters

 transform : :map:`ComposableTransform`
 Transform to be applied **before** ``self``
 """
 self.transforms.insert(0, transform)

 menpo.transform.base.invertible

 Source code for menpo.transform.base.invertible

[docs]class Invertible(object):
 r"""
 Mix-in for invertible transforms. Provides an interface for taking the
 `pseudo` or true inverse of a transform.

 Has to be implemented in conjunction with :map:`Transform`.
 """

 @property
 def has_true_inverse(self):
 r"""
 ``True`` if the pseudoinverse is an exact inverse.

 :type: `bool`
 """
 raise NotImplementedError()

[docs] def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping `source` and `target`, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 :type: ``type(self)``
 """
 raise NotImplementedError()

[docs]class VInvertible(Invertible):
 r"""
 Mix-in for :map:`Vectorizable` :map:`Invertible` :map:`Transform` s.

 Prefer this mix-in over :map:`Invertible` if the :map:`Transform` in
 question is :map:`Vectorizable` as this adds :meth:`from_vector` variants
 to the :map:`Invertible` interface. These can be tuned for performance,
 and are, for instance, needed by some of the machinery of fit.
 """

[docs] def pseudoinverse_vector(self, vector):
 r"""
 The vectorized pseudoinverse of a provided vector instance.
 Syntactic sugar for::

 self.from_vector(vector).pseudoinverse().as_vector()

 Can be much faster than the explict call as object creation can be
 entirely avoided in some cases.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 A vectorized version of ``self``

 Returns

 pseudoinverse_vector : ``(n_parameters,)`` `ndarray`
 The pseudoinverse of the vector provided
 """
 return self.from_vector(vector).pseudoinverse().as_vector()

 menpo.transform.groupalign.base

 Source code for menpo.transform.groupalign.base

[docs]class MultipleAlignment(object):
 r"""
 Abstract base class for aligning multiple `source` shapes to a `target`
 shape.

 Parameters

 sources : `list` of :map:`PointCloud`
 List of pointclouds to be aligned.
 target : :map:`PointCloud`, optional
 The target :map:`PointCloud` to align each source to.
 If ``None``, then the mean of the sources is used.

 Raises

 ValueError
 Need at least two sources to align
 """

 def __init__(self, sources, target=None):
 from menpo.shape import PointCloud

 if len(sources) < 2 and target is None:
 raise ValueError("Need at least two sources to align")
 self.n_sources = len(sources)
 self.n_points, self.n_dims = sources[0].n_points, sources[0].n_dims
 self.sources = sources
 if target is None:
 # set the target to the mean source position
 self.target = PointCloud(
 sum([s.points for s in self.sources]) / self.n_sources
)
 else:
 assert self.n_dims, self.n_points == target.shape
 self.target = target

 menpo.transform.groupalign.procrustes

 Source code for menpo.transform.groupalign.procrustes

import numpy as np

from .base import MultipleAlignment
from ..homogeneous import AlignmentSimilarity

[docs]class GeneralizedProcrustesAnalysis(MultipleAlignment):
 r"""
 Class for aligning multiple source shapes between them.

 After construction, the :map:`AlignmentSimilarity` transforms used to map
 each `source` optimally to the `target` can be found at `transforms`.

 Parameters

 sources : `list` of :map:`PointCloud`
 List of pointclouds to be aligned.
 target : :map:`PointCloud`, optional
 The target :map:`PointCloud` to align each source to.
 If ``None``, then the mean of the sources is used.
 allow_mirror : `bool`, optional
 If ``True``, the Kabsch algorithm check is not performed, and mirroring
 of the Rotation matrix is permitted.

 Raises

 ValueError
 Need at least two sources to align
 """

 def __init__(self, sources, target=None, allow_mirror=False):
 super(GeneralizedProcrustesAnalysis, self).__init__(sources, target=target)
 initial_target = self.target
 self.transforms = [
 AlignmentSimilarity(source, self.target, allow_mirror=allow_mirror)
 for source in self.sources
]
 self.initial_target_scale = self.target.norm()
 self.n_iterations = 1
 self.max_iterations = 100
 self.converged = self._recursive_procrustes()
 if target is not None:
 self.target = initial_target

 def _recursive_procrustes(self):
 r"""
 Recursively calculates a procrustes alignment.
 """
 # Avoid circular imports
 from menpo.shape import mean_pointcloud, PointCloud
 from ..compositions import scale_about_centre

 if self.n_iterations > self.max_iterations:
 return False
 new_tgt = mean_pointcloud(
 [PointCloud(t.aligned_source().points, copy=False) for t in self.transforms]
)
 # rescale the new_target to be the same size as the original about
 # it's centre
 rescale = scale_about_centre(
 new_tgt, self.initial_target_scale / new_tgt.norm()
)
 rescale._apply_inplace(new_tgt)
 # check to see if we have converged yet
 delta_target = np.linalg.norm(self.target.points - new_tgt.points)
 if delta_target < 1e-6:
 return True
 else:
 self.n_iterations += 1
 for t in self.transforms:
 t.set_target(new_tgt)
 self.target = new_tgt
 return self._recursive_procrustes()

[docs] def mean_aligned_shape(self):
 r"""
 Returns the mean of the aligned shapes.

 :type: :map:`PointCloud`
 """
 from menpo.shape import PointCloud

 return PointCloud(np.mean([t.target.points for t in self.transforms], axis=0))

[docs] def mean_alignment_error(self):
 r"""
 Returns the average error of the recursive procrustes alignment.

 :type: `float`
 """
 return sum([t.alignment_error() for t in self.transforms]) / self.n_sources

 def __str__(self):
 if self.converged:
 return "Converged after %d iterations with av. error %f" % (
 self.n_iterations,
 self.mean_alignment_error(),
)
 else:
 return "Failed to converge after %d iterations with av. error " "%f" % (
 self.n_iterations,
 self.mean_alignment_error(),
)

 menpo.transform.homogeneous.affine

 Source code for menpo.transform.homogeneous.affine

import numpy as np

from .base import Homogeneous, HomogFamilyAlignment
from functools import reduce

[docs]class Affine(Homogeneous):
 r"""
 Base class for all ``n``-dimensional affine transformations. Provides
 methods to break the transform down into its constituent
 scale/rotation/translation, to view the homogeneous matrix equivalent,
 and to chain this transform with other affine transformations.

 Parameters

 h_matrix : ``(n_dims + 1, n_dims + 1)`` `ndarray`
 The homogeneous matrix of the affine transformation.
 copy : `bool`, optional
 If ``False`` avoid copying ``h_matrix`` for performance.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``h_matrix`` for performance.
 """

 def __init__(self, h_matrix, copy=True, skip_checks=False):
 Homogeneous.__init__(self, h_matrix, copy=copy, skip_checks=skip_checks)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity matrix Affine transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`Affine`
 The identity matrix transform.
 """
 return cls(np.eye(n_dims + 1), copy=False, skip_checks=True)

[docs] @classmethod
 def init_from_2d_shear(cls, phi, psi, degrees=True):
 r"""
 Convenience constructor for 2D shear transformations about the origin.

 Parameters

 phi : `float`
 The angle of shearing in the X direction.
 psi : `float`
 The angle of shearing in the Y direction.
 degrees : `bool`, optional
 If ``True`` phi and psi are interpreted as degrees.
 If ``False``, phi and psi are interpreted as radians.

 Returns

 shear_transform : :map:`Affine`
 A 2D shear transform.
 """
 if degrees:
 phi = np.deg2rad(phi)
 psi = np.deg2rad(psi)
 # Create shear matrix
 h_matrix = np.eye(3)
 h_matrix[0, 1] = np.tan(phi)
 h_matrix[1, 0] = np.tan(psi)
 return cls(h_matrix, skip_checks=True)

 @property
 def h_matrix(self):
 r"""
 The homogeneous matrix defining this transform.

 :type: ``(n_dims + 1, n_dims + 1)`` `ndarray`
 """
 return self._h_matrix

 def _set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""
 Updates the `h_matrix`, performing sanity checks.

 Parameters

 value : `ndarray`
 The new homogeneous matrix to set
 copy : `bool`, optional
 If ``False`` do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If ``True`` skip sanity checks on the matrix. Useful for performance.
 """
 if not skip_checks:
 shape = value.shape
 if len(shape) != 2 or shape[0] != shape[1]:
 raise ValueError("You need to provide a square homogeneous " "matrix")
 if self.h_matrix is not None:
 # already have a matrix set! The update better be the same size
 if self.n_dims != shape[0] - 1:
 raise ValueError(
 "Trying to update the homogeneous "
 "matrix to a different dimension"
)
 if shape[0] - 1 not in [2, 3]:
 raise ValueError("Affine Transforms can only be 2D or 3D")
 if not (np.allclose(value[-1, :-1], 0) and np.allclose(value[-1, -1], 1)):
 raise ValueError("Bottom row must be [0 0 0 1] or [0, 0, 1]")
 if copy:
 value = value.copy()
 self._h_matrix = value

 @property
 def linear_component(self):
 r"""
 The linear component of this affine transform.

 :type: ``(n_dims, n_dims)`` `ndarray`
 """
 return self.h_matrix[:-1, :-1]

 @property
 def translation_component(self):
 r"""
 The translation component of this affine transform.

 :type: ``(n_dims,)`` `ndarray`
 """
 return self.h_matrix[:-1, -1]

[docs] def decompose(self):
 r"""
 Decompose this transform into discrete Affine Transforms.

 Useful for understanding the effect of a complex composite transform.

 Returns

 transforms : `list` of :map:`DiscreteAffine`
 Equivalent to this affine transform, such that

 .. code-block:: python

 reduce(lambda x, y: x.chain(y), self.decompose()) == self

 """
 from .rotation import Rotation
 from .translation import Translation
 from .scale import Scale

 U, S, V = np.linalg.svd(self.linear_component)
 rotation_2 = Rotation(U)
 rotation_1 = Rotation(V)
 scale = Scale(S)
 translation = Translation(self.translation_component)
 return [rotation_1, scale, rotation_2, translation]

 def _transform_str(self):
 r"""
 A string representation explaining what this affine transform does.
 Has to be implemented by base classes.

 Returns

 str : `str`
 String representation of transform.
 """
 header = "Affine decomposing into:"
 list_str = [t._transform_str() for t in self.decompose()]
 return header + reduce(lambda x, y: x + "\n" + " " + y, list_str, " ")

 def _apply(self, x, **kwargs):
 r"""
 Applies this transform to a new set of vectors.

 Parameters

 x : ``(N, D)`` `ndarray`
 Array to apply this transform to.

 Returns

 transformed_x : ``(N, D)`` `ndarray`
 The transformed array.
 """
 return np.dot(x, self.linear_component.T) + self.translation_component

 @property
 def n_parameters(self):
 r"""
 ``n_dims * (n_dims + 1)`` parameters - every element of the matrix but
 the homogeneous part.

 :type: int

 Examples

 2D Affine: 6 parameters::

 [p1, p3, p5]
 [p2, p4, p6]

 3D Affine: 12 parameters::

 [p1, p4, p7, p10]
 [p2, p5, p8, p11]
 [p3, p6, p9, p12]

 """
 return self.n_dims * (self.n_dims + 1)

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. This does not
 include the homogeneous part of the warp. Note that it flattens using
 Fortran ordering, to stay consistent with Matlab.

 2D

 ========= ===
 parameter definition
 ========= ===
 p1 Affine parameter
 p2 Affine parameter
 p3 Affine parameter
 p4 Affine parameter
 p5 Translation in `x`
 p6 Translation in `y`
 ========= ===

 3D and higher transformations follow a similar format to the 2D case.

 Returns

 params : ``(n_parameters,)`` `ndarray`
 The values that parametrise the transform.
 """
 params = self.h_matrix - np.eye(self.n_dims + 1)
 return params[: self.n_dims, :].ravel(order="F")

 def _from_vector_inplace(self, p):
 r"""
 Updates this Affine in-place from the new parameters. See
 from_vector for details of the parameter format
 """
 h_matrix = None
 if p.shape[0] == 6: # 2D affine
 h_matrix = np.eye(3)
 h_matrix[:2, :] += p.reshape((2, 3), order="F")
 elif p.shape[0] == 12: # 3D affine
 h_matrix = np.eye(4)
 h_matrix[:3, :] += p.reshape((3, 4), order="F")
 else:
 ValueError(
 "Only 2D (6 parameters) or 3D (12 parameters) "
 "homogeneous matrices are supported."
)
 self._set_h_matrix(h_matrix, copy=False, skip_checks=True)

 @property
 def composes_inplace_with(self):
 r"""
 :class:`Affine` can swallow composition with any other :class:`Affine`.
 """
 return Affine

[docs]class AlignmentAffine(HomogFamilyAlignment, Affine):
 r"""
 Constructs an :class:`Affine` by finding the optimal affine transform to
 align `source` to `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment

 Notes

 We want to find the optimal transform M which satisfies :math:`M a = b`
 where :math:`a` and :math:`b` are the `source` and `target` homogeneous
 vectors respectively. ::

 (M a)' = b'
 a' M' = b'
 a a' M' = a b'

 `a a'` is of shape `(n_dim + 1, n_dim + 1)` and so can be inverted
 to solve for `M`.

 This approach is the analytical linear least squares solution to the
 problem at hand. It will have a solution as long as `(a a')` is
 non-singular, which generally means at least 2 corresponding points are
 required.
 """

 def __init__(self, source, target):
 # first, initialize the alignment
 HomogFamilyAlignment.__init__(self, source, target)
 # now, the Affine
 optimal_h = self._build_alignment_h_matrix(source, target)
 Affine.__init__(self, optimal_h, copy=False, skip_checks=True)

 @staticmethod
 def _build_alignment_h_matrix(source, target):
 r"""
 Returns the optimal alignment of `source` to `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment
 """
 a = source.h_points()
 b = target.h_points()
 return np.linalg.solve(np.dot(a, a.T), np.dot(a, b.T)).T

 def _set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""
 Updates ``h_matrix``, optionally performing sanity checks.

 .. note::

 Updating the ``h_matrix`` on an :map:`AlignmentAffine`
 triggers a sync of the target.

 Note that it won't always be possible to manually specify the
 ``h_matrix`` through this method, specifically if changing the
 ``h_matrix`` could change the nature of the transform. See
 :attr:`h_matrix_is_mutable` for how you can discover if the
 ``h_matrix`` is allowed to be set for a given class.

 Parameters

 value : `ndarray`
 The new homogeneous matrix to set
 copy : `bool`, optional
 If ``False`` do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If ``True`` skip checking. Useful for performance.

 Raises

 NotImplementedError
 If :attr:`h_matrix_is_mutable` returns ``False``.
 """
 Affine._set_h_matrix(self, value, copy=copy, skip_checks=skip_checks)
 # now update the state
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 optimal_h = self._build_alignment_h_matrix(self.source, self.target)
 # Use the pure Affine setter (so we don't get syncing)
 # We know the resulting affine is correct so skip the checks
 Affine._set_h_matrix(self, optimal_h, copy=False, skip_checks=True)

[docs] def as_non_alignment(self):
 r"""
 Returns a copy of this :map:`Affine` without its alignment nature.

 Returns

 transform : :map:`Affine`
 A version of this affine with the same transform behavior but
 without the alignment logic.
 """
 return Affine(self.h_matrix, skip_checks=True)

[docs]class DiscreteAffine(object):
 r"""
 A discrete Affine transform operation (such as a :meth:`Scale`,
 :class:`Translation` or :meth:`Rotation`). Has to be invertable. Make sure
 you inherit from :class:`DiscreteAffine` first, for optimal
 `decompose()` behavior.
 """

[docs] def decompose(self):
 r"""
 A :class:`DiscreteAffine` is already maximally decomposed -
 return a copy of self in a `list`.

 Returns

 transform : :class:`DiscreteAffine`
 Deep copy of `self`.
 """
 return [self.copy()]

 menpo.transform.homogeneous.base

 Source code for menpo.transform.homogeneous.base

from warnings import warn

import numpy as np

from menpo.base import Vectorizable, MenpoDeprecationWarning
from menpo.transform.base import (
 Alignment,
 ComposableTransform,
 VComposable,
 VInvertible,
)

class HomogFamilyAlignment(Alignment):
 r"""
 Simple subclass of Alignment that adds the ability to create a copy of an
 alignment class without the alignment behavior.

 Note that subclasses should inherit from :map:`HomogFamilyAlignment` first
 to have the correct copy behavior.
 """

 def as_non_alignment(self):
 r"""
 Returns a copy of this transform without its alignment nature.

 Returns

 transform : :map:`Homogeneous` but not :map:`Alignment` subclass
 A version of this transform with the same transform behavior but
 without the alignment logic.
 """
 raise NotImplementedError()

 def copy(self):
 r"""
 Generate an efficient copy of this :map:`HomogFamilyAlignment`.

 Returns

 new_transform : ``type(self)``
 A copy of this object
 """
 new = self.__class__.__new__(self.__class__)
 # Shallow copy everything except the h_matrix
 new.__dict__ = self.__dict__.copy()
 new._h_matrix = new._h_matrix.copy()
 return new

 def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping source and target, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 Returns

 transform : ``type(self)``
 The inverse of this transform.
 """
 selfcopy = self.copy()
 selfcopy._h_matrix = self._h_matrix_pseudoinverse()
 selfcopy._source, selfcopy._target = selfcopy._target, selfcopy._source
 return selfcopy

[docs]class Homogeneous(ComposableTransform, Vectorizable, VComposable, VInvertible):
 r"""
 A simple ``n``-dimensional homogeneous transformation.

 Adds a unit homogeneous coordinate to points, performs the dot
 product, re-normalizes by division by the homogeneous coordinate,
 and returns the result.

 Can be composed with another :map:`Homogeneous`, so long as the
 dimensionality matches.

 Parameters

 h_matrix : ``(n_dims + 1, n_dims + 1)`` `ndarray`
 The homogeneous matrix defining this transform.
 copy : `bool`, optional
 If ``False``, avoid copying ``h_matrix``. Useful for performance.
 skip_checks : `bool`, optional
 If ``True``, avoid sanity checks on the ``h_matrix``. Useful for
 performance.
 """

 def __init__(self, h_matrix, copy=True, skip_checks=False):
 self._h_matrix = None
 # Delegate setting to the most specialized setter method possible
 self._set_h_matrix(h_matrix, copy=copy, skip_checks=skip_checks)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity matrix Homogeneous transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`Homogeneous`
 The identity matrix transform.
 """
 return Homogeneous(np.eye(n_dims + 1))

 @property
 def h_matrix_is_mutable(self):
 r"""Deprecated
 ``True`` iff :meth:`set_h_matrix` is permitted on this type of
 transform.

 If this returns ``False`` calls to :meth:`set_h_matrix` will raise
 a ``NotImplementedError``.

 :type: `bool`
 """
 warn(
 "the public API for mutable operations is deprecated "
 "and will be removed in a future version of Menpo. "
 "Create a new transform instead.",
 MenpoDeprecationWarning,
)
 return False

[docs] def from_vector(self, vector):
 """
 Build a new instance of the object from its vectorized state.

 ``self`` is used to fill out the missing state required to rebuild a
 full object from it's standardized flattened state. This is the default
 implementation, which is a ``deepcopy`` of the object followed by a call
 to :meth:`from_vector_inplace()`. This method can be overridden for a
 performance benefit if desired.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of the object.

 Returns

 transform : :class:`Homogeneous`
 An new instance of this class.
 """
 # avoid the deepcopy with an efficient copy
 self_copy = self.copy()
 self_copy._from_vector_inplace(vector)
 return self_copy

 def __str__(self):
 rep = self._transform_str() + "\n"
 rep += str(self.h_matrix)
 return rep

 def _transform_str(self):
 r"""
 A string representation explaining what this homogeneous transform
 does. Has to be implemented by base classes.

 Returns

 string : `str`
 String representation of transform.
 """
 return "Homogeneous"

 @property
 def h_matrix(self):
 r"""
 The homogeneous matrix defining this transform.

 :type: ``(n_dims + 1, n_dims + 1)`` `ndarray`
 """
 return self._h_matrix

[docs] def set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""Deprecated
 Deprecated - do not use this method - you are better off just creating
 a new transform!

 Updates ``h_matrix``, optionally performing sanity checks.

 Note that it won't always be possible to manually specify the
 ``h_matrix`` through this method, specifically if changing the
 ``h_matrix`` could change the nature of the transform. See
 :attr:`h_matrix_is_mutable` for how you can discover if the
 ``h_matrix`` is allowed to be set for a given class.

 Parameters

 value : `ndarray`
 The new homogeneous matrix to set.
 copy : `bool`, optional
 If ``False``, do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If ``True``, skip checking. Useful for performance.

 Raises

 NotImplementedError
 If :attr:`h_matrix_is_mutable` returns ``False``.
 """
 warn(
 "the public API for mutable operations is deprecated "
 "and will be removed in a future version of Menpo. "
 "Create a new transform instead.",
 MenpoDeprecationWarning,
)
 if self.h_matrix_is_mutable:
 self._set_h_matrix(value, copy=copy, skip_checks=skip_checks)
 else:
 raise NotImplementedError(
 "h_matrix cannot be set on {}".format(self._transform_str())
)

 def _set_h_matrix(self, value, copy=True, skip_checks=False):
 r"""
 Actually updates the ``h_matrix``, optionally performing sanity checks.

 Called by :meth:`set_h_matrix` on classes that have
 :attr:`h_matrix_is_mutable` as ``True``.

 Every subclass should invoke this method internally when the
 ``h_matrix`` needs to be set in order to get the most sanity checking
 possible.

 Parameters

 value : `ndarray`
 The new homogeneous matrix to set
 copy : `bool`, optional
 If ``False``, do not copy the h_matrix. Useful for performance.
 skip_checks : `bool`, optional
 If ``True``, skip checking. Useful for performance.
 """
 if copy:
 value = value.copy()
 self._h_matrix = value

 @property
 def n_dims(self):
 r"""
 The dimensionality of the data the transform operates on.

 :type: `int`
 """
 return self.h_matrix.shape[1] - 1

 @property
 def n_dims_output(self):
 r"""
 The output of the data from the transform.

 :type: `int`
 """
 # doesn't have to be a square homogeneous matrix...
 return self.h_matrix.shape[0] - 1

 def _apply(self, x, **kwargs):
 # convert to homogeneous
 h_x = np.hstack([x, np.ones([x.shape[0], 1])])
 # apply the transform
 h_y = h_x.dot(self.h_matrix.T)
 # normalize and return
 return (h_y / h_y[:, -1][:, None])[:, :-1]

 def _as_vector(self):
 return self.h_matrix.ravel()

 def _from_vector_inplace(self, vector):
 """
 Update the state of this object from a vector form.

 Parameters

 vector : ``(n_parameters,)`` `ndarray`
 Flattened representation of this object
 """
 self._set_h_matrix(
 vector.reshape(self.h_matrix.shape), copy=True, skip_checks=True
)

 @property
 def composes_inplace_with(self):
 r"""
 :class:`Homogeneous` can swallow composition with any other
 :class:`Homogeneous`, subclasses will have to override and be more
 specific.
 """
 return Homogeneous

[docs] def compose_after_from_vector_inplace(self, vector):
 self.compose_after_inplace(self.from_vector(vector))

 @property
 def composes_with(self):
 r"""
 Any Homogeneous can compose with any other Homogeneous.
 """
 return Homogeneous

 # noinspection PyProtectedMember
 def _compose_before(self, t):
 r"""
 Chains an Homogeneous family transform with another transform of the
 same family, producing a new transform that is the composition of
 the two.

 .. note::

 The type of the returned transform is always the first common
 ancestor between self and transform.

 Any Alignment will be lost.

 Parameters

 t : :class:`Homogeneous`
 Transform to be applied **after** self

 Returns

 transform : :class:`Homogeneous`
 The resulting homogeneous transform.
 """
 # note that this overload of the basic _compose_before is just to
 # deal with the complexities of maintaining the correct class of
 # transform upon composition
 if isinstance(t, type(self)):
 # He is a subclass of me - I can swallow him.
 # What if I'm an Alignment though? Rules of composition state we
 # have to produce a non-Alignment result. Nasty, but we check
 # here to save a lot of repetition.
 if isinstance(self, HomogFamilyAlignment):
 new_self = self.as_non_alignment()
 else:
 new_self = self.copy()
 new_self._compose_before_inplace(t)
 elif isinstance(self, type(t)):
 # I am a subclass of him - he can swallow me
 new_self = t._compose_after(self)
 elif isinstance(self, Similarity) and isinstance(t, Similarity):
 # we're both in the Similarity family
 new_self = Similarity(self.h_matrix)
 new_self._compose_before_inplace(t)
 elif isinstance(self, Affine) and isinstance(t, Affine):
 # we're both in the Affine family
 new_self = Affine(self.h_matrix)
 new_self._compose_before_inplace(t)
 else:
 # at least one of us is Homogeneous
 new_self = Homogeneous(self.h_matrix)
 new_self._compose_before_inplace(t)
 return new_self

 # noinspection PyProtectedMember
 def _compose_after(self, t):
 r"""
 Chains an Homogeneous family transform with another transform of the
 same family, producing a new transform that is the composition of
 the two.

 .. note::

 The type of the returned transform is always the first common
 ancestor between self and transform.

 Any Alignment will be lost.

 Parameters

 t : :class:`Homogeneous`
 Transform to be applied **before** self

 Returns

 transform : :class:`Homogeneous`
 The resulting homogeneous transform.
 """
 # note that this overload of the basic _compose_after is just to
 # deal with the complexities of maintaining the correct class of
 # transform upon composition
 if isinstance(t, type(self)):
 # He is a subclass of me - I can swallow him.
 # What if I'm an Alignment though? Rules of composition state we
 # have to produce a non-Alignment result. Nasty, but we check
 # here to save a lot of repetition.
 if isinstance(self, HomogFamilyAlignment):
 new_self = self.as_non_alignment()
 else:
 new_self = self.copy()
 new_self._compose_after_inplace(t)
 elif isinstance(self, type(t)):
 # I am a subclass of him - he can swallow me
 new_self = t._compose_before(self)
 elif isinstance(self, Similarity) and isinstance(t, Similarity):
 # we're both in the Similarity family
 new_self = Similarity(self.h_matrix)
 new_self._compose_after_inplace(t)
 elif isinstance(self, Affine) and isinstance(t, Affine):
 # we're both in the Affine family
 new_self = Affine(self.h_matrix)
 new_self._compose_after_inplace(t)
 else:
 # at least one of us is Homogeneous
 new_self = Homogeneous(self.h_matrix)
 new_self._compose_after_inplace(t)
 return new_self

 def _compose_before_inplace(self, transform):
 # Compose machinery will guarantee this is only invoked in the right
 # circumstances (e.g. the types will match) so we don't need to block
 # the setting of the matrix
 self._set_h_matrix(
 np.dot(transform.h_matrix, self.h_matrix), copy=False, skip_checks=True
)

 def _compose_after_inplace(self, transform):
 # Compose machinery will guarantee this is only invoked in the right
 # circumstances (e.g. the types will match) so we don't need to block
 # the setting of the matrix
 self._set_h_matrix(
 np.dot(self.h_matrix, transform.h_matrix), copy=False, skip_checks=True
)

 @property
 def has_true_inverse(self):
 r"""
 The pseudoinverse is an exact inverse.

 :type: ``True``
 """
 return True

[docs] def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping `source` and `target`, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 :type: :class:`Homogeneous`
 """
 # Skip the checks as we know inverse of a homogeneous is a homogeneous
 return self.__class__(
 self._h_matrix_pseudoinverse(), copy=False, skip_checks=True
)

 def _h_matrix_pseudoinverse(self):
 return np.linalg.inv(self.h_matrix)

from .affine import Affine
from .similarity import Similarity

 menpo.transform.homogeneous.rotation

 Source code for menpo.transform.homogeneous.rotation

Parts of this code taken from:
#
Copyright (c) 2006-2015, Christoph Gohlke
Copyright (c) 2006-2015, The Regents of the University of California
Produced at the Laboratory for Fluorescence Dynamics
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holders nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
import numpy as np

from .base import HomogFamilyAlignment
from .affine import DiscreteAffine
from .similarity import Similarity

def optimal_rotation_matrix(source, target, allow_mirror=False):
 r"""
 Performs an SVD on the correlation matrix to find an optimal rotation
 between `source` and `target`.

 Parameters

 source: :map:`PointCloud`
 The source points to be aligned
 target: :map:`PointCloud`
 The target points to be aligned
 allow_mirror : `bool`, optional
 If ``True``, the Kabsch algorithm check is not performed, and mirroring
 of the Rotation matrix is permitted.

 Returns

 rotation : `ndarray`
 The optimal square rotation matrix.
 """
 correlation = np.dot(target.points.T, source.points)
 U, D, Vt = np.linalg.svd(correlation)
 R = np.dot(U, Vt)

 if not allow_mirror:
 # d = sgn(det(V * Ut))
 d = np.sign(np.linalg.det(R))
 if d < 0:
 E = np.eye(U.shape[0])
 E[-1, -1] = d
 # R = U * E * Vt, E = [[1, 0, 0], [0, 1, 0], [0, 0, d]] for 2D
 R = np.dot(U, np.dot(E, Vt))
 return R

TODO build rotations about axis, euler angles etc
see http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
for details

[docs]class Rotation(DiscreteAffine, Similarity):
 r"""
 Abstract `n_dims` rotation transform.

 Parameters

 rotation_matrix : ``(n_dims, n_dims)`` `ndarray`
 A valid, square rotation matrix
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``rotation_matrix`` for performance.
 """

 def __init__(self, rotation_matrix, skip_checks=False):
 h_matrix = np.eye(rotation_matrix.shape[0] + 1)
 Similarity.__init__(self, h_matrix, copy=False, skip_checks=True)
 self.set_rotation_matrix(rotation_matrix, skip_checks=skip_checks)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`Rotation`
 The identity matrix transform.
 """
 return Rotation(np.eye(n_dims))

[docs] @classmethod
 def init_from_2d_ccw_angle(cls, theta, degrees=True):
 r"""
 Convenience constructor for 2D CCW rotations about the origin.

 Parameters

 theta : `float`
 The angle of rotation about the origin
 degrees : `bool`, optional
 If ``True`` theta is interpreted as a degree. If ``False``, theta is
 interpreted as radians.

 Returns

 rotation : :map:`Rotation`
 A 2D rotation transform.
 """
 if degrees:
 theta = np.deg2rad(theta)
 return Rotation(
 np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]),
 skip_checks=True,
)

[docs] @classmethod
 def init_3d_from_quaternion(cls, q):
 r"""
 Convenience constructor for 3D rotations based on quaternion parameters.

 Parameters

 q : ``(4,)`` `ndarray`
 The quaternion parameters.

 Returns

 rotation : :map:`Rotation`
 A 3D rotation transform.
 """
 r = cls.init_identity(n_dims=3)
 return r.from_vector(q)

[docs] @classmethod
 def init_from_3d_ccw_angle_around_x(cls, theta, degrees=True):
 r"""
 Convenience constructor for 3D CCW rotations around the x axis

 Parameters

 theta : `float`
 The angle of rotation about the origin
 degrees : `bool`, optional
 If ``True`` theta is interpreted as a degree. If ``False``, theta is
 interpreted as radians.

 Returns

 rotation : :map:`Rotation`
 A 3D rotation transform.
 """
 if degrees:
 theta = np.deg2rad(theta)
 return Rotation(
 np.array(
 [
 [1, 0, 0],
 [0, np.cos(theta), -np.sin(theta)],
 [0, np.sin(theta), np.cos(theta)],
]
),
 skip_checks=True,
)

[docs] @classmethod
 def init_from_3d_ccw_angle_around_y(cls, theta, degrees=True):
 r"""
 Convenience constructor for 3D CCW rotations around the y axis

 Parameters

 theta : `float`
 The angle of rotation about the origin
 degrees : `bool`, optional
 If ``True`` theta is interpreted as a degree. If ``False``, theta is
 interpreted as radians.

 Returns

 rotation : :map:`Rotation`
 A 3D rotation transform.
 """
 if degrees:
 theta = np.deg2rad(theta)
 return Rotation(
 np.array(
 [
 [np.cos(theta), 0, np.sin(theta)],
 [0, 1, 0],
 [-np.sin(theta), 0, np.cos(theta)],
]
),
 skip_checks=True,
)

[docs] @classmethod
 def init_from_3d_ccw_angle_around_z(cls, theta, degrees=True):
 r"""
 Convenience constructor for 3D CCW rotations around the z axis

 Parameters

 theta : `float`
 The angle of rotation about the origin
 degrees : `bool`, optional
 If ``True`` theta is interpreted as a degree. If ``False``, theta is
 interpreted as radians.

 Returns

 rotation : :map:`Rotation`
 A 3D rotation transform.
 """
 if degrees:
 theta = np.deg2rad(theta)
 return Rotation(
 np.array(
 [
 [np.cos(theta), -np.sin(theta), 0],
 [np.sin(theta), np.cos(theta), 0],
 [0, 0, 1],
]
),
 skip_checks=True,
)

 @property
 def rotation_matrix(self):
 r"""
 The rotation matrix.

 :type: ``(n_dims, n_dims)`` `ndarray`
 """
 return self.linear_component

[docs] def set_rotation_matrix(self, value, skip_checks=False):
 r"""
 Sets the rotation matrix.

 Parameters

 value : ``(n_dims, n_dims)`` `ndarray`
 The new rotation matrix.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``value`` for performance.
 """
 if not skip_checks:
 shape = value.shape
 if len(shape) != 2 and shape[0] != shape[1]:
 raise ValueError("You need to provide a square rotation matrix")
 # The update better be the same size
 elif self.n_dims != shape[0]:
 raise ValueError(
 "Trying to update the rotation " "matrix to a different dimension"
)
 # TODO actually check I am a valid rotation
 # TODO slightly dodgy here accessing _h_matrix
 self._h_matrix[:-1, :-1] = value

 def _transform_str(self):
 axis, radians_of_rotation = self.axis_and_angle_of_rotation()
 if axis is None:
 return "NO OP"
 degrees_of_rotation = np.rad2deg(radians_of_rotation)
 message = "CCW Rotation of {:.1f} degrees " "about {}".format(
 degrees_of_rotation, axis
)
 return message

[docs] def axis_and_angle_of_rotation(self):
 r"""
 Abstract method for computing the axis and angle of rotation.

 Returns

 axis : ``(n_dims,)`` `ndarray`
 The unit vector representing the axis of rotation
 angle_of_rotation : `float`
 The angle in radians of the rotation about the axis. The angle is
 signed in a right handed sense.
 """
 if self.n_dims == 2:
 return self._axis_and_angle_of_rotation_2d()
 elif self.n_dims == 3:
 return self._axis_and_angle_of_rotation_3d()

 def _axis_and_angle_of_rotation_2d(self):
 r"""
 Decomposes this Rotation's rotation matrix into a angular rotation
 The rotation is considered in a right handed sense. The axis is, by
 definition, `[0, 0, 1]`.

 Returns

 axis : ``(2,)`` `ndarray`
 The vector representing the axis of rotation
 angle_of_rotation : `float`
 The angle in radians of the rotation about the axis. The angle is
 signed in a right handed sense.
 """
 axis = np.array([0, 0, 1])
 test_vector = np.array([1, 0])
 transformed_vector = np.dot(self.rotation_matrix, test_vector)
 angle_of_rotation = np.arccos(np.dot(transformed_vector, test_vector))
 return axis, angle_of_rotation

 def _axis_and_angle_of_rotation_3d(self):
 r"""
 Decomposes this 3D rotation's rotation matrix into a angular rotation
 about an axis. The rotation is considered in a right handed sense.

 Returns

 axis : ``(3,)`` `ndarray`
 A unit vector, the axis about which the rotation takes place
 angle_of_rotation : `float`
 The angle in radians of the rotation about the `axis`.
 The angle is signed in a right handed sense.

 References

 .. [1] http://en.wikipedia.org/wiki/Rotation_matrix#Determining_the_axis
 """
 eval_, evec = np.linalg.eig(self.rotation_matrix)
 real_eval_mask = np.isreal(eval_)
 real_eval = np.real(eval_[real_eval_mask])
 evec_with_real_eval = np.real_if_close(evec[:, real_eval_mask])
 error = 1e-7
 below_margin = np.abs(real_eval) < (1 + error)
 above_margin = (1 - error) < np.abs(real_eval)
 re_unit_eval_mask = np.logical_and(below_margin, above_margin)
 evec_with_real_unitary_eval = evec_with_real_eval[:, re_unit_eval_mask]
 # all the eigenvectors with real unitary eigenvalues are now all
 # equally 'valid' if multiple remain that probably means that this
 # rotation is actually a no op (i.e. rotate by 360 degrees about any
 # axis is an invariant transform) but need to check this. For now,
 # just take the first
 if evec_with_real_unitary_eval.shape[1] != 1:
 # TODO confirm that multiple eigenvalues of 1 means the rotation
 # does nothing
 return None, None
 axis = evec_with_real_unitary_eval[:, 0]
 axis /= np.sqrt((axis ** 2).sum()) # normalize to unit vector
 # to find the angle of rotation, build a new unit vector perpendicular
 # to the axis, and see how it rotates
 axis_temp_vector = axis - np.random.rand(axis.size)
 perpendicular_vector = np.cross(axis, axis_temp_vector)
 perpendicular_vector /= np.sqrt((perpendicular_vector ** 2).sum())
 transformed_vector = np.dot(self.rotation_matrix, perpendicular_vector)
 angle_of_rotation = np.arccos(np.dot(transformed_vector, perpendicular_vector))
 chirality_of_rotation = np.dot(
 axis, np.cross(perpendicular_vector, transformed_vector)
)
 if chirality_of_rotation < 0:
 angle_of_rotation *= -1.0
 return axis, angle_of_rotation

 @property
 def n_parameters(self):
 r"""
 Number of parameters of Rotation. Only 3D rotations are currently
 supported.

 Returns

 n_parameters : `int`
 The transform parameters. Only 3D rotations are currently
 supported which are parametrized with quaternions.

 Raises

 DimensionalityError, NotImplementedError
 Non-3D Rotations are not yet vectorizable
 """
 if self.n_dims == 3:
 # Quaternion parameters
 return 4
 else:
 raise NotImplementedError("Non-3D Rotations are not yet " "vectorizable")

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as quaternions. Only 3D transforms are currently
 supported.

 Returns

 q : ``(4,)`` `ndarray`
 The 4 quaternion parameters.

 Raises

 DimensionalityError, NotImplementedError
 Non-3D Rotations are not yet vectorizable
 """
 if self.n_dims == 3:
 m00 = self.h_matrix[0, 0]
 m01 = self.h_matrix[0, 1]
 m02 = self.h_matrix[0, 2]
 m10 = self.h_matrix[1, 0]
 m11 = self.h_matrix[1, 1]
 m12 = self.h_matrix[1, 2]
 m20 = self.h_matrix[2, 0]
 m21 = self.h_matrix[2, 1]
 m22 = self.h_matrix[2, 2]
 # symmetric matrix K
 K = np.array(
 [
 [m00 - m11 - m22, 0.0, 0.0, 0.0],
 [m01 + m10, m11 - m00 - m22, 0.0, 0.0],
 [m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
 [m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
]
)
 K /= 3.0
 # Quaternion is eigenvector of K that corresponds to largest
 # eigenvalue
 w, V = np.linalg.eigh(K)
 q = V[[3, 0, 1, 2], np.argmax(w)]
 if q[0] < 0.0:
 q = -q
 return q
 else:
 raise NotImplementedError("Non-3D Rotations are not yet " "vectorizable")

 def _from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters
 expressed in quaternions. Currently only 3D rotations are supported.

 Parameters

 p : ``(4,)`` `ndarray`
 The array of quaternion parameters.

 Returns

 transform : :map:`Rotation`
 The transform initialised to the given parameters.

 Raises

 DimensionalityError, NotImplementedError
 Non-3D Rotations are not yet vectorizable
 ValueError
 Expected 4 quaternion parameters; got {} instead.
 """
 if self.n_dims == 3:
 if len(p) == 4:
 n = np.dot(p, p)
 # epsilon for testing whether a number is close to zero
 if n < np.finfo(float).eps * 4.0:
 return np.identity(4)
 p = p * np.sqrt(2.0 / n)
 p = np.outer(p, p)
 rotation = np.array(
 [
 [1.0 - p[2, 2] - p[3, 3], p[1, 2] - p[3, 0], p[1, 3] + p[2, 0]],
 [p[1, 2] + p[3, 0], 1.0 - p[1, 1] - p[3, 3], p[2, 3] - p[1, 0]],
 [p[1, 3] - p[2, 0], p[2, 3] + p[1, 0], 1.0 - p[1, 1] - p[2, 2]],
]
)
 self.set_rotation_matrix(rotation, skip_checks=True)
 else:
 raise ValueError(
 "Expected 4 quaternion parameters; got {} "
 "instead.".format(len(p))
)
 else:
 raise NotImplementedError("Non-3D rotations are not yet " "vectorizable")

 @property
 def composes_inplace_with(self):
 r"""
 :class:`Rotation` can swallow composition with any other
 :class:`Rotation`.
 """
 return Rotation

[docs] def pseudoinverse(self):
 r"""
 The inverse rotation matrix.

 :type: :class:`Rotation`
 """
 return Rotation(np.linalg.inv(self.rotation_matrix), skip_checks=True)

[docs]class AlignmentRotation(HomogFamilyAlignment, Rotation):
 r"""
 Constructs an :class:`Rotation` by finding the optimal rotation transform to
 align `source` to `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment
 allow_mirror : `bool`, optional
 If ``True``, the Kabsch algorithm check is not performed, and mirroring
 of the Rotation matrix is permitted.
 """

 def __init__(self, source, target, allow_mirror=False):
 HomogFamilyAlignment.__init__(self, source, target)
 Rotation.__init__(
 self, optimal_rotation_matrix(source, target, allow_mirror=allow_mirror)
)
 self.allow_mirror = allow_mirror

[docs] def set_rotation_matrix(self, value, skip_checks=False):
 r"""
 Sets the rotation matrix.

 Parameters

 value : ``(n_dims, n_dims)`` `ndarray`
 The new rotation matrix.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``value`` for performance.
 """
 Rotation.set_rotation_matrix(self, value, skip_checks=skip_checks)
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 r = optimal_rotation_matrix(
 self.source, self.target, allow_mirror=self.allow_mirror
)
 Rotation.set_rotation_matrix(self, r, skip_checks=True)

[docs] def as_non_alignment(self):
 r"""
 Returns a copy of this rotation without its alignment nature.

 Returns

 transform : :map:`Rotation`
 A version of this rotation with the same transform behavior but
 without the alignment logic.
 """
 return Rotation(self.rotation_matrix, skip_checks=True)

 menpo.transform.homogeneous.scale

 Source code for menpo.transform.homogeneous.scale

import numpy as np

from .base import HomogFamilyAlignment
from .affine import DiscreteAffine, Affine
from .similarity import Similarity

[docs]def Scale(scale_factor, n_dims=None):
 r"""
 Factory function for producing Scale transforms. Zero scale factors are not
 permitted.

 A :class:`UniformScale` will be produced if:

 - A `float` ``scale_factor`` and a ``n_dims`` `kwarg` are provided
 - A `ndarray` ``scale_factor`` with shape ``(n_dims,)`` is provided
 with all elements being the same

 A :class:`NonUniformScale` will be provided if:

 - A `ndarray` ``scale_factor`` with shape ``(n_dims,)`` is provided with
 at least two differing scale factors.

 Parameters

 scale_factor : `float` or ``(n_dims,)`` `ndarray`
 Scale for each axis.
 n_dims : `int`, optional
 The dimensionality of the output transform.

 Returns

 scale : :class:`UniformScale` or :class:`NonUniformScale`
 The correct type of scale

 Raises

 ValueError
 If any of the scale factors is zero
 """
 from numbers import Number

 if not isinstance(scale_factor, Number):
 # some array like thing - make it a numpy array for sure
 scale_factor = np.asarray(scale_factor)
 if not np.all(scale_factor):
 raise ValueError("Having a zero in one of the scales is invalid")

 if n_dims is None:
 # scale_factor better be a numpy array then
 if np.allclose(scale_factor, scale_factor[0]):
 return UniformScale(scale_factor[0], scale_factor.shape[0])
 else:
 return NonUniformScale(scale_factor)
 else:
 # interpret as a scalar then
 return UniformScale(scale_factor, n_dims)

[docs]class NonUniformScale(DiscreteAffine, Affine):
 r"""
 An ``n_dims`` scale transform, with a scale component for each dimension.

 Parameters

 scale : ``(n_dims,)`` `ndarray`
 A scale for each axis.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``h_matrix`` for performance.
 """

 def __init__(self, scale, skip_checks=False):
 scale = np.asarray(scale)
 if not skip_checks:
 if scale.size > 3 or scale.size < 2:
 raise ValueError(
 "NonUniformScale can only be 2D or 3D" ", not {}".format(scale.size)
)
 h_matrix = np.eye(scale.size + 1)
 np.fill_diagonal(h_matrix, scale)
 h_matrix[-1, -1] = 1
 Affine.__init__(self, h_matrix, skip_checks=True, copy=False)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`NonUniformScale`
 The identity matrix transform.
 """
 return NonUniformScale(np.ones(n_dims))

 @property
 def scale(self):
 r"""
 The scale vector.

 :type: ``(n_dims,)`` `ndarray`
 """
 # Copy the vector as Numpy 1.10 will return a writeable view
 return self.h_matrix.diagonal()[:-1].copy()

 def _transform_str(self):
 message = "NonUniformScale by {}".format(self.scale)
 return message

 @property
 def n_parameters(self):
 """
 The number of parameters: ``n_dims``. They have the form
 ``[scale_x, scale_y,]`` representing the scale across each axis.

 :type: `list` of `int`
 """
 return self.scale.size

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order ``[s0, s1, ...]``.

 +----------+--+
 |parameter | definition |
 +==========+==+
 |s0 | The scale across the first axis |
 +----------+--+
 |s1 | The scale across the second axis |
 +----------+--+
 |... | ... |
 +----------+--+
 |sn | The scale across the nth axis |
 +----------+--+

 Returns

 s : ``(n_dims,)`` `ndarray`
 The scale across each axis.
 """
 return self.scale

 def _from_vector_inplace(self, vector):
 r"""
 Updates the :class:`NonUniformScale` inplace.

 Parameters

 vector : ``(n_dims,)`` `ndarray`
 The array of parameters.
 """
 np.fill_diagonal(self.h_matrix, vector)
 self.h_matrix[-1, -1] = 1

 @property
 def composes_inplace_with(self):
 r"""
 :class:`NonUniformScale` can swallow composition with any other
 :class:`NonUniformScale` and :class:`UniformScale`.
 """
 return NonUniformScale, UniformScale

[docs] def pseudoinverse(self):
 """
 The inverse scale matrix.

 :type: :class:`NonUniformScale`
 """
 return NonUniformScale(1.0 / self.scale, skip_checks=True)

[docs]class UniformScale(DiscreteAffine, Similarity):
 r"""
 An abstract similarity scale transform, with a single scale component
 applied to all dimensions. This is abstracted out to remove unnecessary
 code duplication.

 Parameters

 scale : ``(n_dims,)`` `ndarray`
 A scale for each axis.
 n_dims : `int`
 The number of dimensions
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``h_matrix`` for performance.
 """

 def __init__(self, scale, n_dims, skip_checks=False):
 if not skip_checks:
 if n_dims > 3 or n_dims < 2:
 raise ValueError(
 "UniformScale can only be 2D or 3D" ", not {}".format(n_dims)
)
 h_matrix = np.eye(n_dims + 1)
 np.fill_diagonal(h_matrix, scale)
 h_matrix[-1, -1] = 1
 Similarity.__init__(self, h_matrix, copy=False, skip_checks=True)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`UniformScale`
 The identity matrix transform.
 """
 return UniformScale(1, n_dims)

 @property
 def scale(self):
 r"""
 The single scale value.

 :type: `float`
 """
 return self.h_matrix[0, 0]

 def _transform_str(self):
 message = "UniformScale by {}".format(self.scale)
 return message

 @property
 def n_parameters(self):
 r"""
 The number of parameters: 1

 :type: `int`
 """
 return 1

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order ``[s]``.

 +----------+--------------------------------+
 |parameter | definition |
 +==========+================================+
 |s | The scale across each axis |
 +----------+--------------------------------+

 Returns

 s : `float`
 The scale across each axis.
 """
 return np.asarray(self.scale)

 def _from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Parameters

 p : `float`
 The parameter
 """
 np.fill_diagonal(self.h_matrix, p)
 self.h_matrix[-1, -1] = 1

 @property
 def composes_inplace_with(self):
 r"""
 :class:`UniformScale` can swallow composition with any other
 :class:`UniformScale`.
 """
 return UniformScale

[docs] def pseudoinverse(self):
 r"""
 The inverse scale.

 :type: :class:`UniformScale`
 """
 return UniformScale(1.0 / self.scale, self.n_dims, skip_checks=True)

[docs]class AlignmentUniformScale(HomogFamilyAlignment, UniformScale):
 r"""
 Constructs a :class:`UniformScale` by finding the optimal scale transform to
 align `source` to `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment
 """

 def __init__(self, source, target):
 HomogFamilyAlignment.__init__(self, source, target)
 UniformScale.__init__(self, target.norm() / source.norm(), source.n_dims)

 def _from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Parameters

 p : `float`
 The parameter
 """
 UniformScale._from_vector_inplace(self, p)
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 new_scale = self.target.norm() / self.source.norm()
 np.fill_diagonal(self.h_matrix, new_scale)
 self.h_matrix[-1, -1] = 1

[docs] def as_non_alignment(self):
 r"""Returns a copy of this uniform scale without it's alignment nature.

 Returns

 transform : :map:`UniformScale`
 A version of this scale with the same transform behavior but
 without the alignment logic.
 """
 return UniformScale(self.scale, self.n_dims)

 menpo.transform.homogeneous.similarity

 Source code for menpo.transform.homogeneous.similarity

import numpy as np

from .base import HomogFamilyAlignment
from .affine import Affine
from functools import reduce

[docs]class Similarity(Affine):
 r"""
 Specialist version of an :map:`Affine` that is guaranteed to be a
 Similarity transform.

 Parameters

 h_matrix : ``(n_dims + 1, n_dims + 1)`` `ndarray`
 The homogeneous matrix of the affine transformation.
 copy : `bool`, optional
 If ``False`` avoid copying ``h_matrix`` for performance.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``h_matrix`` for performance.
 """

 def __init__(self, h_matrix, copy=True, skip_checks=False):
 Affine.__init__(self, h_matrix, copy=copy, skip_checks=skip_checks)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`Similarity`
 The identity matrix transform.
 """
 return cls(np.eye(n_dims + 1), copy=False, skip_checks=True)

 def _transform_str(self):
 r"""
 A string representation explaining what this similarity transform does.

 Returns

 string : `str`
 String representation of transform.
 """
 header = "Similarity decomposing into:"
 list_str = [t._transform_str() for t in self.decompose()]
 return header + reduce(lambda x, y: x + "\n" + " " + y, list_str, " ")

 @property
 def n_parameters(self):
 r"""Number of parameters of Similarity

 2D Similarity - 4 parameters ::

 [(1 + a), -b, tx]
 [b, (1 + a), ty]

 3D Similarity: Currently not supported

 Returns

 n_parameters : `int`
 The transform parameters

 Raises

 DimensionalityError, NotImplementedError
 Only 2D transforms are supported.
 """
 if self.n_dims == 2:
 return 4
 elif self.n_dims == 3:
 raise NotImplementedError(
 "3D similarity transforms cannot be " "vectorized yet."
)
 else:
 raise ValueError(
 "Only 2D and 3D Similarity transforms " "are currently supported."
)

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order ``[a, b, tx, ty]``, given that
 ``a = k cos(theta) - 1`` and ``b = k sin(theta)`` where ``k`` is a
 uniform scale and `theta` is a clockwise rotation in radians.

 2D

 ========= ===
 parameter definition
 ========= ===
 a `a = k cos(theta) - 1`
 b `b = k sin(theta)`
 tx Translation in `x`
 ty Translation in `y`
 ========= ===

 .. note::

 Only 2D transforms are currently supported.

 Returns

 params : ``(P,)`` `ndarray`
 The values that parameterise the transform.

 Raises

 DimensionalityError, NotImplementedError
 If the transform is not 2D
 """
 n_dims = self.n_dims
 if n_dims == 2:
 params = self.h_matrix - np.eye(n_dims + 1)
 # Pick off a, b, tx, ty
 params = params[:n_dims, :].ravel(order="F")
 # Pick out a, b, tx, ty
 return params[[0, 1, 4, 5]]
 elif n_dims == 3:
 raise NotImplementedError(
 "3D similarity transforms cannot be " "vectorized yet."
)
 else:
 raise ValueError(
 "Only 2D and 3D Similarity transforms " "are currently supported."
)

 def _from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Supports rebuilding from 2D parameter sets.

 2D Similarity: 4 parameters ::

 [a, b, tx, ty]

 Parameters

 p : ``(P,)`` `ndarray`
 The array of parameters.

 Raises

 DimensionalityError, NotImplementedError
 Only 2D transforms are supported.
 """
 if p.shape[0] == 4:
 homog = np.eye(3)
 homog[0, 0] += p[0]
 homog[1, 1] += p[0]
 homog[0, 1] = -p[1]
 homog[1, 0] = p[1]
 homog[:2, 2] = p[2:]
 self._set_h_matrix(homog, skip_checks=True, copy=False)
 elif p.shape[0] == 7:
 raise NotImplementedError(
 "3D similarity transforms cannot be " "vectorized yet."
)
 else:
 raise ValueError(
 "Only 2D and 3D Similarity transforms " "are currently supported."
)

[docs]class AlignmentSimilarity(HomogFamilyAlignment, Similarity):
 """
 Infers the similarity transform relating two vectors with the same
 dimensionality. This is simply the procrustes alignment of the
 `source` to the `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment
 rotation: `bool`, optional
 If ``False``, the rotation component of the similarity transform is not
 inferred.
 allow_mirror : `bool`, optional
 If ``True``, the Kabsch algorithm check is not performed, and mirroring
 of the Rotation matrix is permitted.
 """

 def __init__(self, source, target, rotation=True, allow_mirror=False):
 HomogFamilyAlignment.__init__(self, source, target)
 x = procrustes_alignment(
 source, target, rotation=rotation, allow_mirror=allow_mirror
)
 Similarity.__init__(self, x.h_matrix, copy=False, skip_checks=True)
 self.allow_mirror = allow_mirror

 def _sync_state_from_target(self):
 similarity = procrustes_alignment(
 self.source, self.target, allow_mirror=self.allow_mirror
)
 self._set_h_matrix(similarity.h_matrix, copy=False, skip_checks=True)

[docs] def as_non_alignment(self):
 r"""
 Returns a copy of this similarity without it's alignment nature.

 Returns

 transform : :map:`Similarity`
 A version of this similarity with the same transform behavior but
 without the alignment logic.
 """
 return Similarity(self.h_matrix, skip_checks=True)

 def _from_vector_inplace(self, p):
 r"""
 Returns an instance of the transform from the given parameters,
 expected to be in Fortran ordering.

 Supports rebuilding from 2D parameter sets.

 2D Similarity: 4 parameters ::

 [a, b, tx, ty]

 Parameters

 p : ``(P,)`` `ndarray`
 The array of parameters.

 Raises

 DimensionalityError, NotImplementedError
 Only 2D transforms are supported.
 """
 Similarity._from_vector_inplace(self, p)
 self._sync_target_from_state()

def procrustes_alignment(source, target, rotation=True, allow_mirror=False):
 r"""
 Returns the similarity transform that aligns the `source` to the `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud
 target : :map:`PointCloud`
 The target pointcloud
 rotation : `bool`, optional
 If ``True``, rotation is allowed in the Procrustes calculation. If
 ``False``, only scale and translation effects are allowed in the
 returned transform.
 allow_mirror : `bool`, optional
 If ``True``, the Kabsch algorithm check is not performed, and mirroring
 of the Rotation matrix is permitted.

 Returns

 transform : :map:`Similarity`
 A :map:`Similarity` transform that optimally aligns the `source` to
 `target`.
 """
 from .rotation import Rotation, optimal_rotation_matrix
 from .translation import Translation
 from .scale import UniformScale

 # Compute the transforms we need - centering translations
 tgt_t = Translation(-target.centre(), skip_checks=True)
 src_t = Translation(-source.centre(), skip_checks=True)
 # and a scale that matches the norm of the source to the norm of the target
 src_s = UniformScale(target.norm() / source.norm(), source.n_dims, skip_checks=True)

 # start building the Procrustes Alignment - src translation followed by
 # scale
 p = Similarity.init_identity(source.n_dims)
 p.compose_before_inplace(src_t)
 p.compose_before_inplace(src_s)

 if rotation:
 # to calculate optimal rotation we need the source and target in the
 # centre and of the correct size. Use the current p to do this
 aligned_src = p.apply(source)
 aligned_tgt = tgt_t.apply(target)
 r = Rotation(
 optimal_rotation_matrix(
 aligned_src, aligned_tgt, allow_mirror=allow_mirror
),
 skip_checks=True,
)
 p.compose_before_inplace(r)
 # finally, translate the target back
 p.compose_before_inplace(tgt_t.pseudoinverse())
 return p

 menpo.transform.homogeneous.translation

 Source code for menpo.transform.homogeneous.translation

import numpy as np

from .base import HomogFamilyAlignment
from .affine import DiscreteAffine
from .similarity import Similarity

[docs]class Translation(DiscreteAffine, Similarity):
 r"""
 An ``n_dims``-dimensional translation transform.

 Parameters

 translation : ``(n_dims,)`` `ndarray`
 The translation in each axis.
 skip_checks : `bool`, optional
 If ``True`` avoid sanity checks on ``h_matrix`` for performance.
 """

 def __init__(self, translation, skip_checks=False):
 translation = np.asarray(translation)
 h_matrix = np.eye(translation.shape[0] + 1)
 h_matrix[:-1, -1] = translation
 Similarity.__init__(self, h_matrix, copy=False, skip_checks=skip_checks)

[docs] @classmethod
 def init_identity(cls, n_dims):
 r"""
 Creates an identity transform.

 Parameters

 n_dims : `int`
 The number of dimensions.

 Returns

 identity : :class:`Translation`
 The identity matrix transform.
 """
 return Translation(np.zeros(n_dims))

 def _transform_str(self):
 message = "Translation by {}".format(self.translation_component)
 return message

 @property
 def n_parameters(self):
 r"""
 The number of parameters: ``n_dims``

 :type: `int`
 """
 return self.n_dims

 def _as_vector(self):
 r"""
 Return the parameters of the transform as a 1D array. These parameters
 are parametrised as deltas from the identity warp. The parameters
 are output in the order ``[t0, t1, ...]``.

 +-----------+--+
 |parameter | definition |
 +==========+===+
 |t0 | The translation in the first axis |
 |t1 | The translation in the second axis |
 |... | ... |
 |tn | The translation in the nth axis |
 +----------+---+

 Returns

 ts : ``(n_dims,)`` `ndarray`
 The translation in each axis.
 """
 return self.h_matrix[:-1, -1]

 def _from_vector_inplace(self, p):
 r"""
 Updates the :class:`Translation` inplace.

 Parameters

 vector : ``(n_dims,)`` `ndarray`
 The array of parameters.
 """
 self.h_matrix[:-1, -1] = p

[docs] def pseudoinverse(self):
 r"""
 The inverse translation (negated).

 :type: :class:`Translation`
 """
 return Translation(-self.translation_component, skip_checks=True)

[docs]class AlignmentTranslation(HomogFamilyAlignment, Translation):
 r"""
 Constructs a :class:`Translation` by finding the optimal translation
 transform to align `source` to `target`.

 Parameters

 source : :map:`PointCloud`
 The source pointcloud instance used in the alignment
 target : :map:`PointCloud`
 The target pointcloud instance used in the alignment
 """

 def __init__(self, source, target):
 HomogFamilyAlignment.__init__(self, source, target)
 Translation.__init__(self, target.centre() - source.centre())

 def _from_vector_inplace(self, p):
 r"""
 Updates the :class:`Translation` inplace.

 Parameters

 vector : ``(n_dims,)`` `ndarray`
 The array of parameters.
 """
 Translation._from_vector_inplace(self, p)
 self._sync_target_from_state()

 def _sync_state_from_target(self):
 translation = self.target.centre() - self.source.centre()
 self.h_matrix[:-1, -1] = translation

[docs] def as_non_alignment(self):
 r"""
 Returns a copy of this translation without its alignment nature.

 Returns

 transform : :map:`Translation`
 A version of this transform with the same transform behavior but
 without the alignment logic.
 """
 return Translation(self.translation_component)

 menpo.transform.piecewiseaffine.base

 Source code for menpo.transform.piecewiseaffine.base

import numpy as np
from copy import deepcopy
from menpo.base import Copyable
from menpo.transform.base import Alignment, Invertible, Transform

TODO View is broken for PWA (TriangleContainmentError)

class TriangleContainmentError(Exception):
 r"""
 Exception that is thrown when an attempt is made to map a point with a
 PWATransform that does not lie in a source triangle.

 points_outside_source_domain : ``(d,)`` `ndarray`
 A `bool` value for the ``d`` points that were attempted to be applied.
 If ``True```, the point was outside of the domain.
 """

 def __init__(self, points_outside_source_domain):
 super(TriangleContainmentError, self).__init__()
 self.points_outside_source_domain = points_outside_source_domain

def containment_from_alpha_beta(alpha, beta):
 r"""
 Check `alpha` and `beta` are within a triangle (``alpha >= 0``,
 ``beta >= 0``, ``alpha + beta <= 1``). Returns the indices of the triangles
 that are `alpha` and `beta` are in. If any of the points are not contained
 in a triangle, raises a `TriangleContainmentError`.

 Parameters

 alpha : ``(K, n_tris)`` `ndarray`
 Alpha for each point and triangle being tested.
 beta : ``(K, n_tris)`` `ndarray`
 Beta for each point and triangle being tested.

 Returns

 tri_index : ``(L,)`` `ndarray`
 Triangle index for each `points`, assigning each
 point in a triangle to the triangle index.

 Raises

 TriangleContainmentError
 All `points` must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 # (K, n_tris), boolean for whether a given triangle contains a given
 # point
 point_containment = np.logical_and(
 np.logical_and(alpha >= 0, beta >= 0), alpha + beta <= 1
)
 # is each point in a triangle?
 point_in_a_triangle = np.any(point_containment, axis=1)
 if np.any(~point_in_a_triangle):
 raise TriangleContainmentError(~point_in_a_triangle)
 point_index, tri_index = np.nonzero(point_containment)
 # don't want duplicates! ensure that here:
 index = np.zeros(alpha.shape[0])
 index[point_index] = tri_index
 return index.astype(np.uint32)

def alpha_beta(i, ij, ik, points):
 r"""
 Calculates the `alpha` and `beta` values (barycentric coordinates) for each
 triangle for all points provided. Note that this does not raise a
 `TriangleContainmentError`.

 Parameters

 i : ``(n_tris, 2)`` `ndarray`
 The coordinate of the i'th point of each triangle
 ij : ``(n_tris, 2)`` `ndarray`
 The vector between the i'th point and the j'th point of each
 triangle
 ik : ``(n_tris, 2)`` `ndarray`
 The vector between the i'th point and the k'th point of each
 triangle
 points : ``(n_points, 2)`` `ndarray`
 Points to calculate the barycentric coordinates for.

 Returns

 alpha : ``(n_points, n_tris)`` `ndarray`
 The `alpha` for each point and triangle. Alpha can be interpreted
 as the contribution of the `ij` vector to the position of the point in
 question.
 beta : ``(n_points, n_tris)`` `ndarray`
 The beta for each point and triangle. Beta can be interpreted as
 the contribution of the ik vector to the position of the point in
 question.
 """
 ip = points[..., None] - i
 dot_jj = np.einsum("dt, dt -> t", ij, ij)
 dot_kk = np.einsum("dt, dt -> t", ik, ik)
 dot_jk = np.einsum("dt, dt -> t", ij, ik)
 dot_pj = np.einsum("vdt, dt -> vt", ip, ij)
 dot_pk = np.einsum("vdt, dt -> vt", ip, ik)

 d = 1.0 / (dot_jj * dot_kk - dot_jk * dot_jk)
 alpha = (dot_kk * dot_pj - dot_jk * dot_pk) * d
 beta = (dot_jj * dot_pk - dot_jk * dot_pj) * d
 return alpha, beta

def index_alpha_beta(i, ij, ik, points):
 """
 Finds for each input point the index of it's bounding triangle and the
 `alpha` and `beta` value for that point in the triangle. Note this means
 that the following statements will always be true::

 alpha + beta <= 1
 alpha >= 0
 beta >= 0

 for each triangle result.

 Trying to map a point that does not exist in a triangle throws a
 `TriangleContainmentError`.

 Parameters

 i : ``(n_tris, 2)`` `ndarray`
 The coordinate of the i'th point of each triangle
 ij : ``(n_tris, 2)`` `ndarray`
 The vector between the i'th point and the j'th point of each
 triangle
 ik : ``(n_tris, 2)`` `ndarray`
 The vector between the i'th point and the k'th point of each
 triangle
 points : ``(n_points, 2)`` `ndarray`
 Points to calculate the barycentric coordinates for.

 Returns

 tri_index : ``(n_tris,)`` `ndarray`
 Triangle index for each of the `points`, assigning each point to its
 containing triangle.
 alpha : ``(n_tris,)`` `ndarray`
 Alpha for containing triangle of each point.
 beta : ``(n_tris,)`` `ndarray`
 Beta for containing triangle of each point.

 Raises

 TriangleContainmentError
 All `points` must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 alpha, beta = alpha_beta(i, ij, ik, points)
 each_point = np.arange(points.shape[0])
 index = containment_from_alpha_beta(alpha, beta)
 return index, alpha[each_point, index], beta[each_point, index]

def barycentric_vectors(points, trilist):
 r"""
 Compute the affine transformation between each triangle in the `source`
 and `target`. This is calculated analytically.

 Parameters

 points : ``(n_points, 2)`` `ndarray`
 Points to calculate the barycentric coordinates for.
 trilist: ``(n_tris, 3)`` `ndarray`
 The 0-based index triangulation joining the points.

 Returns

 i : ``(n_tris, 2)`` `ndarray`
 The coordinate of the i'th point of each triangle
 ij : ``(n_tris, 2)`` `ndarray`
 The vector between the i'th point and the j'th point of each
 triangle
 ik : ``(n_tris, 2)`` `ndarray`
 The vector between the i'th point and the k'th point of each
 triangle
 """
 # we permute the axes of the indexed point set to have shape
 # [3, n_dims, n_tris] for ease of indexing in.
 x = np.transpose(points[trilist], axes=[1, 2, 0])
 return x[0], x[1] - x[0], x[2] - x[0]

Note we inherit from Alignment first to get it's n_dims behavior
class AbstractPWA(Alignment, Transform, Invertible):
 r"""
 A piecewise affine transformation.

 This is composed of a number of triangles defined be a set of `source` and
 `target` vertices. These vertices are related by a common triangle `list`.
 No limitations on the nature of the triangle `list` are imposed. Points can
 then be mapped via barycentric coordinates from the `source` to the `target`
 space. Trying to map points that are not contained by any source triangle
 throws a `TriangleContainmentError`, which contains diagnostic information.

 Parameters

 source : :map:`PointCloud` or :map:`TriMesh`
 The source points. If a TriMesh is provided, the triangulation on
 the TriMesh is used. If a PointCloud is provided, a Delaunay
 triangulation of the source is performed automatically.
 target : :map:`PointCloud`
 The target points. Note that the trilist is entirely decided by the
 source.

 Raises

 ValueError
 Source and target must both be 2D.
 TriangleContainmentError
 All points to apply must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """

 def __init__(self, source, target):
 from menpo.shape import TriMesh # to avoid circular import

 if not isinstance(source, TriMesh):
 source = TriMesh(source.points)
 Alignment.__init__(self, source, target)
 if self.n_dims != 2:
 raise ValueError("source and target must be 2 " "dimensional")
 self.ti, self.tij, self.tik = None, None, None
 self._rebuild_target_vectors()

 @property
 def n_tris(self):
 r"""
 The number of triangles in the triangle list.

 :type: `int`
 """
 return self.source.n_tris

 @property
 def trilist(self):
 r"""
 The triangle list.

 :type: ``(n_tris, 3)`` `ndarray`
 """
 return self.source.trilist

 def _rebuild_target_vectors(self):
 r"""
 Rebuild the vectors that are used in the apply method. This needs to
 be called whenever the target is changed.
 """
 t = self.target.points[self.trilist]
 # get vectors ij ik for the target
 self.tij, self.tik = t[:, 1] - t[:, 0], t[:, 2] - t[:, 0]
 # target i'th vertex positions
 self.ti = t[:, 0]

 def _sync_state_from_target(self):
 r"""
 PWA is particularly efficient to sync from target - we don't have to
 do much at all, just rebuild the target vectors.
 """
 self._rebuild_target_vectors()

 def _apply(self, x, **kwargs):
 """
 Applies this transform to a new set of vectors.

 Parameters

 x : ``(K, 2)`` `ndarray`
 Points to apply this transform to.

 Returns

 transformed : ``(K, 2)`` `ndarray`
 The transformed array.
 """
 tri_index, alpha, beta = self.index_alpha_beta(x)
 return (
 self.ti[tri_index]
 + alpha[:, None] * self.tij[tri_index]
 + beta[:, None] * self.tik[tri_index]
)

 def _apply_batched(self, x, batch_size, **kwargs):
 # This is a rare case where we need to override the batched apply
 # method. In this case, we override it because we want to the
 # possibly raised TriangleContainmentError to contain ALL the points
 # that were considered, and not just the first batch of points.
 if batch_size is None:
 return self._apply(x, **kwargs)
 else:
 outputs = []
 points_outside_source_domain = []
 n_points = x.shape[0]
 exception_thrown = False
 for lo_ind in range(0, n_points, batch_size):
 try:
 hi_ind = lo_ind + batch_size
 outputs.append(self._apply(x[lo_ind:hi_ind], **kwargs))
 except TriangleContainmentError as e:
 exception_thrown = True
 points_outside_source_domain.append(e.points_outside_source_domain)
 else:
 # No exception was thrown, so all points were inside
 points_outside_source_domain.append(
 np.zeros(batch_size, dtype=np.bool)
)

 if exception_thrown:
 raise TriangleContainmentError(np.hstack(points_outside_source_domain))
 else:
 return np.vstack(outputs)

 def index_alpha_beta(self, points):
 """
 Finds for each input point the index of its bounding triangle and the
 `alpha` and `beta` value for that point in the triangle. Note this
 means that the following statements will always be true::

 alpha + beta <= 1
 alpha >= 0
 beta >= 0

 for each triangle result.

 Trying to map a point that does not exist in a triangle throws a
 `TriangleContainmentError`.

 Parameters

 points : ``(K, 2)`` `ndarray`
 Points to test.

 Returns

 tri_index : ``(L,)`` `ndarray`
 Triangle index for each of the `points`, assigning each
 point to it's containing triangle.
 alpha : ``(L,)`` `ndarray`
 Alpha for containing triangle of each point.
 beta : ``(L,)`` `ndarray`
 Beta for containing triangle of each point.

 Raises

 TriangleContainmentError
 All `points` must be contained in a source triangle. Check
 `error.points_outside_source_domain` to handle this case.
 """
 raise NotImplementedError()

 @property
 def has_true_inverse(self):
 """
 The inverse is true.

 :type: ``True``
 """
 return True

 def pseudoinverse(self):
 r"""
 The pseudoinverse of the transform - that is, the transform that
 results from swapping `source` and `target`, or more formally, negating
 the transforms parameters. If the transform has a true inverse this
 is returned instead.

 :type: ``type(self)``
 """
 from menpo.shape import PointCloud, TriMesh # to avoid circular import

 new_source = TriMesh(self.target.points, self.source.trilist)
 new_target = PointCloud(self.source.points)
 return type(self)(new_source, new_target)

class PythonPWA(AbstractPWA):
 def __init__(self, source, target):
 super(PythonPWA, self).__init__(source, target)
 si, sij, sik = barycentric_vectors(self.source.points, self.trilist)
 self.s, self.sij, self.sik = si, sij, sik

 def index_alpha_beta(self, points):
 return index_alpha_beta(self.s, self.sij, self.sik, points)

class CachedPWA(PythonPWA):
 def __init__(self, source, target):
 super(CachedPWA, self).__init__(source, target)
 self._applied_points, self._iab = None, None

 def index_alpha_beta(self, points):
 if (
 self._applied_points is None
 or not points.shape == self._applied_points.shape
 or not np.allclose(points, self._applied_points)
):
 # This must happen first in case index_alpha_beta throws a
 # TriangleContainmentError
 self._iab = PythonPWA.index_alpha_beta(self, points)
 self._applied_points = points
 return self._iab

 menpo.visualize.base

 Source code for menpo.visualize.base

try:
 from collections.abc import Iterable
except ImportError:
 from collections import Iterable
import numpy as np

from menpo.base import MenpoMissingDependencyError

class Menpo3dMissingError(MenpoMissingDependencyError):
 r"""
 Exception that is thrown when an attempt is made to import a 3D
 visualisation method, but 'menpo3d' is not installed.
 """

 def __init__(self, actual_missing_import_name):
 super(Menpo3dMissingError, self).__init__(actual_missing_import_name)
 self.message += (
 "\nThis import is required in order to use the " "'menpo3d' package"
)

[docs]class Renderer(object):
 r"""
 Abstract class for rendering visualizations. Framework specific
 implementations of these classes are made in order to separate
 implementation cleanly from the rest of the code.

 It is assumed that the renderers follow some form of stateful pattern for
 rendering to Figures. Therefore, the major interface for rendering involves
 providing a `figure_id` or a `bool` about whether a new figure should be
 used. If neither are provided then the default state of the rendering engine
 is assumed to be maintained.

 Providing both a ``figure_id`` and ``new_figure == True`` is not a valid
 state.

 Parameters

 figure_id : `object`
 A figure id. Could be any valid object that identifies a figure in a
 given framework (`str`, `int`, `float`, etc.).
 new_figure : `bool`
 Whether the rendering engine should create a new figure.

 Raises

 ValueError
 It is not valid to provide a figure id AND request a new figure to
 be rendered on.
 """

 def __init__(self, figure_id, new_figure):
 if figure_id is not None and new_figure:
 raise ValueError(
 "Conflicting arguments. figure_id cannot be "
 "specified if the new_figure flag is True"
)

 self.figure_id = figure_id
 self.new_figure = new_figure
 self.figure = self.get_figure()

[docs] def render(self, **kwargs):
 r"""
 Abstract method to be overridden by the renderer. This will implement
 the actual rendering code for a given object class.

 Parameters

 kwargs : `dict`
 Passed through to specific rendering engine.

 Returns

 viewer : :map:`Renderer`
 Pointer to `self`.
 """
 pass

[docs] def get_figure(self):
 r"""
 Abstract method for getting the correct figure to render on. Should
 also set the correct `figure_id` for the figure.

 Returns

 figure : `object`
 The figure object that the renderer will render on.
 """
 pass

[docs] def save_figure(self, **kwargs):
 r"""
 Abstract method for saving the figure of the current `figure_id` to
 file. It will implement the actual saving code for a given object class.

 Parameters

 kwargs : `dict`
 Options to be set when saving the figure to file.
 """
 pass

[docs] def clear_figure(self):
 r"""
 Abstract method for clearing the current figure.
 """
 pass

[docs] def force_draw(self):
 r"""
 Abstract method for forcing the current figure to render.
 """
 pass

class viewwrapper(object):
 r"""
 This class abuses the Python descriptor protocol in order to dynamically
 change the view method at runtime. Although this is more obviously achieved
 through inheritance, the view methods practically amount to syntactic sugar
 and so we want to maintain a single view method per class. We do not want
 to add the mental overhead of implementing different 2D and 3D PointCloud
 classes for example, since, outside of viewing, their implementations would
 be identical.

 Also note that we could have separated out viewing entirely and made the
 check there, but the view method is an important paradigm in menpo that
 we want to maintain.

 Therefore, this function cleverly (and obscurely) returns the correct
 view method for the dimensionality of the given object.
 """

 def __init__(self, wrapped_func):
 fname = wrapped_func.__name__
 self._2d_fname = "_{}_2d".format(fname)
 self._3d_fname = "_{}_3d".format(fname)

 def __get__(self, instance, instancetype):
 if instance.n_dims == 2:
 return getattr(instance, self._2d_fname)
 elif instance.n_dims == 3:
 return getattr(instance, self._3d_fname)
 else:

 def raise_not_supported(*args, **kwargs):
 r"""
 Viewing of objects with greater than 3 dimensions is not
 currently possible.
 """
 raise ValueError(
 "Viewing of objects with greater than 3 "
 "dimensions is not currently possible."
)

 return raise_not_supported

[docs]class Viewable(object):
 r"""
 Abstract interface for objects that can visualize themselves. This assumes
 that the class has dimensionality as the view method checks the ``n_dims``
 property to wire up the correct view method.
 """

 @viewwrapper
 def view(self):
 r"""
 Abstract method for viewing. See the :map:`viewwrapper` documentation
 for an explanation of how the `view` method works.
 """
 pass

 def _view_2d(self, **kwargs):
 raise NotImplementedError("2D Viewing is not supported.")

 def _view_3d(self, **kwargs):
 raise NotImplementedError("3D Viewing is not supported.")

[docs]class LandmarkableViewable(object):
 r"""
 Mixin for :map:`Landmarkable` and :map:`Viewable` objects. Provides a
 single helper method for viewing Landmarks and `self` on the same figure.
 """

 @viewwrapper
 def view_landmarks(self, **kwargs):
 pass

 def _view_landmarks_2d(self, **kwargs):
 raise NotImplementedError("2D Landmark Viewing is not supported.")

 def _view_landmarks_3d(self, **kwargs):
 raise NotImplementedError("3D Landmark Viewing is not supported.")

from menpo.visualize.viewmatplotlib import (
 MatplotlibImageViewer2d,
 MatplotlibImageSubplotsViewer2d,
 MatplotlibLandmarkViewer2d,
 MatplotlibAlignmentViewer2d,
 MatplotlibGraphPlotter,
 MatplotlibMultiImageViewer2d,
 MatplotlibMultiImageSubplotsViewer2d,
 MatplotlibPointGraphViewer2d,
)

Default importer types
PointGraphViewer2d = MatplotlibPointGraphViewer2d
LandmarkViewer2d = MatplotlibLandmarkViewer2d
ImageViewer2d = MatplotlibImageViewer2d
ImageSubplotsViewer2d = MatplotlibImageSubplotsViewer2d

AlignmentViewer2d = MatplotlibAlignmentViewer2d
GraphPlotter = MatplotlibGraphPlotter
MultiImageViewer2d = MatplotlibMultiImageViewer2d
MultiImageSubplotsViewer2d = MatplotlibMultiImageSubplotsViewer2d

class ImageViewer(object):
 r"""
 Base :map:`Image` viewer that abstracts away dimensionality. It can
 visualize multiple channels of an image in subplots.

 Parameters

 figure_id : `object`
 A figure id. Could be any valid object that identifies a figure in a
 given framework (`str`, `int`, `float`, etc.).
 new_figure : `bool`
 Whether the rendering engine should create a new figure.
 dimensions : {``2``, ``3``} `int`
 The number of dimensions in the image.
 pixels : ``(N, D)`` `ndarray`
 The pixels to render.
 channels: `int` or `list` or ``'all'`` or `None`
 A specific selection of channels to render. The user can choose either
 a single or multiple channels. If ``'all'``, render all channels in
 subplot mode. If `None` and image is not greyscale or RGB, render all
 channels in subplots. If `None` and image is greyscale or RGB, then do
 not plot channels in different subplots.
 mask: ``(N, D)`` `ndarray`
 A `bool` mask to be applied to the image. All points outside the
 mask are set to ``0``.
 """

 def __init__(
 self, figure_id, new_figure, dimensions, pixels, channels=None, mask=None
):
 if len(pixels.shape) == 3 and pixels.shape[0] == 3:
 # then probably an RGB image, so ensure the clipped pixels.
 from menpo.image import Image

 image = Image(pixels, copy=False)
 image_clipped = image.clip_pixels()
 pixels = image_clipped.pixels
 else:
 pixels = pixels.copy()
 self.figure_id = figure_id
 self.new_figure = new_figure
 self.dimensions = dimensions
 pixels, self.use_subplots = self._parse_channels(channels, pixels)
 self.pixels = self._masked_pixels(pixels, mask)

 self._flip_image_channels()

 def _flip_image_channels(self):
 if self.pixels.ndim == 3:
 from menpo.image.base import channels_to_back

 self.pixels = channels_to_back(self.pixels)

 def _parse_channels(self, channels, pixels):
 r"""
 Parse `channels` parameter. If `channels` is `int` or `list`, keep it as
 is. If `channels` is ``'all'``, return a `list` of all the image's
 channels. If `channels` is `None`, return the minimum between an
 `upper_limit` and the image's number of channels. If image is greyscale
 or RGB and `channels` is `None`, then do not plot channels in different
 subplots.

 Parameters

 channels : `int` or `list` or ``'all'`` or `None`
 A specific selection of channels to render.
 pixels : ``(N, D)`` `ndarray`
 The image's pixels to render.

 Returns

 pixels : ``(N, D)`` `ndarray`
 The pixels to be visualized.
 use_subplots : `bool`
 Whether to visualize using subplots.
 """
 # Flag to trigger ImageSubplotsViewer2d or ImageViewer2d
 use_subplots = True
 n_channels = pixels.shape[0]
 if channels is None:
 if n_channels == 1:
 pixels = pixels[0, ...]
 use_subplots = False
 elif n_channels == 3:
 use_subplots = False
 elif channels != "all":
 if isinstance(channels, Iterable):
 if len(channels) == 1:
 pixels = pixels[channels[0], ...]
 use_subplots = False
 else:
 pixels = pixels[channels, ...]
 else:
 pixels = pixels[channels, ...]
 use_subplots = False

 return pixels, use_subplots

 def _masked_pixels(self, pixels, mask):
 r"""
 Return the masked pixels using a given `bool` mask. In order to make
 sure that the non-masked pixels are visualized in white, their value
 is set to the maximum of pixels.

 Parameters

 pixels : ``(N, D)`` `ndarray`
 The image's pixels to render.
 mask: ``(N, D)`` `ndarray`
 A `bool` mask to be applied to the image. All points outside the
 mask are set to the image max. If mask is `None`, then the initial
 pixels are returned.

 Returns

 masked_pixels : ``(N, D)`` `ndarray`
 The masked pixels.
 """
 if mask is not None:
 nanmax = np.nanmax(pixels)
 pixels[..., ~mask] = nanmax + (0.01 * nanmax)
 return pixels

 def render(self, **kwargs):
 r"""
 Select the correct type of image viewer for the given image
 dimensionality.

 Parameters

 kwargs : `dict`
 Passed through to image viewer.

 Returns

 viewer : :map:`Renderer`
 The rendering object.

 Raises

 ValueError
 Only 2D images are supported.
 """
 if self.dimensions == 2:
 if self.use_subplots:
 return ImageSubplotsViewer2d(
 self.figure_id, self.new_figure, self.pixels
).render(**kwargs)
 else:
 return ImageViewer2d(
 self.figure_id, self.new_figure, self.pixels
).render(**kwargs)
 else:
 raise ValueError("Only 2D images are currently supported")

def view_image_landmarks(
 image,
 channels,
 masked,
 group,
 with_labels,
 without_labels,
 figure_id,
 new_figure,
 interpolation,
 cmap_name,
 alpha,
 render_lines,
 line_colour,
 line_style,
 line_width,
 render_markers,
 marker_style,
 marker_size,
 marker_face_colour,
 marker_edge_colour,
 marker_edge_width,
 render_numbering,
 numbers_horizontal_align,
 numbers_vertical_align,
 numbers_font_name,
 numbers_font_size,
 numbers_font_style,
 numbers_font_weight,
 numbers_font_colour,
 render_legend,
 legend_title,
 legend_font_name,
 legend_font_style,
 legend_font_size,
 legend_font_weight,
 legend_marker_scale,
 legend_location,
 legend_bbox_to_anchor,
 legend_border_axes_pad,
 legend_n_columns,
 legend_horizontal_spacing,
 legend_vertical_spacing,
 legend_border,
 legend_border_padding,
 legend_shadow,
 legend_rounded_corners,
 render_axes,
 axes_font_name,
 axes_font_size,
 axes_font_style,
 axes_font_weight,
 axes_x_limits,
 axes_y_limits,
 axes_x_ticks,
 axes_y_ticks,
 figure_size,
):
 r"""
 This is a helper method that abstracts away the fact that viewing
 images and masked images is identical apart from the mask. Therefore,
 we do the class check in this method and then proceed identically whether
 the image is masked or not.

 See the documentation for _view_2d on Image or _view_2d on MaskedImage
 for information about the parameters.
 """
 import matplotlib.pyplot as plt

 if not image.has_landmarks:
 raise ValueError(
 "Image does not have landmarks attached, unable " "to view landmarks."
)

 # Parse axes limits
 image_axes_x_limits = None
 landmarks_axes_x_limits = axes_x_limits
 if axes_x_limits is None:
 image_axes_x_limits = landmarks_axes_x_limits = [0, image.width - 1]
 image_axes_y_limits = None
 landmarks_axes_y_limits = axes_y_limits
 if axes_y_limits is None:
 image_axes_y_limits = landmarks_axes_y_limits = [0, image.height - 1]

 # Render image
 from menpo.image import MaskedImage

 if isinstance(image, MaskedImage):
 self_view = image.view(
 figure_id=figure_id,
 new_figure=new_figure,
 channels=channels,
 masked=masked,
 interpolation=interpolation,
 cmap_name=cmap_name,
 alpha=alpha,
 render_axes=render_axes,
 axes_x_limits=image_axes_x_limits,
 axes_y_limits=image_axes_y_limits,
)
 else:
 self_view = image.view(
 figure_id=figure_id,
 new_figure=new_figure,
 channels=channels,
 interpolation=interpolation,
 cmap_name=cmap_name,
 alpha=alpha,
 render_axes=render_axes,
 axes_x_limits=image_axes_x_limits,
 axes_y_limits=image_axes_y_limits,
)

 # Render landmarks
 # correct group label in legend
 if group is None and image.landmarks.n_groups == 1:
 group = image.landmarks.group_labels[0]
 landmark_view = None # initialize viewer object
 # useful in order to visualize the legend only for the last axis object
 render_legend_tmp = False
 for i, ax in enumerate(self_view.axes_list):
 # set current axis
 plt.sca(ax)
 # show legend only for the last axis object
 if i == len(self_view.axes_list) - 1:
 render_legend_tmp = render_legend

 # viewer
 landmark_view = image.landmarks[group].view(
 with_labels=with_labels,
 without_labels=without_labels,
 group=group,
 figure_id=self_view.figure_id,
 new_figure=False,
 image_view=True,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=render_legend_tmp,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=landmarks_axes_x_limits,
 axes_y_limits=landmarks_axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

 return landmark_view

class MultipleImageViewer(ImageViewer):
 def __init__(
 self, figure_id, new_figure, dimensions, pixels_list, channels=None, mask=None
):
 super(MultipleImageViewer, self).__init__(
 figure_id,
 new_figure,
 dimensions,
 pixels_list[0],
 channels=channels,
 mask=mask,
)
 pixels_list = [self._parse_channels(channels, p)[0] for p in pixels_list]
 self.pixels_list = [self._masked_pixels(p, mask) for p in pixels_list]

 def render(self, **kwargs):
 if self.dimensions == 2:
 if self.use_subplots:
 MultiImageSubplotsViewer2d(
 self.figure_id, self.new_figure, self.pixels_list
).render(**kwargs)
 else:
 return MultiImageViewer2d(
 self.figure_id, self.new_figure, self.pixels_list
).render(**kwargs)
 else:
 raise ValueError("Only 2D images are currently supported")

[docs]def plot_curve(
 x_axis,
 y_axis,
 figure_id=None,
 new_figure=True,
 legend_entries=None,
 title="",
 x_label="",
 y_label="",
 axes_x_limits=0.0,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 render_lines=True,
 line_colour=None,
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour=None,
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_legend=True,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 figure_size=(7, 7),
 render_grid=True,
 grid_line_style="--",
 grid_line_width=1,
):
 r"""
 Plot a single or multiple curves on the same figure.

 Parameters

 x_axis : `list` or `array`
 The values of the horizontal axis. They are common for all curves.
 y_axis : `list` of `lists` or `arrays`
 A `list` with `lists` or `arrays` with the values of the vertical axis
 for each curve.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 legend_entries : `list of `str` or ``None``, optional
 If `list` of `str`, it must have the same length as `errors` `list` and
 each `str` will be used to name each curve. If ``None``, the CED curves
 will be named as `'Curve %d'`.
 title : `str`, optional
 The figure's title.
 x_label : `str`, optional
 The label of the horizontal axis.
 y_label : `str`, optional
 The label of the vertical axis.
 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the graph as a percentage of the curves' width. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then the
 limits are set automatically.
 axes_y_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the graph as a percentage of the curves' height. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then the
 limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 render_lines : `bool` or `list` of `bool`, optional
 If ``True``, the line will be rendered. If `bool`, this value will be
 used for all curves. If `list`, a value must be specified for each
 curve, thus it must have the same length as `y_axis`.
 line_colour : `colour` or `list` of `colour` or ``None``, optional
 The colour of the lines. If not a `list`, this value will be
 used for all curves. If `list`, a value must be specified for each
 curve, thus it must have the same length as `y_axis`. If ``None``, the
 colours will be linearly sampled from jet colormap.
 Example `colour` options are ::

 {'r', 'g', 'b', 'c', 'm', 'k', 'w'}
 or
 (3,) ndarray

 line_style : ``{'-', '--', '-.', ':'}`` or `list` of those, optional
 The style of the lines. If not a `list`, this value will be used for all
 curves. If `list`, a value must be specified for each curve, thus it must
 have the same length as `y_axis`.
 line_width : `float` or `list` of `float`, optional
 The width of the lines. If `float`, this value will be used for all
 curves. If `list`, a value must be specified for each curve, thus it must
 have the same length as `y_axis`.
 render_markers : `bool` or `list` of `bool`, optional
 If ``True``, the markers will be rendered. If `bool`, this value will be
 used for all curves. If `list`, a value must be specified for each
 curve, thus it must have the same length as `y_axis`.
 marker_style : `marker` or `list` of `markers`, optional
 The style of the markers. If not a `list`, this value will be used for
 all curves. If `list`, a value must be specified for each curve, thus it
 must have the same length as `y_axis`.
 Example `marker` options ::

 {'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

 marker_size : `int` or `list` of `int`, optional
 The size of the markers in points. If `int`, this value will be used
 for all curves. If `list`, a value must be specified for each curve, thus
 it must have the same length as `y_axis`.
 marker_face_colour : `colour` or `list` of `colour` or ``None``, optional
 The face (filling) colour of the markers. If not a `list`, this value
 will be used for all curves. If `list`, a value must be specified for
 each curve, thus it must have the same length as `y_axis`. If ``None``,
 the colours will be linearly sampled from jet colormap.
 Example `colour` options are ::

 {'r', 'g', 'b', 'c', 'm', 'k', 'w'}
 or
 (3,) ndarray

 marker_edge_colour : `colour` or `list` of `colour` or ``None``, optional
 The edge colour of the markers. If not a `list`, this value will be used
 for all curves. If `list`, a value must be specified for each curve, thus
 it must have the same length as `y_axis`. If ``None``, the colours will
 be linearly sampled from jet colormap.
 Example `colour` options are ::

 {'r', 'g', 'b', 'c', 'm', 'k', 'w'}
 or
 (3,) ndarray

 marker_edge_width : `float` or `list` of `float`, optional
 The width of the markers' edge. If `float`, this value will be used for
 all curves. If `list`, a value must be specified for each curve, thus it
 must have the same length as `y_axis`.
 render_legend : `bool`, optional
 If ``True``, the legend will be rendered.
 legend_title : `str`, optional
 The title of the legend.
 legend_font_name : See below, optional
 The font of the legend.
 Example options ::

 {'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

 legend_font_style : ``{'normal', 'italic', 'oblique'}``, optional
 The font style of the legend.
 legend_font_size : `int`, optional
 The font size of the legend.
 legend_font_weight : See below, optional
 The font weight of the legend.
 Example options ::

 {'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

 legend_marker_scale : `float`, optional
 The relative size of the legend markers with respect to the original
 legend_location : `int`, optional
 The location of the legend. The predefined values are:

 =============== ===
 'best' 0
 'upper right' 1
 'upper left' 2
 'lower left' 3
 'lower right' 4
 'right' 5
 'center left' 6
 'center right' 7
 'lower center' 8
 'upper center' 9
 'center' 10
 =============== ===

 legend_bbox_to_anchor : (`float`, `float`), optional
 The bbox that the legend will be anchored.
 legend_border_axes_pad : `float`, optional
 The pad between the axes and legend border.
 legend_n_columns : `int`, optional
 The number of the legend's columns.
 legend_horizontal_spacing : `float`, optional
 The spacing between the columns.
 legend_vertical_spacing : `float`, optional
 The vertical space between the legend entries.
 legend_border : `bool`, optional
 If ``True``, a frame will be drawn around the legend.
 legend_border_padding : `float`, optional
 The fractional whitespace inside the legend border.
 legend_shadow : `bool`, optional
 If ``True``, a shadow will be drawn behind legend.
 legend_rounded_corners : `bool`, optional
 If ``True``, the frame's corners will be rounded (fancybox).
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See below, optional
 The font of the axes.
 Example options ::

 {'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{'normal', 'italic', 'oblique'}``, optional
 The font style of the axes.
 axes_font_weight : See below, optional
 The font weight of the axes.
 Example options ::

 {'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

 figure_size : (`float`, `float`) or ``None``, optional
 The size of the figure in inches.
 render_grid : `bool`, optional
 If ``True``, the grid will be rendered.
 grid_line_style : ``{'-', '--', '-.', ':'}``, optional
 The style of the grid lines.
 grid_line_width : `float`, optional
 The width of the grid lines.

 Raises

 ValueError
 legend_entries list has different length than y_axis list

 Returns

 viewer : :map:`GraphPlotter`
 The viewer object.
 """
 from menpo.visualize import GraphPlotter

 # check y_axis
 if not isinstance(y_axis, list):
 y_axis = [y_axis]

 # check legend_entries
 if legend_entries is not None and len(legend_entries) != len(y_axis):
 raise ValueError("legend_entries list has different length than y_axis " "list")

 # render
 return GraphPlotter(
 figure_id=figure_id,
 new_figure=new_figure,
 x_axis=x_axis,
 y_axis=y_axis,
 title=title,
 legend_entries=legend_entries,
 x_label=x_label,
 y_label=y_label,
 x_axis_limits=axes_x_limits,
 y_axis_limits=axes_y_limits,
 x_axis_ticks=axes_x_ticks,
 y_axis_ticks=axes_y_ticks,
).render(
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 figure_size=figure_size,
 render_grid=render_grid,
 grid_line_style=grid_line_style,
 grid_line_width=grid_line_width,
)

def render_rectangles_around_patches(
 centers,
 patch_shape,
 axes=None,
 image_view=True,
 line_colour="r",
 line_style="-",
 line_width=1,
 interpolation="none",
):
 r"""
 Method that renders rectangles of the specified `patch_shape` centered
 around all the points of the provided `centers`.

 Parameters

 centers : :map:`PointCloud`
 The centers around which to draw the rectangles.
 patch_shape : `tuple` or `ndarray`, optional
 The size of the rectangle to render.
 axes : `matplotlib.pyplot.axes` object or ``None``, optional
 The axes object on which to render.
 image_view : `bool`, optional
 If ``True`` the rectangles will be viewed as if they are in the image
 coordinate system.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 interpolation : See Below, optional
 In case a patch-based image is already rendered on the specified axes,
 this argument controls how tight the rectangles would be to the patches.
 It needs to have the same value as the one used when rendering the
 patches image, otherwise there is the danger that the rectangles won't
 be exactly on the border of the patches. Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36,
 hanning, hamming, hermite, kaiser, quadric, catrom, gaussian,
 bessel, mitchell, sinc, lanczos}

 """
 import matplotlib.pyplot as plt
 from matplotlib.patches import Rectangle

 # Dictionary with the line styles
 line_style_dict = {"-": "solid", "--": "dashed", "-.": "dashdot", ":": "dotted"}

 # Get axes object
 if axes is None:
 axes = plt.gca()

 # Need those in order to compute the lower left corner of the rectangle
 half_patch_shape = [patch_shape[0] / 2, patch_shape[1] / 2]

 # Set the view mode
 if image_view:
 xi = 1
 yi = 0
 else:
 xi = 0
 yi = 1

 # Set correct offsets so that the rectangle is tight to the patch
 if interpolation == "none":
 off_start = 0.5
 off_end = 0.0
 else:
 off_start = 1.0
 off_end = 0.5

 # Render rectangles
 for p in range(centers.shape[0]):
 xc = np.intp(centers[p, xi] - half_patch_shape[xi]) - off_start
 yc = np.intp(centers[p, yi] - half_patch_shape[yi]) - off_start
 axes.add_patch(
 Rectangle(
 (xc, yc),
 patch_shape[xi] + off_end,
 patch_shape[yi] + off_end,
 fill=False,
 edgecolor=line_colour,
 linewidth=line_width,
 linestyle=line_style_dict[line_style],
)
)

[docs]def view_patches(
 patches,
 patch_centers,
 patches_indices=None,
 offset_index=None,
 figure_id=None,
 new_figure=False,
 background="white",
 render_patches=True,
 channels=None,
 interpolation="none",
 cmap_name=None,
 alpha=1.0,
 render_patches_bboxes=True,
 bboxes_line_colour="r",
 bboxes_line_style="-",
 bboxes_line_width=1,
 render_centers=True,
 render_lines=True,
 line_colour=None,
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour=None,
 marker_edge_colour=None,
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 r"""
 Method that renders the provided `patches` on a canvas. The user can
 choose whether to render the patch centers (`render_centers`) as well as
 rectangle boundaries around the patches (`render_patches_bboxes`).

 The patches argument can have any of the two formats that are returned
 from the `extract_patches()` and `extract_patches_around_landmarks()`
 methods of the :map:`Image` class. Specifically it can be:

 1. ``(n_center, n_offset, self.n_channels, patch_shape)`` `ndarray`
 2. `list` of ``n_center * n_offset`` :map:`Image` objects

 Parameters

 patches : `ndarray` or `list`
 The values of the patches. It can have any of the two formats that are
 returned from the `extract_patches()` and
 `extract_patches_around_landmarks()` methods. Specifically, it can
 either be an ``(n_center, n_offset, self.n_channels, patch_shape)``
 `ndarray` or a `list` of ``n_center * n_offset`` :map:`Image` objects.
 patch_centers : :map:`PointCloud`
 The centers around which to visualize the patches.
 patches_indices : `int` or `list` of `int` or ``None``, optional
 Defines the patches that will be visualized. If ``None``, then all the
 patches are selected.
 offset_index : `int` or ``None``, optional
 The offset index within the provided `patches` argument, thus the index
 of the second dimension from which to sample. If ``None``, then ``0`` is
 used.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 background : ``{'black', 'white'}``, optional
 If ``'black'``, then the background is set equal to the minimum value
 of `patches`. If ``'white'``, then the background is set equal to the
 maximum value of `patches`.
 render_patches : `bool`, optional
 Flag that determines whether to render the patch values.
 channels : `int` or `list` of `int` or ``all`` or ``None``, optional
 If `int` or `list` of `int`, the specified channel(s) will be
 rendered. If ``all``, all the channels will be rendered in subplots.
 If ``None`` and the image is RGB, it will be rendered in RGB mode.
 If ``None`` and the image is not RGB, it is equivalent to ``all``.
 interpolation : See Below, optional
 The interpolation used to render the image. For example, if
 ``bilinear``, the image will be smooth and if ``nearest``, the
 image will be pixelated. Example options ::

 {none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

 cmap_name: `str`, optional,
 If ``None``, single channel and three channel images default
 to greyscale and rgb colormaps respectively.
 alpha : `float`, optional
 The alpha blending value, between 0 (transparent) and 1 (opaque).
 render_patches_bboxes : `bool`, optional
 Flag that determines whether to render the bounding box lines around the
 patches.
 bboxes_line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray
 bboxes_line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 bboxes_line_width : `float`, optional
 The width of the lines.
 render_centers : `bool`, optional
 Flag that determines whether to render the patch centers.
 render_lines : `bool`, optional
 If ``True``, the edges will be rendered.
 line_colour : See Below, optional
 The colour of the lines.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines.
 line_width : `float`, optional
 The width of the lines.
 render_markers : `bool`, optional
 If ``True``, the markers will be rendered.
 marker_style : See Below, optional
 The style of the markers. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the markers in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the markers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The width of the markers' edge.
 render_numbering : `bool`, optional
 If ``True``, the landmarks will be numbered.
 numbers_horizontal_align : ``{center, right, left}``, optional
 The horizontal alignment of the numbers' texts.
 numbers_vertical_align : ``{center, top, bottom, baseline}``, optional
 The vertical alignment of the numbers' texts.
 numbers_font_name : See Below, optional
 The font of the numbers. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 numbers_font_size : `int`, optional
 The font size of the numbers.
 numbers_font_style : ``{normal, italic, oblique}``, optional
 The font style of the numbers.
 numbers_font_weight : See Below, optional
 The font weight of the numbers.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

 numbers_font_colour : See Below, optional
 The font colour of the numbers.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 axes_x_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the x axis. If `float`, then it sets padding on the
 right and left of the shape as a percentage of the shape's width. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then the
 limits are set automatically.
 axes_y_limits : `float` or (`float`, `float`) or ``None``, optional
 The limits of the y axis. If `float`, then it sets padding on the
 top and bottom of the shape as a percentage of the shape's height. If
 `tuple` or `list`, then it defines the axis limits. If ``None``, then the
 limits are set automatically.
 axes_x_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the x axis.
 axes_y_ticks : `list` or `tuple` or ``None``, optional
 The ticks of the y axis.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.

 Returns

 viewer : `ImageViewer`
 The image viewing object.
 """
 from menpo.image.base import (
 _convert_patches_list_to_single_array,
 _create_patches_image,
)

 # If patches is a list, convert it to an array
 if isinstance(patches, list):
 patches = _convert_patches_list_to_single_array(patches, patch_centers.n_points)

 # Create patches image
 if render_patches:
 patches_image = _create_patches_image(
 patches,
 patch_centers,
 patches_indices=patches_indices,
 offset_index=offset_index,
 background=background,
)
 else:
 if background == "black":
 tmp_patches = np.zeros(
 (
 patches.shape[0],
 patches.shape[1],
 3,
 patches.shape[3],
 patches.shape[4],
)
)
 elif background == "white":
 tmp_patches = np.ones(
 (
 patches.shape[0],
 patches.shape[1],
 3,
 patches.shape[3],
 patches.shape[4],
)
)
 patches_image = _create_patches_image(
 tmp_patches,
 patch_centers,
 patches_indices=patches_indices,
 offset_index=offset_index,
 background=background,
)
 channels = None

 # Render patches image
 if render_centers:
 patch_view = patches_image.view_landmarks(
 channels=channels,
 group="patch_centers",
 figure_id=figure_id,
 new_figure=new_figure,
 interpolation=interpolation,
 cmap_name=cmap_name,
 alpha=alpha,
 render_lines=render_lines,
 line_colour=line_colour,
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour,
 marker_edge_colour=marker_edge_colour,
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_legend=False,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)
 else:
 patch_view = patches_image.view(
 figure_id=figure_id,
 new_figure=new_figure,
 channels=channels,
 interpolation=interpolation,
 cmap_name=cmap_name,
 alpha=alpha,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=figure_size,
)

 # Render rectangles around patches
 if render_patches_bboxes:
 patch_shape = [patches.shape[3], patches.shape[4]]
 render_rectangles_around_patches(
 patches_image.landmarks["patch_centers"].points,
 patch_shape,
 image_view=True,
 line_colour=bboxes_line_colour,
 line_style=bboxes_line_style,
 line_width=bboxes_line_width,
 interpolation=interpolation,
)

 return patch_view

[docs]def plot_gaussian_ellipses(
 covariances,
 means,
 n_std=2,
 render_colour_bar=True,
 colour_bar_label="Normalized Standard Deviation",
 colour_map="jet",
 figure_id=None,
 new_figure=False,
 image_view=True,
 line_colour="r",
 line_style="-",
 line_width=1.0,
 render_markers=True,
 marker_edge_colour="k",
 marker_face_colour="k",
 marker_edge_width=1.0,
 marker_size=5,
 marker_style="o",
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 crop_proportion=0.1,
 figure_size=(7, 7),
):
 r"""
 Method that renders the Gaussian ellipses that correspond to a set of
 covariance matrices and mean vectors. Naturally, this only works for
 2-dimensional random variables.

 Parameters

 covariances : `list` of ``(2, 2)`` `ndarray`
 The covariance matrices that correspond to each ellipse.
 means : `list` of ``(2,)`` `ndarray`
 The mean vectors that correspond to each ellipse.
 n_std : `float`, optional
 This defines the size of the ellipses in terms of number of standard
 deviations.
 render_colour_bar : `bool`, optional
 If ``True``, then the ellipses will be coloured based on their
 normalized standard deviations and a colour bar will also appear on
 the side. If ``False``, then all the ellipses will have the same colour.
 colour_bar_label : `str`, optional
 The title of the colour bar. It only applies if `render_colour_bar`
 is ``True``.
 colour_map : `str`, optional
 A valid Matplotlib colour map. For more info, please refer to
 `matplotlib.cm`.
 figure_id : `object`, optional
 The id of the figure to be used.
 new_figure : `bool`, optional
 If ``True``, a new figure is created.
 image_view : `bool`, optional
 If ``True`` the ellipses will be rendered in the image coordinates
 system.
 line_colour : See Below, optional
 The colour of the lines of the ellipses.
 Example options::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 line_style : ``{-, --, -., :}``, optional
 The style of the lines of the ellipses.
 line_width : `float`, optional
 The width of the lines of the ellipses.
 render_markers : `bool`, optional
 If ``True``, the centers of the ellipses will be rendered.
 marker_style : See Below, optional
 The style of the centers of the ellipses. Example options ::

 {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

 marker_size : `int`, optional
 The size of the centers of the ellipses in points.
 marker_face_colour : See Below, optional
 The face (filling) colour of the centers of the ellipses.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_colour : See Below, optional
 The edge colour of the centers of the ellipses.
 Example options ::

 {r, g, b, c, m, k, w}
 or
 (3,) ndarray

 marker_edge_width : `float`, optional
 The edge width of the centers of the ellipses.
 render_axes : `bool`, optional
 If ``True``, the axes will be rendered.
 axes_font_name : See Below, optional
 The font of the axes. Example options ::

 {serif, sans-serif, cursive, fantasy, monospace}

 axes_font_size : `int`, optional
 The font size of the axes.
 axes_font_style : ``{normal, italic, oblique}``, optional
 The font style of the axes.
 axes_font_weight : See Below, optional
 The font weight of the axes.
 Example options ::

 {ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

 crop_proportion : `float`, optional
 The proportion to be left around the centers' pointcloud.
 figure_size : (`float`, `float`) `tuple` or ``None`` optional
 The size of the figure in inches.
 """
 import matplotlib.pyplot as plt
 from matplotlib.patches import Ellipse
 import matplotlib.colors as colors
 import matplotlib.cm as cmx
 from matplotlib.font_manager import FontProperties
 from menpo.shape import PointCloud

 def eigh_sorted(cov):
 vals, vecs = np.linalg.eigh(cov)
 order = vals.argsort()[::-1]
 return vals[order], vecs[:, order]

 # get correct line style
 if line_style == "-":
 line_style = "solid"
 elif line_style == "--":
 line_style = "dashed"
 elif line_style == "-.":
 line_style = "dashdot"
 elif line_style == ":":
 line_style = "dotted"
 else:
 raise ValueError("line_style must be selected from " "['-', '--', '-.', ':'].")

 # create pointcloud
 pc = PointCloud(np.array(means))

 # compute axes limits
 bounds = pc.bounds()
 r = pc.range()
 x_rr = r[0] * crop_proportion
 y_rr = r[1] * crop_proportion
 axes_x_limits = [bounds[0][1] - x_rr, bounds[1][1] + x_rr]
 axes_y_limits = [bounds[0][0] - y_rr, bounds[1][0] + y_rr]
 normalizer = np.sum(r) / 2.0

 # compute height, width, theta and std
 stds = []
 heights = []
 widths = []
 thetas = []
 for cov in covariances:
 vals, vecs = eigh_sorted(cov)
 width, height = np.sqrt(vals)
 theta = np.degrees(np.arctan2(*vecs[:, 0][::-1]))
 stds.append(np.mean([height, width]) / normalizer)
 heights.append(height)
 widths.append(width)
 thetas.append(theta)

 if render_colour_bar:
 # set colormap values
 cmap = plt.get_cmap(colour_map)
 cNorm = colors.Normalize(vmin=np.min(stds), vmax=np.max(stds))
 scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)

 # visualize pointcloud
 if render_colour_bar:
 renderer = pc.view(
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 figure_size=figure_size,
 render_markers=False,
)
 else:
 renderer = pc.view(
 figure_id=figure_id,
 new_figure=new_figure,
 image_view=image_view,
 marker_edge_colour=marker_edge_colour,
 marker_face_colour=marker_face_colour,
 marker_edge_width=marker_edge_width,
 marker_size=marker_size,
 marker_style=marker_style,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 figure_size=figure_size,
 render_markers=render_markers,
)

 # plot ellipses
 ax = plt.gca()
 for i in range(len(covariances)):
 # Width and height are "full" widths, not radius
 width = 2 * n_std * widths[i]
 height = 2 * n_std * heights[i]

 if image_view:
 colour = line_colour
 if render_colour_bar:
 colour = scalarMap.to_rgba(stds[i])
 if render_markers:
 plt.plot(
 means[i][1],
 means[i][0],
 facecolor=colour,
 edgecolor=colour,
 linewidth=0,
)
 ellip = Ellipse(
 xy=means[i][-1::-1],
 width=height,
 height=width,
 angle=thetas[i],
 linestyle=line_style,
 linewidth=line_width,
 edgecolor=colour,
 facecolor="none",
)
 else:
 colour = line_colour
 if render_colour_bar:
 colour = scalarMap.to_rgba(stds[i])
 if render_markers:
 plt.plot(
 means[i][0],
 means[i][1],
 facecolor=colour,
 edgecolor=colour,
 linewidth=0,
)
 ellip = Ellipse(
 xy=means[i],
 width=width,
 height=height,
 angle=thetas[i],
 linestyle=line_style,
 linewidth=line_width,
 edgecolor=colour,
 facecolor="none",
)
 ax.add_artist(ellip)

 # show colour bar
 if render_colour_bar:
 scalarMap.set_array(stds)
 cb = plt.colorbar(scalarMap, label=colour_bar_label)

 # change colour bar's font properties
 ax = cb.ax
 text = ax.yaxis.label
 font = FontProperties(
 size=axes_font_size,
 weight=axes_font_weight,
 style=axes_font_style,
 family=axes_font_name,
)
 text.set_font_properties(font)

 return renderer

 menpo.visualize.textutils

 Source code for menpo.visualize.textutils

import sys
from collections import deque
from datetime import datetime
from time import time

[docs]def progress_bar_str(percentage, bar_length=20, bar_marker="=", show_bar=True):
 r"""
 Returns an `str` of the specified progress percentage. The percentage is
 represented either in the form of a progress bar or in the form of a
 percentage number. It can be combined with the :func:`print_dynamic`
 function.

 Parameters

 percentage : `float`
 The progress percentage to be printed. It must be in the range
 ``[0, 1]``.
 bar_length : `int`, optional
 Defines the length of the bar in characters.
 bar_marker : `str`, optional
 Defines the marker character that will be used to fill the bar.
 show_bar : `bool`, optional
 If ``True``, the `str` includes the bar followed by the percentage,
 e.g. ``'[=====] 50%'``

 If ``False``, the `str` includes only the percentage,
 e.g. ``'50%'``

 Returns

 progress_str : `str`
 The progress percentage string that can be printed.

 Raises

 ValueError
 ``percentage`` is not in the range ``[0, 1]``
 ValueError
 ``bar_length`` must be an integer >= ``1``
 ValueError
 ``bar_marker`` must be a string of length 1

 Examples

 This for loop: ::

 n_iters = 2000
 for k in range(n_iters):
 print_dynamic(progress_bar_str(float(k) / (n_iters-1)))

 prints a progress bar of the form: ::

 [=============] 68%
 """
 if percentage < 0:
 raise ValueError("percentage is not in the range [0, 1]")
 elif percentage > 1:
 percentage = 1
 if not isinstance(bar_length, int) or bar_length < 1:
 raise ValueError("bar_length must be an integer >= 1")
 if not isinstance(bar_marker, str) or len(bar_marker) != 1:
 raise ValueError("bar_marker must be a string of length 1")
 # generate output string
 if show_bar:
 str_param = "[%-" + str(bar_length) + "s] %d%%"
 bar_percentage = int(percentage * bar_length)
 return str_param % (bar_marker * bar_percentage, percentage * 100)
 else:
 return "%d%%" % (percentage * 100)

[docs]def print_dynamic(str_to_print):
 r"""
 Prints dynamically the provided `str`, i.e. the `str` is printed and then
 the buffer gets flushed.

 Parameters

 str_to_print : `str`
 The string to print.
 """
 sys.stdout.write("\r{}".format(str_to_print.ljust(80)))
 sys.stdout.flush()

[docs]def bytes_str(num):
 r"""
 Converts bytes to a human readable format. For example: ::

 print_bytes(12345) returns '12.06 KB'
 print_bytes(123456789) returns '117.74 MB'

 Parameters

 num : `int`
 The size in bytes.

 Raises

 ValueError
 num must be int >= 0
 """
 if not isinstance(num, int) or num < 0:
 raise ValueError("num must be int >= 0")
 for x in ["bytes", "KB", "MB", "GB"]:
 if num < 1024.0:
 return "{0:3.2f} {1:s}".format(num, x)
 num /= 1024.0
 return "{0:3.2f} {1:s}".format(num, "TB")

[docs]def print_progress(
 iterable,
 prefix="",
 n_items=None,
 offset=0,
 show_bar=True,
 show_count=True,
 show_eta=True,
 end_with_newline=True,
 min_seconds_between_updates=0.1,
):
 r"""
 Print the remaining time needed to compute over an iterable.

 To use, wrap an existing iterable with this function before processing in
 a for loop (see example).

 The estimate of the remaining time is based on a moving average of the last
 100 items completed in the loop.

 Parameters

 iterable : `iterable`
 An iterable that will be processed. The iterable is passed through by
 this function, with the time taken for each complete iteration logged.
 prefix : `str`, optional
 If provided a string that will be prepended to the progress report at
 each level.
 n_items : `int`, optional
 Allows for ``iterator`` to be a generator whose length will be assumed
 to be `n_items`. If not provided, then ``iterator`` needs to be
 `Sizable`.
 offset : `int`, optional
 Useful in combination with ``n_items`` - report back the progress as
 if `offset` items have already been handled. ``n_items`` will be left
 unchanged.
 show_bar : `bool`, optional
 If False, The progress bar (e.g. [=========]) will be hidden.
 show_count : `bool`, optional
 If False, The item count (e.g. (4/25)) will be hidden.
 show_eta : `bool`, optional
 If False, The estimated time to finish (e.g. - 00:00:03 remaining)
 will be hidden.
 end_with_newline : `bool`, optional
 If False, there will be no new line added at the end of the dynamic
 printing. This means the next print statement will overwrite the
 dynamic report presented here. Useful if you want to follow up a
 print_progress with a second print_progress, where the second
 overwrites the first on the same line.
 min_seconds_between_updates : `float`, optional
 The number of seconds that have to pass between two print updates.
 This allows ``print_progress`` to be used on fast iterations without
 incurring a significant overhead. Set to ``0`` to disable this
 throttling.

 Raises

 ValueError
 ``offset`` provided without ``n_items``

 Examples

 This for loop: ::

 from time import sleep
 for i in print_progress(range(100)):
 sleep(1)

 prints a progress report of the form: ::

 [=============] 70% (7/10) - 00:00:03 remaining
 """
 if n_items is None and offset != 0:
 raise ValueError(
 "offset can only be set when n_items has been" " manually provided."
)
 if prefix != "":
 prefix += ": "
 bar_length = 10
 else:
 bar_length = 20
 n = n_items if n_items is not None else len(iterable)

 timings = deque([], 100)
 time1 = time()
 last_update_time = 0
 for i, x in enumerate(iterable, 1 + offset):
 yield x
 time2 = time()
 timings.append(time2 - time1)
 time1 = time2
 remaining = n - i
 if time2 - last_update_time < min_seconds_between_updates:
 continue
 last_update_time = time2
 duration = datetime.utcfromtimestamp(sum(timings) / len(timings) * remaining)
 bar_str = progress_bar_str(i / n, bar_length=bar_length, show_bar=show_bar)
 count_str = " ({}/{})".format(i, n) if show_count else ""
 eta_str = (
 " - {} remaining".format(duration.strftime("%H:%M:%S")) if show_eta else ""
)
 print_dynamic("{}{}{}{}".format(prefix, bar_str, count_str, eta_str))

 # the iterable has now finished - to make it clear redraw the progress with
 # a done message. We also hide the eta at this stage.
 count_str = " ({}/{})".format(n, n) if show_count else ""
 bar_str = progress_bar_str(1, bar_length=bar_length, show_bar=show_bar)
 print_dynamic("{}{}{} - done.".format(prefix, bar_str, count_str))

 if end_with_newline:
 print("")

 menpo.visualize.viewmatplotlib

 Source code for menpo.visualize.viewmatplotlib

import numpy as np

from menpo.visualize.base import Renderer

The colour map used for all lines and markers
GLOBAL_CMAP = "jet"

[docs]class MatplotlibRenderer(Renderer):
 r"""
 Abstract class for rendering visualizations using Matplotlib.

 Parameters

 figure_id : `int` or ``None``
 A figure id or ``None``. ``None`` assumes we maintain the Matplotlib
 state machine and use `plt.gcf()`.
 new_figure : `bool`
 If ``True``, it creates a new figure to render on.
 """

 def __init__(self, figure_id, new_figure):
 super(MatplotlibRenderer, self).__init__(figure_id, new_figure)

 # Set up data for saving
 self._supported_ext = self.figure.canvas.get_supported_filetypes().keys()
 # Create the extensions map, have to add . in front of the extensions
 # and map every extension to the savefig method
 n_ext = len(self._supported_ext)
 func_list = [lambda obj, fp, **kwargs: self.figure.savefig(fp, **obj)] * n_ext
 self._extensions_map = dict(
 zip(["." + s for s in self._supported_ext], func_list)
)

[docs] def get_figure(self):
 r"""
 Gets the figure specified by the combination of ``self.figure_id`` and
 ``self.new_figure``. If ``self.figure_id == None`` then ``plt.gcf()``
 is used. ``self.figure_id`` is also set to the correct id of the figure
 if a new figure is created.

 Returns

 figure : Matplotlib figure object
 The figure we will be rendering on.
 """
 import matplotlib.pyplot as plt

 if self.new_figure or self.figure_id is not None:
 self.figure = plt.figure(self.figure_id)
 else:
 self.figure = plt.gcf()

 self.figure_id = self.figure.number

 return self.figure

[docs] def save_figure(
 self,
 filename,
 format="png",
 dpi=None,
 face_colour="w",
 edge_colour="w",
 orientation="portrait",
 paper_type="letter",
 transparent=False,
 pad_inches=0.1,
 overwrite=False,
):
 r"""
 Method for saving the figure of the current `figure_id` to file.

 Parameters

 filename : `str` or `file`-like object
 The string path or file-like object to save the figure at/into.
 format : `str`
 The format to use. This must match the file path if the file path is
 a `str`.
 dpi : `int` > 0 or ``None``, optional
 The resolution in dots per inch.
 face_colour : See Below, optional
 The face colour of the figure rectangle.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of len 3

 edge_colour : See Below, optional
 The edge colour of the figure rectangle.
 Example options ::

 {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``}
 or
 ``(3,)`` `ndarray`
 or
 `list` of len 3

 orientation : {``portrait``, ``landscape``}, optional
 The page orientation.
 paper_type : See Below, optional
 The type of the paper.
 Example options ::

 {``letter``, ``legal``, ``executive``, ``ledger``,
 ``a0`` through ``a10``, ``b0` through ``b10``}

 transparent : `bool`, optional
 If ``True``, the axes patches will all be transparent; the figure
 patch will also be transparent unless `face_colour` and/or
 `edge_colour` are specified. This is useful, for example, for
 displaying a plot on top of a coloured background on a web page.
 The transparency of these patches will be restored to their original
 values upon exit of this function.
 pad_inches : `float`, optional
 Amount of padding around the figure.
 overwrite : `bool`, optional
 If ``True``, the file will be overwritten if it already exists.
 """
 from menpo.io.output.base import _export

 save_fig_args = {
 "dpi": dpi,
 "facecolour": face_colour,
 "edgecolour": edge_colour,
 "orientation": orientation,
 "papertype": paper_type,
 "format": format,
 "transparent": transparent,
 "pad_inches": pad_inches,
 "bbox_inches": "tight",
 "frameon": None,
 }
 # Use the export code so that we have a consistent interface
 _export(
 save_fig_args, filename, self._extensions_map, format, overwrite=overwrite
)

[docs] def clear_figure(self):
 r"""
 Method for clearing the current figure.
 """
 self.figure.clf()

[docs] def force_draw(self):
 r"""
 Method for forcing the current figure to render.
 """
 import matplotlib.pyplot as plt

 plt.show()

class MatplotlibSubplots(object):
 def _subplot_layout(self, num_subplots):
 if num_subplots < 2:
 return [1, 1]
 while self._is_prime(num_subplots) and num_subplots > 4:
 num_subplots += 1
 p = self._factor(num_subplots)
 if len(p) == 1:
 p.insert(0, 1)
 return p
 while len(p) > 2:
 if len(p) >= 4:
 p[0] = p[0] * p[-2]
 p[1] = p[1] * p[-1]
 del p[-2:]
 else:
 p[0] = p[0] * p[1]
 del p[1]
 p.sort()
 # Reformat if the column/row ratio is too large: we want a roughly
 # square design
 while (p[1] / p[0]) > 2.5:
 p = self._subplot_layout(num_subplots + 1)
 return p

 def _factor(self, n):
 gaps = [1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6]
 length, cycle = 11, 3
 f, fs, next_ind = 2, [], 0
 while f * f <= n:
 while n % f == 0:
 fs.append(f)
 n /= f
 f += gaps[next_ind]
 next_ind += 1
 if next_ind == length:
 next_ind = cycle
 if n > 1:
 fs.append(n)
 return fs

 def _is_prime(self, n):
 if n == 2 or n == 3:
 return True
 if n < 2 or n % 2 == 0:
 return False
 if n < 9:
 return True
 if n % 3 == 0:
 return False
 r = int(n ** 0.5)
 f = 5
 while f <= r:
 if n % f == 0:
 return False
 if n % (f + 2) == 0:
 return False
 f += 6
 return True

def _parse_cmap(cmap_name=None, image_shape_len=3):
 import matplotlib.cm as cm

 if cmap_name is not None:
 return cm.get_cmap(cmap_name)
 else:
 if image_shape_len == 2:
 # Single channels are viewed in Gray by default
 return cm.gray
 else:
 return None

def _parse_axes_limits(min_x, max_x, min_y, max_y, axes_x_limits, axes_y_limits):
 if isinstance(axes_x_limits, int):
 axes_x_limits = float(axes_x_limits)
 if isinstance(axes_y_limits, int):
 axes_y_limits = float(axes_y_limits)
 if isinstance(axes_x_limits, float):
 pad = (max_x - min_x) * axes_x_limits
 axes_x_limits = [min_x - pad, max_x + pad]
 if isinstance(axes_y_limits, float):
 pad = (max_y - min_y) * axes_y_limits
 axes_y_limits = [min_y - pad, max_y + pad]
 return axes_x_limits, axes_y_limits

def _set_axes_options(
 ax,
 render_axes=True,
 inverted_y_axis=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 axes_x_label=None,
 axes_y_label=None,
 title=None,
):
 if render_axes:
 # render axes
 ax.set_axis_on()
 # set font options
 for l in ax.get_xticklabels() + ax.get_yticklabels():
 l.set_fontsize(axes_font_size)
 l.set_fontname(axes_font_name)
 l.set_fontstyle(axes_font_style)
 l.set_fontweight(axes_font_weight)
 # set ticks
 if axes_x_ticks is not None:
 ax.set_xticks(axes_x_ticks)
 if axes_y_ticks is not None:
 ax.set_yticks(axes_y_ticks)
 # set labels and title
 if axes_x_label is None:
 axes_x_label = ""
 if axes_y_label is None:
 axes_y_label = ""
 if title is None:
 title = ""
 ax.set_xlabel(
 axes_x_label,
 fontsize=axes_font_size,
 fontname=axes_font_name,
 fontstyle=axes_font_style,
 fontweight=axes_font_weight,
)
 ax.set_ylabel(
 axes_y_label,
 fontsize=axes_font_size,
 fontname=axes_font_name,
 fontstyle=axes_font_style,
 fontweight=axes_font_weight,
)
 ax.set_title(
 title,
 fontsize=axes_font_size,
 fontname=axes_font_name,
 fontstyle=axes_font_style,
 fontweight=axes_font_weight,
)
 else:
 # do not render axes
 ax.set_axis_off()
 # also remove the ticks to get rid of the white area
 ax.set_xticks([])
 ax.set_yticks([])

 # set axes limits
 if axes_x_limits is not None:
 ax.set_xlim(np.sort(axes_x_limits))
 if axes_y_limits is None:
 axes_y_limits = ax.get_ylim()
 if inverted_y_axis:
 ax.set_ylim(np.sort(axes_y_limits)[::-1])
 else:
 ax.set_ylim(np.sort(axes_y_limits))

def _set_grid_options(render_grid=True, grid_line_style="--", grid_line_width=2):
 import matplotlib.pyplot as plt

 if render_grid:
 plt.grid("on", linestyle=grid_line_style, linewidth=grid_line_width)
 else:
 plt.grid("off")

def _set_figure_size(fig, figure_size=(7, 7)):
 if figure_size is not None:
 fig.set_size_inches(np.asarray(figure_size))

def _set_numbering(
 ax,
 centers,
 render_numbering=True,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
):
 if render_numbering:
 for k, p in enumerate(centers):
 ax.annotate(
 str(k),
 xy=(p[0], p[1]),
 horizontalalignment=numbers_horizontal_align,
 verticalalignment=numbers_vertical_align,
 size=numbers_font_size,
 family=numbers_font_name,
 fontstyle=numbers_font_style,
 fontweight=numbers_font_weight,
 color=numbers_font_colour,
)

def _set_legend(
 ax,
 legend_handles,
 render_legend=True,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
):
 if render_legend:
 # Options related to legend's font
 prop = {
 "family": legend_font_name,
 "size": legend_font_size,
 "style": legend_font_style,
 "weight": legend_font_weight,
 }

 # Render legend
 ax.legend(
 handles=legend_handles,
 title=legend_title,
 prop=prop,
 loc=legend_location,
 bbox_to_anchor=legend_bbox_to_anchor,
 borderaxespad=legend_border_axes_pad,
 ncol=legend_n_columns,
 columnspacing=legend_horizontal_spacing,
 labelspacing=legend_vertical_spacing,
 frameon=legend_border,
 borderpad=legend_border_padding,
 shadow=legend_shadow,
 fancybox=legend_rounded_corners,
 markerscale=legend_marker_scale,
)

class MatplotlibImageViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, image):
 super(MatplotlibImageViewer2d, self).__init__(figure_id, new_figure)
 self.image = image
 self.axes_list = []

 def render(
 self,
 interpolation="bilinear",
 cmap_name=None,
 alpha=1.0,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 import matplotlib.pyplot as plt

 # parse colour map argument
 cmap = _parse_cmap(cmap_name=cmap_name, image_shape_len=len(self.image.shape))

 # parse axes limits
 axes_x_limits, axes_y_limits = _parse_axes_limits(
 0.0,
 self.image.shape[1],
 0.0,
 self.image.shape[0],
 axes_x_limits,
 axes_y_limits,
)

 # render image
 plt.imshow(self.image, cmap=cmap, interpolation=interpolation, alpha=alpha)

 # store axes object
 ax = plt.gca()
 self.axes_list = [ax]

 # set axes options
 _set_axes_options(
 ax,
 render_axes=render_axes,
 inverted_y_axis=True,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
)

 # set figure size
 _set_figure_size(self.figure, figure_size)

 return self

class MatplotlibImageSubplotsViewer2d(MatplotlibRenderer, MatplotlibSubplots):
 def __init__(self, figure_id, new_figure, image):
 super(MatplotlibImageSubplotsViewer2d, self).__init__(figure_id, new_figure)
 self.image = image
 self.num_subplots = self.image.shape[2]
 self.plot_layout = self._subplot_layout(self.num_subplots)
 self.axes_list = []

 def render(
 self,
 interpolation="bilinear",
 cmap_name=None,
 alpha=1.0,
 render_axes=False,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 import matplotlib.pyplot as plt

 # parse colour map argument
 cmap = _parse_cmap(cmap_name=cmap_name, image_shape_len=2)

 # parse axes limits
 axes_x_limits, axes_y_limits = _parse_axes_limits(
 0.0,
 self.image.shape[1],
 0.0,
 self.image.shape[0],
 axes_x_limits,
 axes_y_limits,
)

 p = self.plot_layout
 for i in range(self.image.shape[2]):
 # create subplot and append the axes object
 ax = plt.subplot(p[0], p[1], 1 + i)
 self.axes_list.append(ax)

 # render image
 plt.imshow(
 self.image[:, :, i], cmap=cmap, interpolation=interpolation, alpha=alpha
)

 # set axes options
 _set_axes_options(
 ax,
 render_axes=render_axes,
 inverted_y_axis=True,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
)

 # set figure size
 _set_figure_size(self.figure, figure_size)

 return self

class MatplotlibPointGraphViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, points, edges):
 super(MatplotlibPointGraphViewer2d, self).__init__(figure_id, new_figure)
 self.points = points
 self.edges = edges

 def render(
 self,
 image_view=False,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="r",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
 label=None,
):
 from matplotlib import collections as mc
 import matplotlib.pyplot as plt

 # Flip x and y for viewing if points are tied to an image
 points = self.points[:, ::-1] if image_view else self.points

 # parse axes limits
 min_x, min_y = np.min(points, axis=0)
 max_x, max_y = np.max(points, axis=0)
 axes_x_limits, axes_y_limits = _parse_axes_limits(
 min_x, max_x, min_y, max_y, axes_x_limits, axes_y_limits
)

 # get current axes object
 ax = plt.gca()

 # Check if graph has edges to be rendered (for example a PointCloud
 # won't have any edges)
 if render_lines and np.array(self.edges).shape[0] > 0:
 # Get edges to be rendered
 lines = zip(points[self.edges[:, 0], :], points[self.edges[:, 1], :])

 # Draw line objects
 lc = mc.LineCollection(
 lines,
 colors=line_colour,
 linestyles=line_style,
 linewidths=line_width,
 cmap=GLOBAL_CMAP,
 label=label,
)
 ax.add_collection(lc)

 # If a label is defined, it should only be applied to the lines, of
 # a PointGraph, which represent each one of the labels, unless a
 # PointCloud is passed in.
 label = None
 ax.autoscale()

 if render_markers:
 plt.plot(
 points[:, 0],
 points[:, 1],
 linewidth=0,
 markersize=marker_size,
 marker=marker_style,
 markeredgewidth=marker_edge_width,
 markeredgecolor=marker_edge_colour,
 markerfacecolor=marker_face_colour,
 label=label,
)

 # set numbering
 _set_numbering(
 ax,
 points,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
)

 # set axes options
 _set_axes_options(
 ax,
 render_axes=render_axes,
 inverted_y_axis=image_view,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
)

 # set equal aspect ratio
 ax.set_aspect("equal", adjustable="box")

 # set figure size
 _set_figure_size(self.figure, figure_size)

 return self

class MatplotlibLandmarkViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, group, landmark_group):
 super(MatplotlibLandmarkViewer2d, self).__init__(figure_id, new_figure)
 self.group = group
 self.landmark_group = landmark_group

 def render(
 self,
 image_view=False,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=5,
 marker_face_colour="r",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_numbering=False,
 numbers_horizontal_align="center",
 numbers_vertical_align="bottom",
 numbers_font_name="sans-serif",
 numbers_font_size=10,
 numbers_font_style="normal",
 numbers_font_weight="normal",
 numbers_font_colour="k",
 render_legend=True,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 axes_x_limits=None,
 axes_y_limits=None,
 axes_x_ticks=None,
 axes_y_ticks=None,
 figure_size=(7, 7),
):
 import matplotlib.lines as mlines
 import matplotlib.pyplot as plt

 # Regarding the labels colours, we may get passed either no colours (in
 # which case we generate random colours) or a single colour to colour
 # all the labels with
 # TODO: All marker and line options could be defined as lists...
 n_labels = self.landmark_group.n_labels
 line_colour = _check_colours_list(
 render_lines,
 line_colour,
 n_labels,
 "Must pass a list of line colours with length n_labels or a single "
 "line colour for all labels.",
)
 marker_face_colour = _check_colours_list(
 render_markers,
 marker_face_colour,
 n_labels,
 "Must pass a list of marker face colours with length n_labels or "
 "a single marker face colour for all labels.",
)
 marker_edge_colour = _check_colours_list(
 render_markers,
 marker_edge_colour,
 n_labels,
 "Must pass a list of marker edge colours with length n_labels or "
 "a single marker edge colour for all labels.",
)

 # check axes limits
 points = self.landmark_group.points
 if image_view:
 min_y, min_x = np.min(points, axis=0)
 max_y, max_x = np.max(points, axis=0)
 else:
 min_x, min_y = np.min(points, axis=0)
 max_x, max_y = np.max(points, axis=0)
 axes_x_limits, axes_y_limits = _parse_axes_limits(
 min_x, max_x, min_y, max_y, axes_x_limits, axes_y_limits
)

 # get pointcloud of each label
 sub_pointclouds = self._build_sub_pointclouds()

 # initialize legend_handles list
 legend_handles = []

 # for each pointcloud
 for i, (label, pc) in enumerate(sub_pointclouds):
 # render pointcloud
 pc.view(
 figure_id=self.figure_id,
 image_view=image_view,
 render_lines=render_lines,
 line_colour=line_colour[i],
 line_style=line_style,
 line_width=line_width,
 render_markers=render_markers,
 marker_style=marker_style,
 marker_size=marker_size,
 marker_face_colour=marker_face_colour[i],
 marker_edge_colour=marker_edge_colour[i],
 marker_edge_width=marker_edge_width,
 render_numbering=render_numbering,
 numbers_horizontal_align=numbers_horizontal_align,
 numbers_vertical_align=numbers_vertical_align,
 numbers_font_name=numbers_font_name,
 numbers_font_size=numbers_font_size,
 numbers_font_style=numbers_font_style,
 numbers_font_weight=numbers_font_weight,
 numbers_font_colour=numbers_font_colour,
 render_axes=render_axes,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=axes_x_limits,
 axes_y_limits=axes_y_limits,
 axes_x_ticks=axes_x_ticks,
 axes_y_ticks=axes_y_ticks,
 figure_size=None,
)

 # set legend entry
 if render_legend:
 tmp_line = line_style
 tmp_marker = marker_style if render_markers else "None"
 legend_handles.append(
 mlines.Line2D(
 [],
 [],
 linewidth=line_width,
 linestyle=tmp_line,
 color=line_colour[i],
 marker=tmp_marker,
 markersize=marker_size ** 0.5,
 markeredgewidth=marker_edge_width,
 markeredgecolor=marker_edge_colour[i],
 markerfacecolor=marker_face_colour[i],
 label="{0}: {1}".format(self.group, label),
)
)
 # set legend
 _set_legend(
 plt.gca(),
 legend_handles,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
)

 # set figure size
 _set_figure_size(self.figure, figure_size)
 # If no limits are set then ensure that all sub-pointclouds fit in the
 # view
 if axes_x_limits is None and axes_y_limits is None:
 plt.autoscale()

 return self

 def _build_sub_pointclouds(self):
 return [
 (label, self.landmark_group.get_label(label))
 for label in self.landmark_group.labels
]

class MatplotlibAlignmentViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, alignment_transform):
 super(MatplotlibAlignmentViewer2d, self).__init__(figure_id, new_figure)
 self.alignment_transform = alignment_transform

 def render(self, image=False, **kwargs):
 r"""
 Visualize how points are affected by the warp in 2 dimensions.
 """
 import matplotlib.pyplot as plt

 source = self.alignment_transform.source.points
 target = self.alignment_transform.target.points
 # a factor by which the minimum and maximum x and y values of the warp
 # will be increased by.
 x_margin_factor, y_margin_factor = 0.5, 0.5
 # the number of x and y samples to take
 n_x, n_y = 50, 50
 # {x y}_{min max} is the actual bounds on either source or target
 # landmarks
 x_min, y_min = np.vstack([target.min(0), source.min(0)]).min(0)
 x_max, y_max = np.vstack([target.max(0), source.max(0)]).max(0)
 x_margin = x_margin_factor * (x_max - x_min)
 y_margin = y_margin_factor * (y_max - y_min)
 # {x y}_{min max}_m is the bound once it has been grown by the factor
 # of the spread in that dimension
 x_min_m = x_min - x_margin
 x_max_m = x_max + x_margin
 y_min_m = y_min - y_margin
 y_max_m = y_max + y_margin
 # build sample points for the selected region
 x = np.linspace(x_min_m, x_max_m, n_x)
 y = np.linspace(y_min_m, y_max_m, n_y)
 xx, yy = np.meshgrid(x, y)
 sample_points = np.concatenate(
 [xx.reshape([-1, 1]), yy.reshape([-1, 1])], axis=1
)
 warped_points = self.alignment_transform.apply(sample_points)
 delta = warped_points - sample_points
 # plot the sample points result
 x, y, = (
 0,
 1,
)
 if image:
 # if we are overlaying points onto an image,
 # we have to account for the fact that axis 0 is typically
 # called 'y' and axis 1 is typically called 'x'. Flip them here
 x, y = y, x
 plt.quiver(sample_points[:, x], sample_points[:, y], delta[:, x], delta[:, y])
 delta = target - source
 # plot how the landmarks move from source to target
 plt.quiver(
 source[:, x],
 source[:, y],
 delta[:, x],
 delta[:, y],
 angles="xy",
 scale_units="xy",
 scale=1,
)
 # rescale to the bounds
 plt.xlim((x_min_m, x_max_m))
 plt.ylim((y_min_m, y_max_m))
 if image:
 # if we are overlaying points on an image, axis0 (the 'y' axis)
 # is flipped.
 plt.gca().invert_yaxis()
 return self

class MatplotlibGraphPlotter(MatplotlibRenderer):
 def __init__(
 self,
 figure_id,
 new_figure,
 x_axis,
 y_axis,
 title=None,
 legend_entries=None,
 x_label=None,
 y_label=None,
 x_axis_limits=None,
 y_axis_limits=None,
 x_axis_ticks=None,
 y_axis_ticks=None,
):
 super(MatplotlibGraphPlotter, self).__init__(figure_id, new_figure)
 self.x_axis = x_axis
 self.y_axis = y_axis
 if legend_entries is None:
 legend_entries = ["Curve {}".format(i) for i in range(len(y_axis))]
 self.legend_entries = legend_entries
 self.title = title
 self.x_label = x_label
 self.y_label = y_label
 self.x_axis_ticks = x_axis_ticks
 self.y_axis_ticks = y_axis_ticks
 # parse axes limits
 min_x = np.min(x_axis)
 max_x = np.max(x_axis)
 min_y = np.min([np.min(l) for l in y_axis])
 max_y = np.max([np.max(l) for l in y_axis])
 self.x_axis_limits, self.y_axis_limits = _parse_axes_limits(
 min_x, max_x, min_y, max_y, x_axis_limits, y_axis_limits
)

 def render(
 self,
 render_lines=True,
 line_colour="r",
 line_style="-",
 line_width=1,
 render_markers=True,
 marker_style="o",
 marker_size=6,
 marker_face_colour="r",
 marker_edge_colour="k",
 marker_edge_width=1.0,
 render_legend=True,
 legend_title="",
 legend_font_name="sans-serif",
 legend_font_style="normal",
 legend_font_size=10,
 legend_font_weight="normal",
 legend_marker_scale=None,
 legend_location=2,
 legend_bbox_to_anchor=(1.05, 1.0),
 legend_border_axes_pad=None,
 legend_n_columns=1,
 legend_horizontal_spacing=None,
 legend_vertical_spacing=None,
 legend_border=True,
 legend_border_padding=None,
 legend_shadow=False,
 legend_rounded_corners=False,
 render_axes=True,
 axes_font_name="sans-serif",
 axes_font_size=10,
 axes_font_style="normal",
 axes_font_weight="normal",
 figure_size=(7, 7),
 render_grid=True,
 grid_line_style="--",
 grid_line_width=1,
):
 import matplotlib.pyplot as plt

 # Check the viewer options that can be different for each plotted curve
 n_curves = len(self.y_axis)
 render_lines = _check_render_flag(
 render_lines,
 n_curves,
 "Must pass a list of different "
 "render_lines flag for each curve or "
 "a single render_lines flag for all "
 "curves.",
)
 render_markers = _check_render_flag(
 render_markers,
 n_curves,
 "Must pass a list of different "
 "render_markers flag for each "
 "curve or a single render_markers "
 "flag for all curves.",
)
 line_colour = _check_colours_list(
 True,
 line_colour,
 n_curves,
 "Must pass a list of line colours with length n_curves or a single "
 "line colour for all curves.",
)
 line_style = _check_colours_list(
 True,
 line_style,
 n_curves,
 "Must pass a list of line styles with length n_curves or a single "
 "line style for all curves.",
)
 line_width = _check_colours_list(
 True,
 line_width,
 n_curves,
 "Must pass a list of line widths with length n_curves or a single "
 "line width for all curves.",
)
 marker_style = _check_colours_list(
 True,
 marker_style,
 n_curves,
 "Must pass a list of marker styles with length n_curves or a "
 "single marker style for all curves.",
)
 marker_size = _check_colours_list(
 True,
 marker_size,
 n_curves,
 "Must pass a list of marker sizes with length n_curves or a single "
 "marker size for all curves.",
)
 marker_face_colour = _check_colours_list(
 True,
 marker_face_colour,
 n_curves,
 "Must pass a list of marker face colours with length n_curves or a "
 "single marker face colour for all curves.",
)
 marker_edge_colour = _check_colours_list(
 True,
 marker_edge_colour,
 n_curves,
 "Must pass a list of marker edge colours with length n_curves or a "
 "single marker edge colour for all curves.",
)
 marker_edge_width = _check_colours_list(
 True,
 marker_edge_width,
 n_curves,
 "Must pass a list of marker edge widths with length n_curves or a "
 "single marker edge width for all curves.",
)

 # plot all curves
 ax = plt.gca()
 for i, y in enumerate(self.y_axis):
 linestyle = line_style[i]
 if not render_lines[i]:
 linestyle = "None"
 marker = marker_style[i]
 if not render_markers[i]:
 marker = "None"
 plt.plot(
 self.x_axis,
 y,
 color=line_colour[i],
 linestyle=linestyle,
 linewidth=line_width[i],
 marker=marker,
 markeredgecolor=marker_edge_colour[i],
 markerfacecolor=marker_face_colour[i],
 markeredgewidth=marker_edge_width[i],
 markersize=marker_size[i],
 label=self.legend_entries[i],
)

 # set legend
 _set_legend(
 ax,
 legend_handles=None,
 render_legend=render_legend,
 legend_title=legend_title,
 legend_font_name=legend_font_name,
 legend_font_style=legend_font_style,
 legend_font_size=legend_font_size,
 legend_font_weight=legend_font_weight,
 legend_marker_scale=legend_marker_scale,
 legend_location=legend_location,
 legend_bbox_to_anchor=legend_bbox_to_anchor,
 legend_border_axes_pad=legend_border_axes_pad,
 legend_n_columns=legend_n_columns,
 legend_horizontal_spacing=legend_horizontal_spacing,
 legend_vertical_spacing=legend_vertical_spacing,
 legend_border=legend_border,
 legend_border_padding=legend_border_padding,
 legend_shadow=legend_shadow,
 legend_rounded_corners=legend_rounded_corners,
)

 # set axes options
 _set_axes_options(
 ax,
 render_axes=render_axes,
 inverted_y_axis=False,
 axes_font_name=axes_font_name,
 axes_font_size=axes_font_size,
 axes_font_style=axes_font_style,
 axes_font_weight=axes_font_weight,
 axes_x_limits=self.x_axis_limits,
 axes_y_limits=self.y_axis_limits,
 axes_x_ticks=self.x_axis_ticks,
 axes_y_ticks=self.y_axis_ticks,
 axes_x_label=self.x_label,
 axes_y_label=self.y_label,
 title=self.title,
)

 # set grid options
 _set_grid_options(
 render_grid=render_grid,
 grid_line_style=grid_line_style,
 grid_line_width=grid_line_width,
)

 # set figure size
 _set_figure_size(self.figure, figure_size)

 return self

class MatplotlibMultiImageViewer2d(MatplotlibRenderer):
 def __init__(self, figure_id, new_figure, image_list):
 super(MatplotlibMultiImageViewer2d, self).__init__(figure_id, new_figure)
 self.image_list = image_list

 def render(self, interval=50, **kwargs):
 import matplotlib.pyplot as plt
 import matplotlib.cm as cm
 import matplotlib.animation as animation

 if len(self.image_list[0].shape) == 2:
 # Single channels are viewed in Gray
 _ax = plt.imshow(self.image_list[0], cmap=cm.Greys_r, **kwargs)
 else:
 _ax = plt.imshow(self.image_list[0], **kwargs)

 def init():
 return (_ax,)

 def animate(j):
 _ax.set_data(self.image_list[j])
 return (_ax,)

 self._ani = animation.FuncAnimation(
 self.figure,
 animate,
 init_func=init,
 frames=len(self.image_list),
 interval=interval,
 blit=True,
)
 return self

class MatplotlibMultiImageSubplotsViewer2d(MatplotlibRenderer, MatplotlibSubplots):
 def __init__(self, figure_id, new_figure, image_list):
 super(MatplotlibMultiImageSubplotsViewer2d, self).__init__(
 figure_id, new_figure
)
 self.image_list = image_list
 self.num_subplots = self.image_list[0].shape[2]
 self.plot_layout = self._subplot_layout(self.num_subplots)

 def render(self, interval=50, **kwargs):
 import matplotlib.cm as cm
 import matplotlib.animation as animation
 import matplotlib.pyplot as plt

 p = self.plot_layout
 _axs = []
 for i in range(self.image_list[0].shape[2]):
 plt.subplot(p[0], p[1], 1 + i)
 # Hide the x and y labels
 plt.axis("off")
 _ax = plt.imshow(self.image_list[0][:, :, i], cmap=cm.Greys_r, **kwargs)
 _axs.append(_ax)

 def init():
 return _axs

 def animate(j):
 for k, _ax in enumerate(_axs):
 _ax.set_data(self.image_list[j][:, :, k])
 return _axs

 self._ani = animation.FuncAnimation(
 self.figure,
 animate,
 init_func=init,
 frames=len(self.image_list),
 interval=interval,
 blit=True,
)
 return self

def sample_colours_from_colourmap(n_colours, colour_map):
 import matplotlib.pyplot as plt

 cm = plt.get_cmap(colour_map)
 return [cm(1.0 * i / n_colours)[:3] for i in range(n_colours)]

def _check_colours_list(render_flag, colours_list, n_objects, error_str):
 if render_flag:
 if colours_list is None:
 # sample colours from jet colour map
 colours_list = sample_colours_from_colourmap(n_objects, GLOBAL_CMAP)
 if isinstance(colours_list, list):
 if len(colours_list) == 1:
 colours_list *= n_objects
 elif len(colours_list) != n_objects:
 raise ValueError(error_str)
 else:
 colours_list = [colours_list] * n_objects
 else:
 colours_list = [None] * n_objects
 return colours_list

def _check_render_flag(render_flag, n_objects, error_str):
 if isinstance(render_flag, bool):
 render_flag = [render_flag] * n_objects
 elif isinstance(render_flag, list):
 if len(render_flag) == 1:
 render_flag *= n_objects
 elif len(render_flag) != n_objects:
 raise ValueError(error_str)
 else:
 raise ValueError(error_str)
 return render_flag

_static/file.png

_static/plus.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Menpo Documentation

 		
 menpo.base

 		
 Core

 		
 Copyable

 		
 Vectorizable

 		
 Targetable

 		
 LazyList

 		
 Convenience

 		
 menpo_src_dir_path

 		
 name_of_callable

 		
 Warnings and Exceptions

 		
 MenpoDeprecationWarning

 		
 MenpoMissingDependencyError

 		
 menpo.io

 		
 Input

 		
 import_image

 		
 import_images

 		
 import_video

 		
 import_videos

 		
 import_landmark_file

 		
 import_landmark_files

 		
 import_pickle

 		
 import_pickles

 		
 import_builtin_asset

 		
 register_image_importer

 		
 register_landmark_importer

 		
 register_pickle_importer

 		
 register_video_importer

 		
 Output

 		
 export_image

 		
 export_video

 		
 export_landmark_file

 		
 export_pickle

 		
 Path Operations

 		
 image_paths

 		
 landmark_file_paths

 		
 pickle_paths

 		
 video_paths

 		
 data_path_to

 		
 data_dir_path

 		
 ls_builtin_assets

 		
 menpo.image

 		
 Image Types

 		
 Image

 		
 BooleanImage

 		
 MaskedImage

 		
 Exceptions

 		
 ImageBoundaryError

 		
 OutOfMaskSampleError

 		
 menpo.feature

 		
 Features

 		
 no_op

 		
 gradient

 		
 gaussian_filter

 		
 igo

 		
 es

 		
 daisy

 		
 Optional Features

 		
 dsift

 		
 fast_dsift

 		
 vector_128_dsift

 		
 hellinger_vector_128_dsift

 		
 Predefined (Partial Features)

 		
 double_igo

 		
 Normalization

 		
 normalize

 		
 normalize_norm

 		
 normalize_std

 		
 normalize_var

 		
 Visualization

 		
 sum_channels

 		
 References

 		
 menpo.landmark

 		
 Abstract Classes

 		
 Landmarkable

 		
 Exceptions

 		
 LabellingError

 		
 Landmarks & Labeller

 		
 LandmarkManager

 		
 labeller

 		
 Bounding Box Labels

 		
 bounding_box_mirrored_to_bounding_box

 		
 bounding_box_to_bounding_box

 		
 Labels

 		
 Human Face

 		
 Human Eyes

 		
 Human Hand

 		
 Human Body Pose

 		
 Car

 		
 Human Tongue

 		
 menpo.math

 		
 Decomposition

 		
 eigenvalue_decomposition

 		
 pca

 		
 pcacov

 		
 ipca

 		
 Linear Algebra

 		
 dot_inplace_right

 		
 dot_inplace_left

 		
 as_matrix

 		
 from_matrix

 		
 Convolution

 		
 log_gabor

 		
 menpo.model

 		
 Abstract Classes

 		
 LinearModel

 		
 LinearVectorModel

 		
 MeanLinearModel

 		
 MeanLinearVectorModel

 		
 Principal Component Analysis

 		
 PCAModel

 		
 PCAVectorModel

 		
 Gaussian Markov Random Field

 		
 GMRFModel

 		
 GMRFVectorModel

 		
 menpo.shape

 		
 Base Class

 		
 Shape

 		
 PointCloud

 		
 PointCloud

 		
 Graphs

 		
 UndirectedGraph

 		
 DirectedGraph

 		
 Tree

 		
 PointGraphs

 		
 PointUndirectedGraph

 		
 PointDirectedGraph

 		
 PointTree

 		
 LabelledPointGraph

 		
 LabelledPointUndirectedGraph

 		
 Predefined Graphs

 		
 empty_graph

 		
 star_graph

 		
 complete_graph

 		
 chain_graph

 		
 delaunay_graph

 		
 stencil_grid

 		
 Triangular Meshes

 		
 TriMesh

 		
 ColouredTriMesh

 		
 TexturedTriMesh

 		
 Group Operations

 		
 mean_pointcloud

 		
 Shape Building

 		
 bounding_box

 		
 bounding_cuboid

 		
 menpo.transform

 		
 Composite Transforms

 		
 rotate_ccw_about_centre

 		
 scale_about_centre

 		
 shear_about_centre

 		
 transform_about_centre

 		
 Homogeneous Transforms

 		
 Homogeneous

 		
 Affine

 		
 Similarity

 		
 Rotation

 		
 Translation

 		
 Scale

 		
 UniformScale

 		
 NonUniformScale

 		
 Alignments

 		
 ThinPlateSplines

 		
 PiecewiseAffine

 		
 AlignmentAffine

 		
 AlignmentSimilarity

 		
 AlignmentRotation

 		
 AlignmentTranslation

 		
 AlignmentUniformScale

 		
 Group Alignments

 		
 GeneralizedProcrustesAnalysis

 		
 Composite Transforms

 		
 TransformChain

 		
 Radial Basis Functions

 		
 R2LogR2RBF

 		
 R2LogRRBF

 		
 Abstract Bases

 		
 Transform

 		
 Transformable

 		
 ComposableTransform

 		
 Invertible

 		
 Alignment

 		
