pcacov¶
-
menpo.math.
pcacov
(C, is_inverse=False, eps=1e-05)[source]¶ Apply Principal Component Analysis (PCA) given a covariance/scatter matrix C. In the case where the data matrix is very large, it is advisable to set
inplace = True
. However, note this destructively edits the data matrix by subtracting the mean inplace.- Parameters
C (
(N, N)
ndarray or scipy.sparse) – The Covariance/Scatter matrix. If it is a precision matrix (inverse covariance), then set is_inverse=True.is_inverse (bool, optional) – It
True
, then it is assumed that C is a precision matrix ( inverse covariance). Thus, the eigenvalues will be inverted. IfFalse
, then it is assumed that C is a covariance matrix.eps (float, optional) – Tolerance value for positive eigenvalue. Those eigenvalues smaller than the specified eps value, together with their corresponding eigenvectors, will be automatically discarded.
- Returns
U (eigenvectors) (
(n_components, n_dims)
ndarray) – Eigenvectors of the data matrix.l (eigenvalues) (
(n_components,)
ndarray) – Positive eigenvalues of the data matrix.